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ABSTRACT 

The emergence of hardware virtualization technology has led to 
the development of OS independent malware such as the Virtual 
Machine based rootkits (VMBRs). In this paper, we draw 
attention to a different but related threat that exists on many 
commodity systems in operation today: The System Management 
Mode based rootkit (SMBR).  System Management Mode (SMM) 
is a relatively obscure mode on Intel processors used for low-level 
hardware control.  It has its own private memory space and 
execution environment which is generally invisible to code 
running outside (e.g., the Operating System).  Furthermore, SMM 
code is completely non-preemptible, lacks any concept of 
privilege level, and is immune to memory protection mechanisms. 
These features make it a potentially attractive home for stealthy 
rootkits.  In this paper, we present our development of a proof of 
concept SMM rootkit. In it, we explore the potential of System 
Management Mode for malicious use by implementing a chipset 
level keylogger and a network backdoor capable of directly 
interacting with the network card to send logged keystrokes to a 
remote machine via UDP. The rootkit hides its memory footprint 
and requires no changes to the existing Operating System. It is 
compared and contrasted with VMBRs.  Finally, techniques to 
defend against these threats are explored. By taking an offensive 
perspective we hope to help security researchers better understand 
the depth and scope of the problems posed by an emerging class 
of OS independent malware.   

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection – Invasive 
software (e.g., viruses, worms, Trojan horses) 

General Terms 
Security 

Keywords 
System Management Mode, Rootkit, Malware, Virtualization, 
Operating System Security 

1. INTRODUCTION 
A rootkit consists of a set of programs that work to subvert 
control of an Operating System from its legitimate users [16].  If 
one were asked to classify viruses and worms by a single defining 
characteristic, the first word to come to mind would probably be 
replication.  In contrast, the single defining characteristic of a 
rootkit is stealth. Viruses reproduce, but rootkits hide. They hide 
by compromising the communication conduit between an 
Operating System and its users.  Secondary to hiding themselves, 
rootkits are generally capable of gathering and manipulating 
information on the target machine.  They may, for example, log a 
victim user’s keystrokes to obtain passwords or manipulate the 
system state to allow a remote attacker to gain control by altering 
security descriptors and access tokens.   

Since the user’s view of the computer system and its resources is 
strictly mediated by the information the Operating System 
provides to it via hardware and software interfaces, a malicious 
program that controls the interfaces controls the entire system.  A 
rootkit hides its presence by intercepting and altering the interface 
communications of various Operating System or hardware 
components to hide files, processes, and network connections on 
the computers that it is installed upon.  This hiding may be 
achieved either directly or indirectly using code modifications, 
data modifications, or a combination of both.   

It is important to emphasize, however, that the nature of the 
rootkit compromise is not to escalate or circumvent privilege, but 
rather to hide an attacker’s presence on an already compromised 
system.  The initial security breach that allows installation of the 
rootkit may arise from social engineering attacks that trick an 
unsuspecting user into running a malicious application or from the 
exploitation of unpatched vulnerabilities in the Operating System 
and other critical software. 

Early rootkits relied upon system file masquerade to hide their 
presence.  An attacker would replace a system file with a 
subversive file that “masqueraded” as the original [19].  The login 
program was a common target for this type of attack as it could be 
replaced by a malicious version which captured the passwords of 
users as they attempted to log into a system.  This motivated the 
development of file system integrity checkers like Tripwire [12].  
Rootkit authors quickly developed execution path redirection, 
also known as hooking, techniques to counter detection by 
integrity checkers.  Hooking encompasses a class of techniques 
whereby a program’s normal control flow is altered to execute a 
block of malicious code.  It is important to note that execution 
path redirection is impervious to traditional integrity checkers like 
Tripwire which typically only check files stored on the hard disk 
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for modifications.  This is because they make their changes to the 
loaded images in memory rather than to the disk images.  Though 
more difficult to detect than system file masquerade, hooking 
remains detectable by memory based integrity checkers and other 
heuristic techniques.  Eventually, rootkit authors figured out how 
to evade hook detection by using Direct Kernel Object 
Manipulation (DKOM) to modify dynamic kernel data structures 
for which it is impossible to establish reliable heuristics or trusted 
baseline values [21].  The idea is that by controlling the data used 
in a function, a rootkit can indirectly control the execution path. 

It is clear that rootkit development has exhibited an adaptive, co-
evolutionary pattern in response to security software 
advancements.  The result has been an ongoing, sophisticated 
game of ‘hide and seek’ between rootkit developers and detectors.  
As rootkits seek ever better methods to hide their presence on 
infected systems, defenders must develop newer, more advanced 
techniques to find them.  With the emergence of hardware 
virtualization technology, the rootkit battle field has changed 
dramatically.  Previous rootkits co-existed with the Operating 
System (OS).  They exerted their influence by redirecting control 
flow within the OS to their own malicious code [20].  This was 
accomplished by making modifications to either static or dynamic 
OS data structures in memory. Security researchers responded by 
developing integrity checkers and heuristics to detect these 
changes [11].  

Unfortunately, these techniques are useless against Virtual 
Machine Based Rootkits (VMBRs) which have the ability to exist 
independently of any OS.  Such rootkits are able to exert an 
alarming degree of control without modifying a single byte in the 
Operating System [1].  A VMBR hoists the Operating System into 
a virtual machine and exerts its controls over the machine from an 
external Virtual Machine Monitor (VMM).  This process is 
invisible to the OS.  Once installed, the VMM is capable of 
transparently intercepting and modifying states and events 
occurring in the virtualized OS.  It can observe and modify 
keystrokes, network packets, memory, and disk I/O.  If the VMBR 
has virtualized memory, its code footprint will also be invisible.  
These things make a VMBR extremely difficult to detect. 

 In this paper, we draw attention to another, similar threat that 
exists on many commodity systems in operation today: The 
System Management Mode (SMM) based rootkit (SMBR).  SMM 
is an abbreviation for Intel’s System Management Mode, a 
processor mode which has existed since the i386, yet still remains 
largely obscure.  Unlike the other processor modes, (e.g. 
protected, real, virtual 8086) which are designed for running 
Operating Systems or user applications, SMM was developed 
exclusively for managing low level hardware operations like 
power and thermal regulation.  SMM has its own private memory 
space and execution environment which is generally invisible to 
code running outside. Furthermore, SMM code is completely non 
preemptible, lacks any concept of privilege level, and is immune 
to memory protection mechanisms [4]. These features make it an 
attractive home for malicious rootkits.  

A System Management Mode Based Rootkit (SMBR) offers 
comparable stealth to a VMBR while maintaining a potentially 
smaller code footprint.  Because the SMM execution 
environment’s isolation is enforced at the hardware level by the 
chipset, an SMBR gains the ability to conceal its memory 
footprint by default without having to implement slow and 

complex memory virtualization code.  Like the VMBR, the 
SMBR is able to exert control without requiring any visible 
changes to the underlying operating system.   

In this paper, we present our development of a proof of concept 
SMBR.  In it, we explore the potential of System Management 
Mode for malicious use.  By taking an offensive perspective we 
hope to help security researchers better understand the depth and 
scope of the problems posed by an emerging class of OS 
independent malware.   

Our SMM rootkit provides a high degree of stealth and control.  
We demonstrate the construction of a chipset level keylogger by 
redirecting the keyboard Interrupt Request (IRQ) to System 
Management Mode in the Advanced Programmable Interrupt 
Controller (APIC).  Logged keystrokes are then encapsulated into 
UDP packets and sent out via the chipset LAN interface.  This is 
all accomplished without making any visible changes to the target 
system. We also show that, once installed, the rootkit remains 
hidden in memory making it difficult to detect or remove.  
Because they have somewhat similar traits, we also compare and 
contrast VMBRs with SMBRs on several key characteristics 
including operating environment, size, complexity, stealth, and 
control.  Finally, we discuss countermeasures to detect and defend 
against these threats. 

The rest of this paper is organized as follows. In section 2, we 
discuss some related work.  In section 3, we give an overview of 
System Management Mode.  We cover the design and 
implementation of our proof of concept SMBR in section 4. We 
evaluate it in section 5 and provide a comparison and contrast 
with virtual-machine based rootkits in section 6.  Defense is 
discussed in section 7.  Finally, we conclude in section 8.   

2. RELATED WORK 
Our research on SMM rootkits (SMBRs) is related to three areas 
of existing rootkit technology: memory management subversion, 
virtualization, and BIOS exploitation.   

Once a rootkit is publicly known, Anti-Virus software can 
develop a signature for it.  Furthermore, rootkit changes to the OS 
are detectable using heuristic memory scans.  It is, therefore, 
advantageous for a rootkit to be able to hide its memory footprint. 
Memory subversion was first implemented in the Shadow Walker 
rootkit [10].  The Shadow Walker rootkit demonstrated that it was 
possible to control the view of memory regions seen by the 
Operating System and other processes by hooking the paging 
mechanism and exploiting the Intel split TLB architecture. Using 
these techniques, it was capable of hiding both its own code and 
changes to other Operating System components. This enabled it to 
fool both signature and heuristic based scans.  Memory 
virtualization support on Intel and AMD platforms with hardware 
virtualization extensions can also be exploited to hide the memory 
footprint of malicious code. The general idea behind memory 
virtualization is that the Virtual Machine Monitor (VMM) 
maintains its own set of page tables in addition to the virtualized 
guest OS’s paging structures.   The guest OS is free to manage its 
own page tables, however, physical translation occurs using the 
VMM’s page tables rather than the guest OS’s.  Furthermore, the 
VMM page tables are inaccessible to the guest.  As a result, the 
VMM has complete control over all of the physical memory the 
guest is allowed to access.  Instructions which affect paging 
structures and the cache are also virtualized to cause traps to the 



VMM.   The Blue Pill II rootkit demonstrated this capability [24].  
A SMM rootkit also has the ability to hide its code footprint, but 
it does not require the implementation of complex memory 
virtualization code. 

Virtual-machine based rootkits have many characteristics in 
common with the System Management Mode based rootkit 
presented in this paper. They both operate at a layer below the 
Operating System and they both are capable of intercepting and 
emulating low level system events without needing to modify any 
existing OS code or data structures.  The VMBR threat was 
analyzed by [1].  Using Vmware and Virtual PC, authors in [1] 
implemented several malicious VMBR services to subvert both 
Windows and Linux. Their implementation, however, was 
primarily theoretical. This is due to the fact that real world 
Operating Systems run on native hardware, not in software virtual 
machines like Vmware. As real world attackers are unlikely to 
implement their malicious code in Vmware, the malicious services 
implemented by [1] are primarily simulations of real world 
scenarios.  Joanna Rutkowska took the VMBR into the practical 
domain with her development of the Blue Pill rootkit [3][24].  
The Blue Pill rootkit exploits AMD hardware virtualization 
extensions to migrate a running Windows Operating System into a 
virtual machine.  It hides its code footprint using memory 
virtualization, supports nested virtual machine monitors, and 
implements countermeasures against timing based detections. [23] 
implemented a similar proof of concept rootkit for MacOS X on 
the Intel virtualization platform.  This rootkit was code named 
Vitriol.  On the other hand, there has been very little research on 
SMM based rootkits. 

Finally, BIOS rootkits are related to SMM rootkits.  The BIOS is 
the first code that runs when a system is powered on.  It performs 
diagnostics and initializes the chipset, memory, and peripheral 
devices.  A rootkit that infects the BIOS is capable of controlling 
hardware at a level similar to an SMBR with the additional benefit 
of being able to survive reboots and reinstallations of a new OS.  
John Heasman developed a proof of concept BIOS rootkit that 
acts as a simple Windows NT backdoor [8].  He used the 
Advanced Configuration and Power Interface (ACPI) to patch a 
kernel API in system memory.  Because his rootkit changed code 
in the OS it was detectable using existing rootkit detection tools 

like VICE, Blacklight, or Rootkit Revealer [11][17][18].  For 
more advanced BIOS rootkits, suggested countermeasures include 
disabling ACPI in the BIOS and auditing the ACPI tables. Further 
hardware mitigations include preventing BIOS reflashing or 
requiring that the BIOS is signed [8]. These countermeasures, 
however, cannot defend against an SMM based rootkit. 

Using SMM to escalate privilege was first discussed by Loic 
Duflot [9].  On OpenBSD, the superuser is granted limited 
privileges. Duflot demonstrated an exploit against OpenBSD that 
allowed an attacker to arbitrarily extend superuser privileges.   
Because SMM code has unrestricted access to physical memory, 
Duflot demonstrated that if attacker can run code in System 
Management Mode and locate the internal variable in memory 
that the OS uses to determine the current privilege level, then he / 
she can modify it to circumvent the Operating System’s built in 
security and obtain full privileges.  To perform this exploit, the 
attacker must have the ability to read and write the programmed 
I/O registers and the legacy video memory range.  Duflot’s 
exploit, however, was not a rootkit.  His stated goal was privilege 
escalation, not stealth.  The ability to read and write physical 
memory is only one System Management Mode capability of 
interest to a rootkit author.  A potentially more advanced and 
interesting capability lies in the ability of SMM code to exert 
unrestricted control over peripheral hardware.  The fact SMM 
code is non pre-emptible and communicates directly with the 
hardware makes it stealthy and relatively immune to detection.  In 
this paper, we build upon Duflot’s work to explore some of the 
advanced capabilities of System Management Mode. The ability 
to control peripheral hardware could make SMM based malware, 
like rootkits, a formidable security threat. Our successful 
construction of a SMM chipset level, rootkit keylogger and 
network backdoor shows that SMM is a practical threat that could 
be exploited by real world malware authors.  

3. OVERVIEW OF SMM 
This section gives an overview of System Management Mode 
(SMM) and discusses how its features make it an ideal execution 
environment for stealthy malware. 
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      32-bit system. 



The Intel architecture defines four processor modes of operation: 
Real Mode, Virtual-8086 Mode, Protected Mode, and System 
Management Mode [4].  Real Mode and Virtual-8086 Mode are 
legacy modes dating back to the 80286 / 80386 CPU.  Real Mode 
is characterized by a segmented 20 bit addressable memory space 
and the lack of hardware memory protection. MS-DOS and early 
Windows OS versions ran in Real Mode. Current operating 
systems run in either 32 or 64 bit protected mode. Protected mode 
overcomes the limitations of Real Mode by extending the 
addressable memory space to 32/64 bits and adding support for 
paging, memory protection, and multi-tasking.  Virtual 8086 
mode was designed to allow Real Mode and Protected Mode 
programs to coexist; however, it is seldom used by modern 
operating systems.  In contrast to the other modes, System 
Management Mode (SMM) was not designed for running 
operating systems or user programs.  Rather, it was intended for 
managing low level hardware operations (e.g. power management 
and thermal regulation) and is usually installed by the BIOS. 
SMM has its own memory space and execution environment 
which is generally invisible to code running outside of SMM.  
Furthermore, SMM code is completely non preemptible, lacks any 
concept of privilege level, and is immune to memory protection. 
These things clearly make SMM a potentially attractive home for 
stealthy rootkits.  System Management Mode is entered when the 
processor receives a System Management Interrupt (SMI) [4]. 

3.1 SMRAM – The SMM Memory Space 
The System Management Memory Space (SMRAM) is used to 
hold the processor state information saved upon an entry to SMM, 
the SMI handler, and its associated data [4]. The Intel chipset 
documentation defines three locations for SMRAM: Compatible, 
High Memory Segment (HSEG), and Top of Memory Segment 
(TSEG) [7].  The compatible region overlaps the legacy VGA 
memory range from 0xA0000 to 0xBFFFF and is the default 
location for SMRAM.  Normally, the contents of SMRAM are 
only visible to code executing in System Management Mode. This 
isolation is ensured by the chipset’s re-routing of any non SMM 
memory accesses to the VGA frame buffer. Compatible SMRAM 
is also limited to 128K.  The HSEG and TSEG regions provide an 
extended, write-back, cacheable SMM memory space up to 256 
MB in size.   

Structurally, the SMRAM space consists of a state save area and 
the System Management Interrupt (SMI) handler.  The remaining 
space is available for use by the handler for data and stack 
storage.  An internal processor register, called SMBASE, holds 
the physical address pointer to the start of the SMRAM space.  
The SMBASE value is also stored in the state save area.  
Furthermore, the state save area is located at an offset from the 
beginning of SMRAM in physical memory. This area is used to 
store the register context when a System Management Interrupt 
(SMI) occurs.  The SMI handler is also located at an offset from 
the start of SMRAM.  Figure 1 illustrates the location and layout 
of compatible SMRAM.   

3.2 Entering & Exiting SMM 
The processor enters System Management Mode when it receives 
a System Management Mode Interrupt (SMI) [4].  When an SMI 
is received, execution context is saved into the SMRAM state 
save map and execution of the SMI handler is commenced.  The 
saved state information includes the processor’s control registers, 
segment registers, task register, general purpose registers, flags, 

instruction and stack pointers.  The SMM execution environment 
is similar to 16 bit real mode, with the difference that the full 32 
bit flat physical address space is accessible. Code executing in 
SMM is non preemptible because SMIs have greater priority than 
both processor exceptions and external interrupts, including non-
maskable interrupts (NMI).  When the SMI handler wishes to exit 
System Management Mode, it executes the Resume from System 
Management Mode (RSM) instruction [5]. The RSM instruction 
restores the previous execution context by copying the saved state 
information in SMRAM back into the processor’s registers and 
then returns control back to the interrupted code.  The I/O 
Controller chipset documentation defines a variety of events 
capable of triggering an SMI.  A few of them include: a power 
button press, real time clock (RTC) alarm, USB wake events, 
Advanced Configuration and Power Interface (ACPI) timer 
overflows, periodic timer expiration, and a write to the Advanced 
Power Management Control (APM) register, 0xB2 [6]. In the next 
section, we detail how some of these events might be exploited by 
a stealthy rootkit. 

4. SMBR DESIGN & IMPLEMENTATION 
A successful SMBR must overcome two obstacles.  First, it must 
write its code into the SMM handler portion of the SMRAM 
memory space.  This process should be capable of occurring from 
within a protected mode environment (e.g. Windows or Linux 
operating system) in order to give the rootkit its maximum 
infection potential.  Second, the rootkit must have some means of 
intercepting events in the host system and gaining control of 
execution. 

In this section, we discuss the design and implementation of an 
SMBR.  We take a similar approach to [1] with our design and 
development; however, we opt to design a practical rootkit that 
can be implemented on native hardware, as opposed to a 
simulated virtualization platform like Vmware.  Section 4.1 
describes how the SMBR can be installed on a running Operating 
System.  We discuss our implementation of a SMM handler that 
functions as a chipset level keylogger and network backdoor in 
section 4.2.  Finally, we discuss the potential for other, related 
forms of malicious hardware subversion at the chipset level. 

4.1 Rootkit Installation 
The rootkit can install a new SMM handler provided it has I/O 
port access privileges, the ability to map physical memory, and the 
SMRAM region has not been locked by the BIOS or other system 
software. We used a Windows kernel driver to install the SMBR. 
The Intel chipset documentation defines a System Management 
RAM Control Register (SMRAMC) which controls the 
accessibility and visibility of SMM space from other processor 
modes [6].  The two relevant bits in this register are the D_LCK 
bit and the D_OPEN bit.  D_OPEN controls the visibility of 
SMRAM.  If D_OPEN is clear, SMRAM is only visible to code 
executing in SMM mode.  Non SMM mode memory reads / writes 
are diverted by the chipset to the VGA frame buffer.  Figure 2 
illustrates this process. D_LCK controls the accessibility of 
SMRAM by controlling access to the SMRAMC register.  If 
D_LCK is set, the SMRAMC register becomes read-only and 
remains that way until a reset occurs.   Assuming that the D_LCK 
bit is clear, the rootkit is installed as follows:   

 



1. On a host machine, an attacker makes SMRAM visible from 
protected mode for reading and writing by setting the 
D_OPEN bit.  

2. Once D_OPEN is set, the attacker copies the rootkit SMM 
handler code to the handler portion of SMRAM as defined by 
the Intel documentation [4]. 

3. Finally, the attacker clears the D_OPEN bit and sets the 
D_LCK bit.  This has the effect of making SMRAM invisible 
to everything other than the subverted (rootkit) SMI handler 
and of locking the SMRAMC register so that it can no longer 
be modified.  The addressing of the SMRAMC register is 
chipset specific.  

4.2 Rootkit SMM Handler Implementation 
In the following section, we discuss the implementation of our 
proof of concept rootkit SMM handler.  Our rootkit functions as a 
chipset level keylogger and network backdoor.  First, we give an 
overview of the Intel APIC architecture.  This is followed by a 
description of the APIC redirection technique that we use to trap 
key presses and the procedure used to exfiltrate the key data over 
the chipset LAN interface.  

The Intel Advanced Programmable Interrupt Controller (APIC) is 
used to manage communication between the CPU, chipset, and 
external peripheral devices.  It consists of two components: The 
I/O APIC and the Local APIC (LAPIC) [25].  The I/O APIC is 
located on the motherboard while the Local APIC is integrated 
into the CPU.  There is typically one I/O APIC for each peripheral 
bus and one Local APIC per CPU.  The primary job of the I/O 
APIC is to route the interrupts it receives from peripheral buses to 
one or more Local APICs on the system.  In turn, each local APIC 
is responsible for receiving and managing the external interrupts 
for the CPU that it belongs to.  When it receives interrupts, the 
LAPIC dispatches them to the processor, one at a time, based 
upon their priorities.   

The processor looks up the handler for the interrupt in the 
Interrupt Descriptor Table (IDT) [5].  Each interrupt is assigned a 
unique identifier, called a vector.  The processor uses this value as 
an index into the IDT.  The Interrupt Descriptor Table is a 
processor specific data structure containing one entry for each of 
255 defined vectors.  Kernel rootkits often use IDT hooking to 
intercept processor interrupts and exceptions [13].  This involves 

replacing the Operating System handler contained in the IDT with 
a pointer to a malicious hook routine. Fortunately, such blatant 
modifications of the IDT are easily detectable.  Detection simply 
involves enumerating each of the handler pointers and validating 
that the address is within the range of either the OS kernel or a 
legitimate system driver.  If the address falls outside one of these 
known ranges, it is flagged as suspicious and a security analyst 
can conduct further investigations.   

Differing from the Kernel rootkit described above, a rootkit 
operating in System Management Mode does not need to make 
any detectable changes to the IDT in order to intercept interrupts.  
Rather than intercepting an interrupt at the processor handling 
level, the SMM rootkit can intercept it directly at the chipset level 
by re-routing the interrupt in the APIC.  We demonstrate this 
technique in our rootkit by implementing a chipset keylogger.  
There are three steps in this process.  First, we must be able to 
intercept the keyboard interrupt.  Second, we must be able to sniff 
the keystrokes from the keyboard’s internal buffer. Finally, we 
should forward the interrupt to the CPU for normal handling.   

We accomplish the first step by rerouting the keyboard IRQ to 
System Management Mode.  Thus, whenever a user presses a key, 
our SMM handler is called.  In the handler, we are able to sniff 
the key. Finally, we manually forward the interrupt to the CPU for 
normal handling by taking advantage of the Local APIC’s Inter 
Processor Interrupt (IPI) mechanism. We outline the 
implementation details in the following section. 

As mentioned previously, the I/O APIC’s primary function is to 
receive and route peripheral hardware interrupts to the Local 
APIC for delivery to the CPU.  For this purpose, the I/O APIC 
architecture defines a Redirection Table [6].  The Redirection 
table contains a dedicated entry for each interrupt pin.  It is used 
to translate the physical, hardware signal into an APIC message 
on the APIC bus.  This table can be used to specify the destination 
of the interrupt, the vector, and the delivery mode.   

The delivery mode is the primary field of interest for our rootkit.  
Most interrupts use the Fixed delivery mode.  This mode 
automatically forwards the interrupt to the LAPICs for all 
processors specified in the destination.  Our rootkit changes the 
delivery mode of the keyboard IRQ from Fixed to SMI.  Now, 
rather than automatically forwarding the interrupt, it will be 
redirected to our SMM handler.  In our handler, we are free to 
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sniff the contents of the keyboard buffer and send it out in 
network packets. 

We can accomplish the second step of extracting the keyboard 
data by reading the keyboard’s internal hardware registers.  The 
key press information is extracted by reading from the keyboard 
data register.  Unfortunately, this read is destructive.  Therefore, 
after the key data has been read, it must be replaced so that it is 
accessible to other system software. We replace it by writing a 
specific command byte to the keyboard command register.  This 
byte instructs the keyboard that the next byte written to the data 
register should remain there as if placed there by a physical key 
press [15]. 

Once we have extracted the keyboard data, it is necessary to 
forward the interrupt to the CPU for normal user input handling.  
Otherwise, the keyboard will no longer function.  We use the 
Local APIC’s ability to issue inter processor interrupts (IPI) for 
this purpose.  The LAPIC documentation defines an Interrupt 
Command Register (ICR) [5].  Using this register it is possible to 
send an interrupt to one or more processors, including self.  As in 
the I/O APIC’s Redirection Table, the destination, vector, and 
delivery mode are all specifiable.  When the lower 4 bytes of the 
ICR are written to, the LAPIC generates the IPI message and 
sends it out over the system bus. From within our SMM handler, 
we re-issue the interrupt with a destination of self and a fixed 
delivery mode by writing to the ICR. Therefore, the keyboard 
interrupt is delivered to the processor in the normal manner as 
soon as we exit from SMM mode. Figure 3 illustrates how the 
SMBR intercepts a keystroke signal and forwards it to the CPU. 

After we have captured the keyboard data, we use the chipset 
LAN controller to transmit the key data collected by our SMM 
keylogger to an external IP address. Thus, our SMM handler has 2 
functions: it logs keystrokes and then sends the logged data out 
over the chipset LAN interface. The transmit action is performed 
periodically in the SMM handler when a defined keyboard data 
storage buffer becomes full. Using a buffer as opposed to sending 
the keystrokes immediately as they are received allows more 
variability in when to send the data and could be exploited by a 
rootkit wishing to use traffic shaping techniques to stealthily 
blend in with existing network activity. This simulates the 
behavior of a malicious attacker attempting to exfiltrate sensitive 
material from a compromised system.   

The LAN controller acts as both a master and a slave on the PCI 
bus. In the role of master, it interacts with system memory to 
access transmit and receive data buffers.  As a slave, the host 
processor accesses the LAN controller’s internal structures to read 
and write information to its on-chip registers.  These registers may 
be either I/O mapped or memory mapped.  The method to use is 
determined by system software. The basic process for transmitting 
a packet of data follows: 

1) We first check the LAN controller to ensure that it’s in an idle 
state and not in the midst of transmitting or receiving. 

2) Next, we build a Transmit Command Block.  

3) Then, we build a data packet containing the keyboard buffer 
data.  For simplicity, we chose to use the UDP and TFTP 
protocols.  Thus, the basic packet structure consists of an 
Ethernet header followed by an IP header, followed by a UDP 
header, followed by a TFTP header, followed by the key data. 
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Manufacturer Model Chipset Purchase Date Locked? 

DELL Inspiron 8100 i815EP 2001 NO 

DELL Dimension 4500 i845E 2002 NO 

DELL Inspiron 1100 i845GL 2003 NO 

DELL Dimension 2400 i845GV 2003 NO 

DELL Dimension 4600 i865PE 2004 NO 

Custom Built N/A i845PE 2004 NO 

IBM T42 i855PM 2005 YES 

DELL Precision 390 i975X 2006 YES 

DELL Dimension 9200 i965P 2006 YES 

DELL Dimension 9150 i945P 2006 YES 

DELL Inspiron 9400 i945GM 2006 YES 

DELL Inspiron 530 iP35 2007 YES 

Sony VAIO i945GM 2007 YES 

Custom Built N/A i945X 2007 YES 
 

Figure 4: System Vulnerability Assessment 

x

4) We load the LAN controller with the physical address of the 
Transmit Command Block. 

5) Finally, we initiate execution of the LAN controller.  This 
will cause it to begin executing the Transmit Command 
Block constructed in step 2 and will send the packet 
constructed in step 3 out over the network.  

4.3 Real World SMM Rootkits 
Although we have only implemented a proof of concept 
keylogger and network backdoor, a real-world SMM rootkit 
could implement an unlimited number of malicious services.  
Virtually every peripheral hardware device can be subverted 
using these techniques.  Some of these devices include the USB 
ports, Mouse, and Hard Disks.  We can envision an extended 
version of our rootkit that not only transmits exfiltrated data, but 
also receives malicious commands from an attacker and relays 
all manner of sensitive materials stealthily out over the network.  
An SMM rootkit can also gain control on non hardware events 
like periodic timer expiration.  This would allow for SMIs to be 
generated at regular intervals, a potentially useful feature for a 
malicious rootkit wishing to periodically gain control to inspect 
the state of the system. 

Furthermore, such malicious activities are difficult to detect.  
The SMM handler code is completely inaccessible to the host 
system and there are no changes to processor or Operating 
System data structures.  Indeed, the only potentially detectable 
changes are the modification to the I/O APIC redirection table 
and network activity. As there are legitimate reasons to change 
the delivery mode to SMI (i.e., the change of I/O APIC 
redirection table by an SMM rootkit) that in itself is unlikely to 
be a sufficient heuristic to identify a stealthy rootkit.  One such 
legitimate use is to provide legacy keyboard and mouse support 
for USB devices [29].  Finally, the network transmission, which 
occurs inside of SMM at the chipset level will bypass any host 

based intrusion detection systems or firewalls. The network 
activity could be further concealed by using traffic shaping 
techniques.   

4.4 Limitations 
Our proof of concept rootkit has a number of implementational 
limitations.  It only works on PS/2 keyboards, a subset of 
network cards, and it is limited to single processor systems.  All 
of these limitations could be addressed with additional time and 
research. First, it is likely possible to extend our PS/2 
implementation to intercept events from more modern USB 
keyboards.  The chipset I/O Controller Hub documentation 
defines a legacy keyboard handling mechanism for USB 
keyboards which may be exploitable. This legacy operation is 
performed through SMM space and provides an area for future 
research. 

“When a USB keyboard is plugged into the system, and a 
standard keyboard is not, the system may not boot, and DOS 
legacy software will not run, because the keyboard will not be 
identified. The ICH4 implements a series of trapping operations 
which will snoop accesses that go to the keyboard controller, 
and put the expected data from the USB keyboard into the 
keyboard controller. This legacy operation is performed 
through SMM space [6].” 

Second, network card support could be extended provided that 
chipset documentation is available.  Intel provides developer 
documentation for most of their LAN cards.  Finally, our rootkit 
could probably be extended to work on the newer multi-
processor and multi-core systems.  We don’t have a multi-core 
test machine with SMM unlocked, however, the documentation 
indicates that any processor in a multiprocessor system can 
respond to an SMI event and that two processors can be 
executing in SMM at the same time.  Furthermore, the manual 
states that SMM is not re-entrant and that each processor should 
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Figure 5:  Our test driver opening SMRAM space and displaying the original SMM handler. 
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have its own dedicated SMRAM space.  Based upon this 
documentation, it should be possible to extend our rootkit to 
handle SMI’s on more than processor; however, it will require 
additional research and development. 

In general, the architectural limitations that will apply to an 
SMM based rootkit include weather or not the SMRAMC 
register is locked, the chipset specific nature of an  SMBR, and 
the size limitation of the SMM memory space.  Clearly, the 
biggest limitation is the fact that an SMBR can be installed only 
if the SMRAMC register is unlocked.  The hardware specific 
nature of the SMBR is probably the second biggest limitation.  
Because many of the register offsets vary based on chipset, an 
attacker would need to both know the hardware of the target 
machine or hardcode a table of register offsets for every chipset 
and do detection on the fly.  There may also be other subtle 
discrepancies in the chipset and/ or hardware implementation 
that would require additional code to detect and handle. This 
coupled with the fact that SMRAM is limited in size may render 
a generic approach impractical. Finally, an SMBR is non-
persistent [26].  It exists only in volatile memory and must be re-
installed after a system reboot. 

Beyond the architectural limitations, there are also several other 
implementational limitations.  First, there is no Operating 
System driver support for the SMBR to rely upon.  Hardware 
access therefore requires implementation of rudimentary low 
level drivers inside the SMM handler.  Second, the handler must 
be written in 16 bit assembly [5].  It is at least mildly reassuring 
that writing chipset level hardware device drivers in 16 bit 
assembly is beyond the reach of all but the most sophisticated 
attackers.  As a result, it is unlikely that SMM will appear in 
common malware, but will instead remain limited to 
sophisticated, targeted attacks. 

5. TESTING 
We conducted four different tests. The first one was a 
vulnerability assessment.  We wanted to get an idea of how 
wide-spread the SMBR threat might be and the types of systems 
that were most likely to be affected.  Our other experiments 
involved testing our proof of concept SMM rootkit on a live 
system.  We sought to validate its invisibility to other system 
software and its functionality as a keylogger network backdoor 
capable of exfiltrating sensitive data. 

5.1 Vulnerability Assessment 
The goal of our first experiment was to perform a system 
vulnerability assessment.  We wrote a Windows device driver to 
query the SMRAMC register for the values of the D_OPEN, 
D_CLOSED, and D_LCK bits.  We ran this program on 14 
different systems and recorded the manufacturer, chipset, BIOS 
version, BIOS date, and whether or not the system was locked.  
Figure 5 shows debug output from the test driver we wrote.  Out 
of these 14 systems, we found 6 were unlocked and vulnerable 
to the SMBR threat.  Because a majority of the unlocked 
systems had BIOS revision dates two years old or greater and 
most of the locked systems had more recent BIOS revision 
dates, we concluded that newer BIOS were locking System 
Management Mode. Nevertheless, a substantial percentage of 
commodity hardware in use today is at least two years old. This 
still makes SMBRs a significant threat.  Figure 4 summarizes 
our preliminary results. We will conduct more comprehensive 
vulnerability assessment in the near future, especially testing a 
variety of older Intel-based machines. 

5.2 Live Testing – Hiding In Memory 
Our next experiment involved testing our proof of concept 
SMBR.  We installed it on an unlocked DELL Dimension 2400 



 

 

Figure 6:  Capturing the Key Logger Packet (TFTP Header is [00,03,00,00] for a data packet). 
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running an Intel 845 chipset.  The system was installed with the 
Microsoft Windows XP Operating system.  We first sought to 
verify the invisibility of the installed rootkit.  This was 
accomplished by using the WinDbg kernel debugger to view the 
physical memory region where we loaded the rootkit code [28].  
As expected, we were unable to read the code from this area 
because one of the functions of the rootkit installer is to close 
and lock System Management Mode by writing to the 
SMRAMC register. As shown in Figure 2, this will cause the 
access to be routed to VGA memory.   This result is 
unsurprising when one considers that the chipset’s Memory 
Controller Hub (MCH) functions as a gatekeeper for all physical 
memory accesses. All memory accesses, regardless of weather 
they originate from software or hardware must pass through the  
MCH logic. The MCH logic snoops physical addresses on the 
bus and blocks unauthorized access to certain ranges like the 
SMM memory space.   

5.3 Live Testing – Key Logging 
Next, we validated the operation of the keylogger.  Our proof of 
concept code is currently limited to keyboards with a P/S 2 
interface.  Because it is impossible to read SMRAM once the 
rootkit is installed and the size of the SMRAM space is limited, 
we needed a way to save and verify the logged keystrokes.  We 
implemented two different output methods: the serial port and 
system physical memory.  

In the first method, we output the logged keystrokes over the 
serial port from inside the SMM handler. We use the Windows 
Hyperterminal program to capture the serial output and verify it 

against our key presses.  This method is primarily useful for 
debugging the SMM rootkit code.   

In the second method, the SMM handler writes the keyboard 
data to an allocated page of physical memory.  Since this page is 
outside the SMRAM space, we were able to attach the WinDbg 
kernel debugger and read the recorded keyboard scan codes 
from the page.  An attacker could use system memory in this 
manner as a temporary storage for the key log file.  To make it 
even stealthier, the attacker could encrypt the data in SMM 
mode before writing it out to system memory.  Because 
SMRAM is not accessible outside SMM, it would be impossible 
to obtain a copy of the key to decrypt the stored data, even if one 
knew where to look.  To an outsider the encrypted keyboard 
data would simply appear as random bytes and would be 
unlikely to raise suspicion.   

It should also be mentioned that our SMBR implementation 
doesn’t adversely affect the performance of the target system.  
That is, from a subjective, user’s perspective, our SMBR key 
logger does not introduce any noticeable slow down or latency 
in keyboard input at the GUI level.  We validated this at 
different typing rates, but did not quantify the SMBR’s 
performance using objective measures. This is an area of future 
research.  

5.4 Live Testing – Data Exfiltration 
Finally, we validated that our network backdoor was able to  
both log keystrokes and transmit packets containing the logged 
data successfully from inside the SMM rootkit handler.  We 
used an Intel Pro 100B network card for development and tested 
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Category SMBR VMBR 

Vulnerable System Space Mostly pre 2005 Systems Post 2006 Systems 

Operational Environment 16 bit Mode w/o Paging 32 bit Protected Mode w/ Paging 

OS Independent YES YES 

Memory Footprint Hiding YES YES (with memory virtualization) 

Control 

Chipset IRQs 

� Keyboard  
� Mouse  
� Network Card  
� USB  
� Disk 

CPU 

� Processor Interrupts 
� Debug Register R/W 
� Control Register R/W 
� Privileged Instructions 
� Memory Access 

Defense 
Set D_LCK in SMRAMC 
register either in BIOS or 
during early boot of OS. 

OS or BIOS should install a 
secure virtual machine that 
prevents installation of 3rd party 
virtual machines. 

 

Figure 7: Comparison of VMBRs and SMBRsXXX

using 2 machines connected to an an Ethernet network via a 
DLINK router.  The first machine was the aforementioned Dell 
Dimension 2400.  We installed the SMBR on it.  The second 
machine was a Dell Precision 390 running Windows XP.  We 
installed Microsoft Network Monitor 3.1 on it so that we could 
sniff incoming network traffic.  We were able to validate that the 
key press data was successfully received by the second machine 
by examining the sniffer output. The SMM network code, 
however, is card specific and would require modification to run 
on other network cards.  Figure 6 provides a screenshot showing 
that the SMM keyboard data was packaged into a TFTP packet 
and sent out to the remote machine using UDP over IP.  The 
data payload following the TFTP header is highlighted. 

6. EVALUATION & DISCUSSION 
SMM and VMM based rootkits both operate at a level outside 
an existing operating system. Therefore it makes sense to 
compare and contrast them. We compare and contrast the SMM 
and VMM rootkits based on 4 characteristics: Operating 
Environment, Complexity and Size, Control, and Stealth.  
Figure 7 summarizes the comparisons between SMBRs and 
VMBRs.  

6.1  Operating Environment 
SMBR and VMBR rootkits each have their own optimal target 
environment.   Both types of rootkits are hardware specific.  
Virtualization rootkits can only exist on processors supporting 
virtualization extensions.  This limits them to newer processors 
mostly less than 1-2 years old.  In contrast, SMM rootkits are 
more likely to exist on older processors containing older BIOS 
versions (greater than 1-2 years old as shown in Figure 7).  This 
is due to the fact that many newer BIOS have set the D_LCK bit 
in the SMRAM control register rendering SMRAM inaccessible 
outside the BIOS.   

Additionally, while virtualization rootkits are processor specific, 
System Management Mode based rootkits are chipset specific.  
This makes them best suited for a sophisticated, targeted attack 

rather than a vector for widespread malware distribution.  The 
operating environments are also very different because VMBRs 
operate in protected mode with paging enabled while SMBRs 
operate in a 16 bit environment similar to Real Mode without 
paging.  Finally, both VMBR’s and SMBR’s can be classified as 
non-persistent rootkits.  Non persistent rootkits exist only in 
memory and lack the ability to persist across reboots on the 
machine they are installed on. Although on the surface this 
seems like a significant disadvantage, when one considers that 
many server systems run for weeks or months at a time between 
reboots, it becomes less of an issue.  Due to the complex nature 
of the SMBR, it is unlikely that such a rootkit will appear on the 
more frequently rebooted systems (e.g. home user machines) 
anytime soon.  

6.2 Complexity & Size 
Compared with VMBRs, SMBRs have an advantage in terms of 
size and complexity.  While they have the added developmental 
complexity of having to deal with writing the SMM handler in 
legacy 16 bit assembly, they expend little effort to conceal their 
memory footprint as the chipset handles the memory access 
redirection once SMRAM has been closed and locked by the 
handler.  On the other hand, in order to provide similar stealth, a 
VMBR will likely have a larger code footprint.  This is due to its 
need to include complex paging code for memory virtualization 
support. 

6.3 Control 
   Both VMBR and SMBR rootkits are capable of efficiently 
exerting control over the system and neither needs to modify the 
target Operating System in order to obtain that control.  With 
that said, VMM rootkits might have the upper hand where 
flexibility is concerned.  They can intercept a greater number of 
higher level events like interrupts, memory access, debug and 
control register reads / writes, and execution of specific 
privileged instructions.  Although SMBRs have considerable 
control over peripheral hardware as we demonstrated in our 



proof of concept keylogger, in general, they tend to intercept 
lower level hardware events like power management, thermal 
regulation, and bus errors and will have limited control over 
processor specific events like memory access and instruction 
execution.   

6.4 Stealth 
Compared with VMBRs, SMBRs are stealthier. Several 
detections based upon cache and TLB discrepancies have been 
proposed for detecting virtualization rootkits [2]. Because a 
VMBR operates in protected mode with paging enabled, there is 
no easy way for it to prevent its execution from affecting the 
TLB.  SMBRs are immune to these types of detection because 
they operate in an environment without cacheing or paging 
enabled.  Therefore, they should not have any detectable effects 
upon either the cache or the TLB. 

SMM rootkits may provide greater stealth with less overhead.  A 
VMM rootkit is not hidden in memory unless it implements 
memory virtualization.  In contrast, the SMBR is hidden by 
default due to the MCH redirection of non SMM originated 
memory accesses to the SMRAM region. 

7. DEFENSE 
In this section, we consider the detection and prevention of both 
OS dependent and OS independent rootkits.   We feel that the 
emergence of OS independent rootkits necessitates a shift in 
focus from detection to prevention. 

7.1 OS Dependant Rootkits 
To date, most rootkit defense has focused on rootkit detection.  
This is possibly because detecting an OS dependent rootkit may, 
in fact, be easier than preventing its installation.  Prevention is 
difficult and there are several reasons for this.  These include 
difficulty controlling end user behavior, multiple attack entry 
points, and the presence of unpatched vulnerabilities. 

It is difficult to control the behavior of an end user.  End users 
are subject to social engineering attacks which may lead to them 
inadvertently install or run a malicious application. Assuming 
that the malicious application has gotten past the user, security 
software may attempt to prevent further damage by preventing 
or limiting access to the kernel.  Unfortunately, there are many 
entry points into the kernel and it is difficult to guard them all.  
Additionally, there are often undocumented entry points into a 
system.  These usually take the form of  exploits for unpatched 
vulnerabilities in the Operating System or critical software.  

     While prevention is a difficult problem, detection may be 
slightly easier.  OS dependent malware can be detected fairly 
reliably using signature or heuristic based scans.  Clearly, 
malware that coexists with an OS must make changes within the 
environment in order to exercise control over it and / or hide 
itself. Heuristics have been developed to detect many of these 
changes [11][22].  

7.2 OS Independant Rootkits 
OS independent rootkits present a new dilemma. Both 
virtualization and SMM rootkits are considerably more difficult 
to defend against than OS dependent malware.  First, it is not 
necessary for them to make any visible changes to the OS.  
Thus, heuristics are not useful.  Second, they have the capability 
to conceal their memory footprints making signatures useless. 

As a result, indirect detection measures like timing or cache 
discrepancies have been suggested for virtualization rootkits [2].  

Timing attacks may provide a method of detecting an SMM 
rootkit. We have validated that the processor’s timestamp 
counter is updated, even while executing in SMM.  Thus, it may 
be possible to devise a detection that reads the timestamp 
counter before and after an SMI and compares it with the time it 
takes to simply perform sequential reads of the counter.  
Unfortunately, it is also possible for an SMM rootkit to cheat 
this form of detection.  This is because the rootkit itself has 
access to the counter and is capable of modifying it before 
returning control back to the host Operating System.  

Another class of detection for OS independent malware relies on 
cache or TLB discrepancies. For example, VMM rootkits may 
be detected by their effects on the cache or TLB because they 
must exist in cacheable, pageable memory. Unfortunately, this 
kind of timing attack is not valid against SMM rootkit. SMM 
rootkit does not influence the cache or TLB because it can exist 
in uncached memory and does not use paging.   

It has also been suggested to move detection off the CPU onto 
another hardware device that has access to physical memory 
[14].  The problem with this approach is that the chipset 
arbitrates all external device communication / physical memory 
access through the Memory Controller Hub (MCH).  Therefore, 
SMRAM will remain inaccessible to any devices residing on the 
system bus.   

As mentioned previously, one could check the IOAPIC 
redirection table for interrupts that have been routed to SMIs.  A 
rerouted interrupt may be considered a “red flag”, but even that 
may not be a sufficient heuristic. There are, in fact, legitimate 
reasons to route an interrupt to an  SMI.  One such legitimate 
use is to provide legacy keyboard and mouse support for USB 
devices [29].  Therefore, lacking other rootkit indicators, it may 
be difficult to determine the illegitimacy of a re-routed interrupt 
and  state with certainty that it was installed by a rootkit.  It may, 
however, be possible to detect VMBR and SMBR malware 
during installation if a signature is known.  This is possible 
because an anti-malware kernel module can scan third party 
drivers and processes as they are being loaded.  On the other 
hand, if a signature for the malware is not known or the malware 
installs itself through an undocumented interface (e.g. exploit), 
it is unlikely to be detected. 

We suggest that the emergence of OS independent malware like 
SMM and virtualization rootkits necessitates a shift in emphasis 
from detection to prevention. Virtualized rootkits may be 
prevented by installing a secure Virtual Machine Monitor 
(VMM) that prevents the installation of other virtual machines 
[27]. SMBRs can be prevented by locking down the SMRAM 
register in the BIOS.  Therefore, chipset manufacturers should 
be encouraged to release BIOS updates to address this problem. 
and  system administrators of older machines should ensure that 
their BIOS are up to date.  In the interim, the Operating System 
could greatly mitigate this problem by locking the register 
during early boot before third party drivers are loaded.  This 
would prevent such rootkits from being installed by user mode 
applications or kernel drivers on a running system. Failing both 
of the aforementioned suggestions, a third party Anti Virus or 
Host Based Intrusion Prevention (HIPS) software application 



could write a driver to lock the SMRAM control register that the 
OS installs during early boot.  Unfortunately, it is difficult to 
guarantee that the protection driver will be loaded before 
another malicious kernel driver.   

In this paper, we have exposed a potential threat that has not 
been widely recognized.  We have established that a SMM 
rootkit has chipset level control over peripheral hardware 
including the network controller, USB ports, mouse, keyboard, 
and disk.  It has control of both the I/O and Local APIC, is able 
to easily conceal its memory footprint, and read / write 
indiscriminately to the 32 bit physical address space.  Practical 
development of an SMM rootkit, however, is constrained by the 
following limitations: the need for SMRAM to be unlocked, the 
need to write the handler in assembly, and the lack of Operating 
System support.  As a result, it likely that SMM rootkits will 
remain limited to sophisticated, targeted attacks. 

Finally, we note that the SMM rootkit can be viewed as a new 
breed of OS independent malware related to VMBR and BIOS 
rootkits and that a significant number of older systems ( >2 
years old) remain vulnerable to this threat. Furthermore, the 
SMBR provides a method of implementing an OS independent 
rootkit on processors that don’t support the new virtualization 
extensions.  Thus, it may contribute to an effective multi-vector 
rootkit attack capable of targeting a large subset of current 
systems on the market.  We suggest that the emergence of such 
malware necessitates a shift in perspective from detection to 
prevention and that a closer relationship between security 
researchers and hardware developers should be fostered. 
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