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ABSTRACT
After the Code Red incident in 2001 and the SQL Slammer
in January 2003, it is clear that a simple self-propagating
worm can quickly spread across the Internet, infects most
vulnerable computers before people can take effective coun-
termeasures. The fast spreading nature of worms calls for a
worm monitoring and early warning system. In this paper,
we propose effective algorithms for early detection of the
presence of a worm and the corresponding monitoring sys-
tem. Based on epidemic model and observation data from
the monitoring system, by using the idea of “detecting the
trend, not the rate” of monitored illegitimated scan traffic,
we propose to use a Kalman filter to detect a worm’s propa-
gation at its early stage in real-time. In addition, we can ef-
fectively predict the overall vulnerable population size, and
correct the bias in the observed number of infected hosts.
Our simulation experiments for Code Red and SQL Slam-
mer show that with observation data from a small fraction
of IP addresses, we can detect the presence of a worm when
it infects only 1% to 2% of the vulnerable computers on the
Internet.

Categories and Subject Descriptors
K.6.5 [Management of computing and information
systems]: Security and Protection—Invasive software

General Terms
Security, Algorithms

Keywords
Monitoring, Early detection, Worm propagation

1. INTRODUCTION
Since the Morris worm in 1988 [21], the security threat

posed by worms has steadily increased, especially in the last
several years. In 2001, the Code Red and Nimda infected
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hundreds of thousands of computers [17, 22], causing mil-
lions of dollars loss to our society [8]. After a relatively quiet
period, the SQL Slammer appeared on January 25th, 2003,
and quickly spread throughout the Internet [19]. Because
of its very fast scan rate, Slammer infected more than 90%
of vulnerable computers on the Internet within 10 minutes
[19]. In addition, the large amount of scan packets sent out
by Slammer caused a global-scale denial of service attack
to the Internet. Many networks across Asia, Europe, and
America were effectively shut down for several hours [6].

Currently, some organizations and security companies, such
as the CERT, CAIDA, and SANS Institute [3, 4, 23], are
monitoring the Internet and paying close attention to any
abnormal traffic. When they observe abnormal network ac-
tivities, their security experts will immediately analyze these
incidents. However, no nation-scale malware monitoring and
defense center exists. Given the fast spreading nature of
Internet worms and their heavy damage to our society, it
seems appropriate to setup a nation-scale worm monitoring
and early warning system.

In order to detect an unknown (zero-day) worm, a straight-
forward way is to use various threshold-based anomaly de-
tection methods to detect the presence of a worm. We can
directly use some well-studied methods established in the
anomaly intrusion detection area. However, many threshold-
based anomaly detections have the trouble to deal with their
high false alarm rate. In the case of worm detection, we find
that there is a major difference between a worm’s propa-
gation and a hacker’s intrusion attack: the propagation of
a worm code exhibits simple attack behaviors and usually
follows some dynamic models because it is usually a global
large-scale propagation; on the other hand, a hacker’s in-
trusion attack, which is more complicated, usually targets
one or a set of specific computers and does not follow any
well-defined dynamic model in most cases.

Therefore, we do not use any threshold-based anomaly
detection methods in this paper. Instead, we fully exploit
a worm’s simple behavior based on well-studied epidemic
models. We present a Kalman filter to detect the propa-
gation of a worm in its early stage based on observed ille-
gitimated scan traffic, which includes both real worm scans
and background noise. The Kalman filter will not only make
use of the correlation of the history trace of observation data
(not just a burst of traffic at one time), but also the dynamic
trend of the propagation of a worm — at the beginning of
a worm’s spreading when there are little human counter-
actions or network congestions, a worm propagates almost
exponentially with a constant, positive infection rate.



The Kalman filter is activated when the monitoring sys-
tem encounters a surge of illegitimated scan activities. If
the worm infection rate estimated by the Kalman filter sta-
bilizes and oscillates a little bit around a constant positive
value, we can claim that the illegitimated scan activities are
mainly caused by a worm, even if the estimated value of the
worm’s infection rate is still not well converged. If the illegit-
imated scan traffic is caused by non-worm noise, the traffic
will not have the exponential growth trend, then the esti-
mated value of infection rate would oscillate around without
a fixed central point, or it would oscillate around zero. In
other words, the Kalman filter is used to detect the pres-
ence of a worm by detecting the trend, not the rate, of the
observed illegitimated scan traffic. In this way, the unpre-
dictable, noisy illegitimated scan traffic we observe everyday
will not cause many false alarms to our detection system —
such background noise will cause great trouble to traditional
threshold-based detection methods.

Our algorithms can also provide the estimated value of a
worm’s scan rate and its vulnerable population size. With
such forecast information, people can take appropriate ac-
tions to deal with the worm. In addition, we present a for-
mula to correct the bias in the number of infected hosts
observed by monitors— this bias has been mentioned in [5]
and [20], but neither of them has presented methods to cor-
rect the bias.

1.1 Related Work
In recent years, people have paid attention to the necessity

of monitoring the Internet for malicious activities. Moore
presented the concept of “network telescope”, in analogy
to light telescope, by using a small fraction of IP space to
observe security incidents on the global Internet [20]. Yeg-
neswaran et al. pointed out that there was no obvious ad-
dressing biases when using the “network telescope” monitor-
ing methodology [26]. “Honeynet” is a network of honeypots
trying to gather comprehensive information of attacks [12].
Symantec Corp. has an “enterprise early warning solution”,
which can collect IDS and firewall attack data from the se-
curity systems of thousands of partners to keep track of the
latest attack techniques [25]. The SANS Institute set up the
“Internet Storm Center” in November 2000, which could
gather the log data from participants’ intrusion detection
sensors distributed around the world [16]. It has quickly ex-
panded to gather more than 3, 000, 000 intrusion detection
log entries every day. Berk et al. proposed a monitoring
system by collecting ICMP “Destination Unreachable” mes-
sages generated by routers for packets to non-existent IP
addresses [2]. Based on such a monitoring system, they also
presented a threshold-based detection system called TRAF-
FEN.

The monitoring system we present can be incorporated
into the current monitoring systems such as the SANS “In-
ternet Storm Center”. Our contribution in this context is to
point out the infrastructure specifically for worm monitor-
ing, and what data should be collected for worm early detec-
tion. We also emphasize the functionality of egress monitors,
which has been ignored in previous research. Worm mon-
itors can be ingress or egress filters on routers, which can
cover more IP space and gather more comprehensive infor-
mation than the log data from intrusion detection sensors
or firewalls.

In the area of virus and worm modelling, Kephart, White

and Chess of IBM performed a series of studies from 1991
to 1993 on viral infection based on epidemiology models [13,
14, 15]. Staniford et al. used the classical simple epidemic
model to model the spread of Code Red right after the Code
Red incident on July 19th, 2001 [24]. Their model matched
well the increasing part of the observation data. Zou et
al. presented a “two-factor” worm model that considered
both the effect of human countermeasures and the effect
of the congestion caused by worm scan traffic [27]. Chen
et al. presented a discrete-time version worm model that
considered the patching and cleaning effect during a worm’s
propagation [5].

For a very fast spreading worm such as Slammer, it is
necessary to have automatic response and mitigation mech-
anisms. Moore et al. discussed the effect of Internet quar-
antine for containing worm propagation [18]. However, they
did not present how to detect a worm in its early stage.
The CounterMalice devices from Silicon Defense company
can separate an enterprise network into cells, automatically
block a worm’s traffic when detecting the worm. In this way,
an infected host inside a cell will not be able to infect com-
puters in other cells of the enterprise network [9]. However,
the white paper did not explain how the CounterMalice de-
vices detect a worm at its early stage.

1.2 Discussions
In this paper, we mainly focus on worms that uniformly

scan the Internet. The most widespread Internet worms,
including both Code Red and Slammer, belong to this cate-
gory (although the Slammer has a bad-coded random num-
ber generator, the generator has a good random initial seed.
Thus “it is likely that all Internet addresses would be probed
equally” [19] by Slammer). Uniform scan is the simplest and
yet an efficient way for a worm to propagate when the worm
has no prior knowledge of where vulnerable computers re-
side.

We assume that the IP infrastructure is the current IPv4.
If IPv6 replaces IPv4, the 2128 IP space of the IPv6 would
make it futile for a worm to propagate through blindly ran-
dom IP scans. However, we believe IPv6 will not replace
IPv4 in the near future, and worms will continue to use the
random scan technique to spread on the Internet.

2. WORM PROPAGATION MODEL
A promising approach for modelling and evaluating the

behavior of malware is the use of fluid models. Fluid models
are appropriate for a system that consists of a large number
of vulnerable hosts involved in a malware attack. The simple
epidemic model assumes that each host resides in one of two
states: susceptible or infectious. The model further assumes
that, once infected by a virus or a worm, a host remains in
the infectious state forever. Thus any host has only one
possible state transition: susceptible → infectious [10]. The
simple epidemic model for a finite population is

dIt

dt
= βIt[N − It], (1)

where It is the number of infected hosts at time t; N is
the size of population; and β is called the pairwise rate of
infection in epidemic studies [10]. At t = 0, I0 hosts are
infectious while the remaining N − I0 hosts are susceptible.

This model could capture the mechanism of a uniform
scan worm [24], especially for the initial part of a worm’s



propagation when the effect of human counteractions and
congestion is ignorable [27]. In this paper, we only study
the initial part of worm spreading for the purpose of early
detection. Therefore, it is suitable for us to use the simple
epidemic model (1) instead of other complex models, such
as the two-factor worm model in [27].

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Time t

I
t

Slow start    
 phase        

Fast spread phase 

Slow finish   
 phase        

Figure 1: Worm propagation model

For the epidemic model (1), Fig. 1 shows the dynamics
of It as time goes on for one set of parameters. We can
roughly partition a worm’s propagation into three phases:
the slow start phase, the fast spread phase, and the slow
finish phase. During the slow start phase, since It � N , the
number of infected hosts increases exponentially (model (1)
becomes dIt/dt ≈ βNIt). After many hosts are infected and
then participate in infecting others, the worm enters the fast
spread phase where vulnerable hosts are infected at a fast,
near linear speed. When most of vulnerable computers have
been infected, the worm enters the slow finish phase because
the few leftover vulnerable computers are difficult for the
worm to search out. Our task is to detect the presence of a
worm in its slow start phase.

Table 1: Notations in this paper
Notation Definition
N Number of hosts under consideration
∆ The length of monitoring interval (time

unit in discrete-time model)
It Number of infected hosts at time t∆
β Pairwise rate of infection
α Infection rate per infected host, α = βN
Ct Number of infected hosts monitored

by time t∆
Zt Monitored worm scan rate at time t∆
η Average scan rate per infected host
p Probability a worm scan is monitored
yt Measurement data in Kalman filter
wt White noise in observation at time t∆
δ Constant in equation yt = δIt + wt

R Variance of observation error
MWC Abbr. of “Malware Warning Center”
α̂ Estimated value of α
Aτ Transpose of a matrix A
N(µ, σ2) Normal distribution with mean µ

and variance σ2

In this paper, we use discrete-time model for worm mod-
elling. Time is divided into intervals of length ∆, where ∆
is the discrete time unit. To simplify the notations, we use

“t” as the discrete time index from now on. For example,
It means the number of infected hosts at the real time t∆.
The discrete-time version of the simple epidemic model (1)
can be written as [10]:

It = (1 + α)It−1 − βI2
t−1 (2)

where α = βN . We call α the infection rate, the average
number of vulnerable hosts that can be infected per unit
time by one infected host during the early stage of worm
propagation.

Before we go on to discuss how to use the worm model to
detect and predict worm propagation, we will first present
the monitoring system design in the next Section 3 and dis-
cuss data collection issues in Section 4.

3. MONITORING SYSTEM
In this section, we propose the architecture of a worm

monitoring system. The monitoring system aims to provide
comprehensive observation data on a worm’s activities for
the early detection of the worm. The monitoring system con-
sists of a Malware Warning Center (MWC) and distributed
monitors as shown in Figure 2.

3.1 Monitoring System Architecture

Figure 2: A generic worm monitoring system

There are two kinds of monitors: ingress scan monitors
and egress scan monitors. Ingress scan monitors are lo-
cated on gateways or border routers of local networks. They
can be the ingress filters on border routers of the local net-
works, or separated passive network monitors. The goal of
an ingress scan monitor is to monitor scan traffic coming
into a local network by logging incoming traffic to unused
IP addresses. For management reason, Local network ad-
ministrators know how addresses inside their networks are
allocated; it is relatively easy for them to set up the ingress
scan monitor on routers in their local networks. For exam-
ple, during the Code Red incident on July 19th, 2002, a /8
network at UCSD and two /16 networks at Lawrence Berke-
ley Laboratory were used to collect Code Red scan traffic.
All port 80 TCP SYN packets coming in to nonexistent IP
addresses in these networks were considered to be Code Red
scans [17].

Berk et al. presented a worm monitoring system by col-
lecting the ICMP “Destination Unreachable” messages gen-
erated by routers for packets to unused IP addresses [2]. In
fact, such ICMP data are essentially the same data as the
data collected by the ingress scan monitors here: when en-
countering packets to unused IP addresses, the routers of



local networks can either send ICMP messages to the mon-
itoring system of [2], or send such information to the MWC
of the monitoring system in this paper.

An egress scan monitor is located at the egress point of
a local network. It can be set up as a part of the egress fil-
ter on the routers of a local network. The goal of an egress
scan monitor is to monitor the outgoing traffic from a net-
work to infer a potential worm’s scan behavior. Ingress scan
monitors listen to the global traffic on the Internet; they are
the sensors of the global worm incidents (or called “network
telescope” in [20]). However, it is difficult to determine the
behavior of each individual worm from the data collected
by ingress scan monitors since ingress scan monitors can-
not capture most of the scans sent out by an infected host.
On the other hand, if a computer inside a local network is
infected, the egress scan monitor on this network’s routers
can observe most of the scans sent out by the compromised
computer. The closer the egress scan monitor is to an in-
fected computer, the more complete data could be obtained
about the worm’s scan behavior.

For worm early warning at real-time, distributed monitors
are required to send observation data to the MWC contin-
uously without significant delay, even when the worm scan
traffic has caused congestion to the Internet. For this reason,
a tree-like hierarchy of data mixers can be set up between
monitors and the MWC: the MWC is the root; the leaves
of the tree are monitors. The monitors nearby a data mixer
send observed data to the data mixer. After fusing the data
together, the data mixer passes the data to a higher level
data mixer or directly to MWC. An example of data fusion is
the removal of redundant addresses from the list of infected
hosts. However, the tree structure of data mixers creates
single points of failure, thus there is a trade-off in designing
this hierarchical structure.

3.2 Location for Distributed Monitors
Ingress scan monitors on a local network may need to be

put on several routers instead of only on the border router
— the border router may not know the usage of all IP ad-
dresses of this local network. In addition, since worms might
choose different destination addresses by using different pref-
erences, e.g., non-uniform scanning, we need to use multiple
address blocks with different sizes and characteristics to en-
sure proper coverage.

For egress scan monitors, worms on different infected com-
puters will exhibit different behaviors. For example, the
Slammer’s scan rate is constrained by an infected computer’s
bandwidth [19]. Therefore, we need to set up multiple egress
filters to record the scan behaviors of many infected hosts
at different locations and in different network environments.
In this way, the monitoring system could obtain a compre-
hensive view of the behaviors of a worm.

4. DATA COLLECTION AND BIAS
CORRECTION

After setting up the monitoring system, we need to deter-
mine what kind of data should be collected. The main task
for an egress scan monitor is to determine the behaviors of
a worm, such as the worm’s average scan rate and scan dis-
tribution. Denote η as the average worm scan rate, which
is the average number of scans sent out by an infected host
per monitoring interval ∆.

The ingress scan monitors record two types of data: the
number of scans they receive during the t-th monitoring in-
terval, t = 1, 2, · · · and the IP addresses of infected hosts
that have sent scans to the monitors by the time t∆.

If all monitors send observation data to the MWC every
monitoring interval, the MWC can obtain the following ob-
servation data at each discrete time epoch t, t = 1, 2, · · · :

(1). The worm’s scan distribution, e.g., uniform scan or
scan with address preference,

(2). The worm’s average scan rate η,
(3). The total number of scans monitored in a monitoring

interval from time (t − 1)∆ to t∆, denoted by Zt,
(4). The number of infected hosts observed by time t∆,

denoted by Ct.
In this paper, we primarily focus on worms that uniformly

scan the Internet. Let p denote the probability that a worm
scan is monitored by the monitoring system. If the ingress
scan monitors cover m IP addresses, then a worm scan has
the probability p = m/232 to hit the monitors. We assume
that in the discrete-time model all changes happen right
before the discrete time epoch t, then we have

E[Zt] = ηpIt−1 (3)

4.1 Correction of Biased Observation Ct

Each worm scan has a small probability p of being ob-
served by the monitoring system, thus an infected host will
send out many scans before one of them is observed by the
ingress scan monitors (like a Bernoulli trial with a small suc-
cess probability). Therefore, the number of infected hosts
monitored by time t∆, Ct, is not proportional to It. This
bias has been mentioned in [5] and [20], but never been
corrected. In the following, we present an effective way to
obtain an accurate estimate for the number of infected hosts
It based on Ct and η.

In the real world, different infected hosts of a worm have
different scan rates. To derive the bias correction formula,
let us first assume that all infected hosts have the same scan
rate η (we will show the effect of removing this assumption
in the following simulation). In a monitoring interval ∆,
a worm sends out η scans on average, thus the monitoring
system has the probability 1− (1−p)η to detect at least one
scan from an infected host in a monitoring interval.

At the time (t−1)∆, the monitoring system has observed
Ct−1 infected hosts among the overall infected ones It−1.
During the next monitoring interval from (t − 1)∆ to t∆,
every host of those not yet observed ones, It−1 − Ct−1, has
the probability 1 − (1 − p)η to be observed. Suppose in
the discrete-time model, all changes happen right before the
discrete time epoch t, then the average number of infected
hosts monitored by time t∆ conditioned on Ct−1 is

E[Ct|Ct−1] = Ct−1 + (It−1 − Ct−1)[1 − (1 − p)η]. (4)

Removing the conditioning on Ct−1 yields

E[Ct] = E[Ct−1] + (It−1 − E[Ct−1])[1 − (1 − p)η]. (5)

Then we can derive the formula for It as:

It =
E[Ct+1] − (1 − p)ηE[Ct]

1 − (1 − p)η
. (6)



Since E[Ct] is unknown in one incident of a worm’s prop-
agation, we replace E[Ct] by Ct and derive the estimate as

Ît =
Ct+1 − (1 − p)ηCt

1 − (1 − p)η
. (7)

Now we analyze how the statistical observation error of
Ct affects the estimated value of It. Without considering
non-worm noise, suppose the observation data Ct is

Ct = E[Ct] + wt (8)

where the statistical observation error wt is a white noise
with variance R. Substituting (8) into (7) yields

Ît = It + µt, (9)

where the error µt is

µt =
wt+1 − (1 − p)ηwt

1 − (1 − p)η
. (10)

Since E[µt] = 0, the estimated value Ît is unbiased (under
the assumption that all infected hosts have the same scan
rate η). The variance of the error of Ît is

V ar[µt] = E[µ2
t ] =

1 + (1 − p)2η

[1 − (1 − p)η]2
R (11)

The equation above shows that V ar[µt] is always larger
than R, which means the statistical error of observation Ct

is amplified by the bias correction formula. In addition, if
the ingress scan monitors cover smaller size of IP space, p
would decrease, then (11) shows that the estimate Ît would
be noisier. For this reason, if we want to get an accurate
estimate Ît through bias correction, the monitoring system
must cover enough IP space.

We simulate Code Red propagation to check the validity
of the bias correction formula (7). In the simulation, N =
360, 000. The monitoring system covers 217 IP addresses
(equal to two Class B networks). The monitoring interval
∆ is set to be one minute; the average worm scan rate is
η = 358 per minute. Because different infected hosts have
different scan rates, we assume each host has a scan rate x
that is predetermined by the normal distribution N(η, σ2)
where σ = 100 in the simulation (x is bounded by x ≥ 1.
We will explain how we choose these parameters in Section
6). The simulation result is shown in Fig. 3.

Fig. 3 shows that the observed number of infected hosts,
Ct, deviates substantially from the real value It. After the
bias correction by using (7), the estimated Ît matches It well
in the simulation before the worm enters slow finish phase (

Ît deviates a little from It in the slow finish phase). Equa-
tion (10) shows that the estimated value should be unbiased
because in deriving the bias correction formula we have as-
sumed that all hosts have the same scan rate η, which is not
the case in this simulation. In our simulation, some hosts
have very small scan rate; these hosts will take much longer
time to hit the monitors than other hosts. Thus in the slow
finish phase, many unobserved infected hosts are hosts with
very low scan rate. Therefore, the bias correction formula
has some error due to the decreasing of the average scan rate
for those unobserved infected hosts. In fact, we run another
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Figure 3: Estimate It based on the biased observa-
tion data Ct (Monitoring 217 IP space)
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Figure 4: Estimate It based on the biased observa-
tion data Ct (Monitoring 214 IP space)

simulation by letting all hosts having the same scan rate η
(i.e., let σ = 0); then the Ît after bias correction matches
well with It for the whole period of a worm’s propagation.

Fig. 4 shows the simulation results if the monitors only
cover 214 IP addresses. The estimate Ît after the bias cor-
rection is very noisy because of the error amplification effect
described by (11).

5. EARLY WARNING AND ESTIMATION
OF WORM VIRULENCE

In this section, we propose estimation methods based on
recursive filtering algorithms (e.g., Kalman filters [1],) for
stochastic dynamic systems.

At the MWC, we recursively estimate the parameters β,
N , and α based on observation data at each monitoring
interval (these three parameters have the relationship α =
βN). In the following, we will first provide a Kalman filter
type algorithm to estimate parameters α and β.

Let y1, y2, · · · , yt, be measurement data used by the Kalman
filter algorithm. Suppose the observations have one moni-
toring interval delay:

yt = δIt−1 + wt (12)

where wt is the observation error. δ is a constant ratio: if
we use Zt as yt, then δ = ηp as shown in (3); if we use Ît−1

derived from Ct by the bias correction (7), then δ = 1.



5.1 Estimation Based on Kalman Filter
From (12), we have

It−1 = yt/δ − wt/δ. (13)

Substituting (13) into the worm model (2) yields an equa-
tion describing the relationship between yt and the worm’s
parameters:

yt = (1 + α)yt−1 − β

δ
y2

t−1 + νt, (14)

where the noise νt is

νt = wt − (1 + α)wt−1 − β(w2
t−1 − 2yt−1wt−1)/δ. (15)

A recursive least square algorithm for α and β can be
cast into a standard Kalman filter format [1]. Let α̂t and β̂t

denote the estimated value of α and β at time t∆, respec-

tively. Define the system state vector as Xt =

[
1 + α
−β/δ

]
. If

we denote Ht = [ yt−1 y2
t−1 ], then the system is described

by {
Xt = Xt−1

yt = HtXt + νt
(16)

The Kalman filter to estimate the system state Xt is


Ht = [ yt−1 y2
t−1 ]

Kt = Pt−1H
τ
t /(HtPt−1H

τ
t + Rν)

Pt = (I − KtHt)Pt−1

X̂t = X̂t−1 + Kt(yt − HtX̂t−1)

(17)

where Rν is the variance of noise νt and can be set to 1.
From the experiments, we find that the value of Rν is not
important.

νt in (15) is a correlated noise. The Kalman filter (17) can
be extended to consider such correlated noise to derive unbi-
ased estimates of α and β in theory. However, if we use the
unbiased filter, we will have more parameters to estimate,
then the new filter will converge slower than the proposed
filter (17). Our experiments also confirm this conjecture. In
this paper the primary objective is to derive the rough esti-
mate of α as quickly as possible. Therefore, it is better to
use the simple Kalman filter (17) for worm early detection.

If we use Zt as the measurement yt in the Kalman filter
but do not know δ (e.g., if we do not have data from egress
scan monitors), we still can estimate the infection rate α by
letting δ = 1. The Kalman filter (17) does not depend on
δ in estimating α; the value of δ only affects the estimated
value of β.

5.2 Estimation of the Vulnerable Population
The parameter β in model (2) is on the order of 1/N . Thus

in the Kalman filter above, the two elements in the state Xt

differ in the order of N . For this reason, the Kalman filter
performs poorly in estimating the small value β. Conse-
quently, the estimation of N by using N̂ = α̂/β̂ is not good.

We present an effective way to estimate the population
N based on η and the estimate α from the Kalman filter
above. A uniformly scanning worm sends out on average η
scans per monitoring interval; each scan has the probability
N/232 to hit a host in the population under consideration.
Hence, at the beginning when most hosts in the population
are vulnerable, a worm can infect, on average, ηN/232 hosts

per monitoring interval (the probability of two scans sent
out by a single infected host hitting the same target is neg-
ligible). From the definition of infection rate α, we have
α = ηN/232. Therefore, the population N is

N =
232α

η
(18)

where the average worm scan rate η can be obtained directly
from egress scan monitors in the monitoring system. We can
use this equation to estimate N along with the Kalman filter
in estimating α. In this way, the estimation of N can have
similar convergence properties to that of the estimation of
α from the Kalman filter.

5.3 Overview of the Steps to Detect a Worm
The MWC collects and aggregates reports of worm scans

from all distributed monitors in real-time. For each TCP or
UDP port, the MWC has an alarm threshold for monitored
illegitimated scan traffic Zt. The observed number of scans
Zt, which contains non-worm noises, is below this threshold
at most time when there is no global spreading worm. If
the scan traffic is over the alarm threshold for several con-
secutive monitoring intervals, e.g., Zt is over the threshold
for three consecutive times, the Kalman filter will be acti-
vated. Then the MWC will begin to record Ct and calculate
the average worm scan rate η from the reports of egress
scan monitors. Because Ct is a cumulative observation data
that could cumulate all non-worm noise, the MWC begins
to record data Ct only after the Kalman filter is activated.
The Kalman filter can either use Ct or Zt to estimate all the
parameters of the worm at the time t∆ (t = 1, 2, 3, · · · ). For
accuracy, the MWC can also use two filters based on Ct and
Zt respectively in order to cross check to verify the results.

The recursive estimation will continue until the estimated
value of α shows a trend: if the estimate α̂ stabilizes and
oscillates slightly around a positive constant value, we have
detected the presence of a worm; if the estimate α̂ does not
stabilize in a long time, or it stabilizes and oscillates around
zero, we believe the surge of illegitimated traffic is caused
by non-worm noise.

6. SIMULATION EXPERIMENTS

6.1 Simulation Settings
We simulate both Code Red on July 19th, 2001 [7] and the

SQL Slammer on January 25th, 2003 [19]. First, we explain
how we choose the simulation parameters. In the case of
Code Red, more than 359, 000 Code Red infected hosts were
observed on July 19th, 2001 by CAIDA [17]. Thus in our
simulation we set the Code Red vulnerable population N =
360, 000. Staniford et al. [24] used a different format but
the same epidemic model as (1) to model Code Red, where
their model’s parameter K has K = βN = α [27]. They
determined that K = 1.8 for the time scale of one hour.
Therefore, for the discrete time unit of one minute in our
simulation, α = 1.8/60 = 0.03. From (18) we can reversely
derive η = 232α/N = 358 per minute, i.e., Code Red sent
out on average about 358/60 = 5.965 scans per second.

Because different infected hosts have different scan rates,
we assume that each host has a constant scan rate x , a rate
that is independently predetermined by a normal distribu-
tion N(η, σ2) where σ = 100 (the scan rate x is bounded by



x ≥ 1). In our simulation, the ingress scan monitors cover
220 IP space. We also assume I0 = 10 at the beginning.

SQL Slammer propagated in the same way as Code Red
by randomly generating target IP addresses to scan [19].
According to [19], a Slammer infected host sent out on av-
erage 4,000 scans per second at the beginning. The authors
in [19] also observed that 75,000 hosts were infected in the
first 30 minutes. Thus in the case of Slammer simulation, we
set η = 4000 and N = 100, 000 (since many infected hosts
did not scan the monitors in the first 30 minutes due to the
congestions caused by Slammer). Because the scan rate of
Slammer was bandwidth limited and varied a lot among dif-
ferent computers, in our simulation the scan rate x of a host
is predetermined by the normal distribution N(4000, 20002)
(x is bounded by x ≥ 1).

In the discrete-time simulation, the monitoring interval ∆
is set to be one minute for Code Red, and one second for
the very fast SQL Slammer worm.

6.2 Background Noise Consideration
We need to consider background non-worm noise in our

simulations. Fortunately, Goldsmith provided simple data
of the background noise for Code Red activities monitored
on a Class B network (covers 216 IP addresses) [11]. Gold-
smith recorded TCP port 80 SYN requests from Internet
hosts to any unused IP addresses inside his local network —
such method is the same as the ingress scan monitors in our
proposed monitoring system. The observation data showed
that the background noise was small compared to Code Red
traffic and the noise did not vary much. If we use normal
distribution to model the background noise, then for each
hour the number of noise scans follows N(110.5, 302) and
the number of noise sources follows N(17.4, 3.32).

We try to hold the statistics of the observed background
noise in our experiments: we monitor 220 IP space, which
is 16 times as large as what Goldsmith monitored, so the
number of noise scans or noise sources should be enlarged
by 16 times; we use one minute in stead of one hour as the
monitoring interval, thus we should decrease the number of
noise scans or noise sources by 60. In this way, in our Code
Red simulations, the noise added into the observation data
at each monitoring interval follows N(29.5, 82) for Zt and
N(4.63, 0.8932) for Ct. Of course, this kind of extension of
noise is very rough, but it is the best we can do based on
the data available. Currently, we are trying to obtain the
detailed log data on Code Red and Slammer from others in
order to have more realistic experiments.

For the SQL Slammer, we do not have any observed data
on its background noise. Thus we simply assume that it has
the same background noise as the Code Red.

In the simulation experiments, the alarm threshold for Zt

is set to be two times as large as the mean value of the
background noise. The Kalman filter will be activated when
the illegitimated scan traffic Zt is over the alarm threshold
for three consecutive monitoring intervals. In this way, the
Kalman filter will not be frequently activated by the surge
of noise traffic.

6.3 Code Red Simulation and Early Warning
For Code Red, Fig. 5(a) shows It in one simulation run as

a function of time; Fig. 5(b) shows the estimate of infection
rate α̂ as time goes on by using observation data Zt. In this
simulation run, Zt at time 126, 127 and 128 minutes are over

the alarm threshold 59, thus the Kalman filter is activated
at 128 minutes. Fig. 5(c) shows the estimate α̂ by using Ct

after bias correction (7). Both estimates converge to the real
value of α, but the estimate by using Ct is smoother. Our
objective of the estimation is to find whether the estimate
stabilizes and oscillates slightly around a positive constant
value. Therefore in the following, we will always use Ct after
bias correction to estimate α with the Kalman filter if not
mentioned explicitly.

We estimate the vulnerable population size N by Equation
(18) at each discrete time. Fig. 6 shows the estimated value
of N as time goes on. For comparison, we also use the
estimated parameter β̂ derived from the Kalman filter (17)

to directly calculate N̂ by N̂ = α̂/β̂. The result is also shown
in Fig. 6. This figure shows that Equation (18) can provide
a more accurate estimate of N than the direct estimation
from the Kalman filter.

In this simulation run, Code Red infects 1% of the vulner-
able population at 199 minutes, and 2% of population at 223
minutes. Fig. 5(c) shows that during the time when Code
Red infects 1% to 2% population, the estimate of the worm’s
infection rate α has already stabilized to show the constant
positive property (though the estimated value is still very
rough). Therefore, the MWC can detect the presence of the
worm when it infects about 1% to 2% of vulnerable popula-
tion (the estimation of N is rougher but it is less important
than the worm infection rate in order to detect a worm).

6.3.1 Variability in Worm Propagation
Worm propagation is in fact a stochastic process. In order

to check if the Kalman filter detection algorithm works well
under most cases, we use the same parameter settings in the
previous simulation to run the Code Red simulation for 100
times. Fig. 7 shows the upper and lower bounds and the
average value of the number of infected hosts in these 100
simulation runs.

For each of these 100 simulation runs, we use the Kalman
filter to estimate the worm’s infection rate α. Among these
100 runs, the worm infects 2% of the vulnerable population
at the time between 200 to 258 minutes. During the estima-
tion process of each simulation run, the estimated value of
α will gradually decrease its oscillation and converge to its
true value (as shown in Fig. 5(c)). For each simulation run,
we obtain the maximum and minimum values of estimated
α after the worm infects 2% population — the oscillation
of the estimated α will not exceed this boundary after the
worm infects 2% population. This boundary tells us how
well we can obtain a stabilized estimation. The oscillation
bounds are shown in Fig. 8 for these 100 simulation runs.

In order to check if the Kalman filter has worse perfor-
mance when the worm propagates faster, in Fig. 8 we have
sorted the 100 simulation runs according to the time when
the worm infects 2% population. In other words, the worm
in simulation i in Fig. 8 infects 2% of vulnerable popula-
tion earlier than the worm in simulation j if i < j. This
figure shows that the performance of the Kalman filter is
not affected by the variability of the spreading speed of the
worm. One reason is that the Kalman filter is activated ear-
lier when the worm spreads faster. Another reason is that
when the worm spreads faster, the signal-to-noise ratio of
the observed data will become higher, thus the estimation
will converge faster.
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Figure 5: Code Red simulation and Kalman filter estimation of infection rate (for one simulation run)
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6.3.2 Early Warning for a “Hit-list" Worm
“Hit-list” concept was first presented in [24]. The worm

has a built-in list that contains thousands IP addresses of
potentially vulnerable machines. The worm will first propa-
gate by only scanning computers on this list. After infecting
most hosts on the list, the worm uses random scans to try
to infect other vulnerable hosts on the Internet.

At the hit-list scanning phase, the worm does not send
probes to nonexistent IP addresses. Therefore, we assume
that the monitoring system could collect worm scans only
after the worm finishes the hit-list scanning phase. In our
simulation, we assume that at time 0 the worm has already
infected all hosts on the hit-list, i.e., it has a large number
of initially infected hosts. Because of the worm’s high scan
traffic when it begins to randomly scan, the Kalman filter
will be activated immediately at the beginning.

Fig. 9(a) shows the propagation of a hit-list worm that
has a 1000-entry hit-list compared with previous Code Red
propagation (they have the same simulation settings except
the number of initially infected hosts). From Fig. 9(a) we
observe that the hit-list does not affect the worm propaga-
tion pattern. Fig. 9(b)(c) show the estimation of the worm
infection rate α and the vulnerable population N , respec-
tively. Compared to Fig. 5(c), Fig. 9(b) shows that the
Kalman filter estimation of the infection rate converges to
the true value faster than the estimation for a worm with-
out hit-list. It is because the worm with hit-list sends out
larger amount of scans; the signal-to-noise ratio of the ob-

servation data in this experiment is higher than what used
in the original Code Red experiment.

In this simulation run, the hit-list worm infects 1% and
2% of vulnerable population at time 45 and 69 minutes, re-
spectively. Fig. 9(b) shows that the estimate has already
stabilized with only small oscillation by 69 minutes. There-
fore, the WMC can still detect the presence of the hit-list
worm when it infects only 1% to 2% of vulnerable popula-
tion.

6.4 Slammer Simulation and Early Warning
For SQL Slammer, Fig. 10 shows the results for one sim-

ulation run. Fig. 10(a) shows that without congestion and
human counteractions, the SQL Slammer can infect most of
the vulnerable hosts within 3 minutes. In reality, the Slam-
mer quickly reduced its propagation speed because its huge
scan traffic caused congestion or even broke down some net-
works. Therefore, it took about 10 minutes to infect 90%
of vulnerable computers [19] instead of the 3 minutes here.
However, at the beginning when there were few congestions
and human counteractions, the Slammer still propagated ac-
cording to the epidemic model used here (see Fig. 3 in [19]).

From Fig. 10(a), we know that the worm infects 1% vul-
nerable population at time 45 seconds. Fig. 10(b) shows the
estimated value of the infection rate α as time goes on. It
shows that when the worm infects 1% population, the esti-
mated value of α is already stabilized with small oscillation
for a while (though the oscillation central point is higher
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Figure 9: Hit-list worm simulation and Kalman filter estimation (for one simulation run)
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Figure 10: SQL Slammer simulation and Kalman filter estimation (for one simulation run)

than the true value at this moment). Thus the MWC can
detect the worm when it infects about 1% of vulnerable pop-
ulation.

Fig. 10(b) shows that at the beginning of estimation, the
Kalman filter overestimates the value of α. This is because
the discrete-time model (2) is a first-order discretization of
the continuous model (1). The discretization introduces er-
ror in the infection rate α when the worm keeps exponen-
tially increasing at the beginning.

Fig. 10(c) shows the simulation results when we use 5
seconds as the monitoring interval ∆. Because now the dis-
crete time unit is larger, the discretization error shows up
clearly in this figure — the estimated value α̂ is higher than
its true value.

7. DISCUSSIONS AND FUTURE WORKS
We have used the epidemic model for the estimation and

prediction. While this gives good results so far, we need
to develop more detailed models to reflect a future worm’s
dynamics. For example, if a worm spreads through a topol-
ogy, or spreads by exploiting multiple vulnerabilities, or is a
meta-server worm, then the dynamics will not always follow
the epidemic model.

For non-uniformly scanning worm, such as the Code Red
II, we might have different observations by setting up the
monitors on different places. The non-uniform scanning be-
havior of a worm may also affect the bias correction (7). For
a future unknown worm, through analysis of the worm scan

distribution by using the data from egress scan monitors,
the MWC can determine if the worm is uniformly scanning
the Internet or not. If it is not, the MWC can use data Zt,
or directly use data Ct without bias correction, to detect
and predict the worm.

The monitoring interval ∆ is an important parameter in
the system design. For slow spreading worm, it could be set
to be long, but for fast spreading worm such as the Slammer,
the time interval should be quite small in order to catch up
with the worm’s speed. How can we select the appropriated
∆ before we know the worm’s presence and its speed? We
need to do further research on designing a recursive estima-
tion algorithm that uses adaptive sampling rate. Currently,
one way we think of is to tag the time stamp with each
observed scans. Then at the MWC, several estimators run
in parallel with different monitoring intervals — from the
tagged time stamp the correct Ct or Zt for every estimators
can easily be restored.

It could be useful to develop distributed estimation algo-
rithms so as to reduce the latency and traffic for the report to
a central server. We may also want to use a continuous ver-
sion of the Kalman filter. This approach would reduce the
significance of the monitoring interval selection and would
work nicely with the distributed estimation setting.

The worm detection method presented here assumes that
only worm scans can cause exponential increasing scan traf-
fic to monitors, while other background scan noise cannot.
We believe this is a reasonable assumption. If we want to



further improve the detection accuracy, however, we can add
some other rule sets in the detection system. For example,
in order to distinguish a worm attack from a DDoS attack,
we can exploit the differences between them: DDoS attack
has one or several targets while a worm’s propagation has
no specific target.

The infrastructure of the monitoring system in this paper
is already built up in the real world, such as the SANS’s
“Internet Storm Center” [16] or Symantec’s enterprise early
warning network [25]. However, there are still significant
practical issues in setting up such monitoring system, espe-
cially the security and privacy issues in data sharing.

For a fast spreading worm such as the SQL Slammer, hu-
man’s manual actions will not catch up with its speed even if
the early warning is provided at the beginning of the worm’s
spreading. Automatic mitigation is the only way to defend
against such kind of worm attack. How to decrease false
alarm rate, detect a worm earlier, and collect observation
data in time are the key factors in incorporating the early
warning system with automatic mitigation.

8. CONCLUSIONS
We propose a monitoring and early warning system for

Internet worms to provide an accurate triggering signal for
mitigation mechanisms in the early stage of a future worm.
Such system is needed in view of the propagation scale and
speed of the past worms. Although we have been lucky
that the previous worms have not been very malicious, the
same can not be said for the future worms. Based on the
idea “detecting the trend, not the rate” of monitored illegit-
imated scan traffic, we present a Kalman filter to detect the
presence of a worm in its early stage. The analysis and sim-
ulation studies indicate that such a system is feasible, and
the “trend detection” methodology poses many interesting
research issues. We hope this paper would generate interests
of discussion and participation in this topic and eventually
lead to an effective monitoring and early warning system.
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