
CAP6671 Intelligent Systems

Lecture 14:
Transfer for Reinforcement Learning

Instructor: Dr. Gita Sukthankar
Email: gitars@eecs.ucf.edu

Schedule: T & Th 9:00-10:15am
Location: HEC 302

Office Hours (in HEC 232):
T & Th 10:30am-12

2CAP6671: Dr. Gita Sukthankar

Strengths/Problems of Paper?

3CAP6671: Dr. Gita Sukthankar

Strengths/Problems of Paper?

Strengths
Very interesting problem and approach
Transfer learning has typically been applied to
problems with same sensors/actions

Weaknesses
Creating cross-domain mappings seems difficult
Devising these alternate domains also seems
non-intuitive

4CAP6671: Dr. Gita Sukthankar

Rule Transfer

1. Learn a policy for the source task
2. Learn a decision list for the source policy
3. Modify the decision list for use in the target

task
4. Use decision list to learn a policy in the target

domain

5CAP6671: Dr. Gita Sukthankar

Keepaway
3 Keepers prevent 2 Takers
from intercepting the ball
Learn policy for Keeper holding
the ball
A={hold, Pass1, Pass2}
Takers follow fixed strategy
Keepers without ball either 1)
attempt to capture an open
ball or 2) get free for a pass
Reward per timestep ball is in
play
Simulated noise in perception

6CAP6671: Dr. Gita Sukthankar

Ringworld
Opponent moves towards
player on every timestep
Player can either stay in
current location or run
towards a target
As opponent approaches
player the probability of
the player being tagged
increases
A={Stay, RunNear,
RunFar}
Size of ring/prob of
tagging chosen to be
similar to Keepaway
Reward per timestep

7CAP6671: Dr. Gita Sukthankar

Knight Joust
Players alternate moves
on a grid board
Player can either move
directly north or knight’s
move east or west
Players’ moves are
deterministic and
opponent has a fixed
stochastic policy
Similarity: favor distance
between player and
opponent
Reward for advancing
distance

8CAP6671: Dr. Gita Sukthankar

Translation between Tasks

Define translation functions between state
variables and actions

9CAP6671: Dr. Gita Sukthankar

Rule Utilization

Value Bonus: give constant bonus to Q-value
as recommended by the translated decision list
Extra Action: add action to target task such
that when the agent selects this pseudo-action it
follows the action recommended by D (have
exploration policy favor this action)
Extra Variable: add extra state variable to
target state description that takes on the value
of the index for the action recommended by D
(have exploration policy favor this action)

10CAP6671: Dr. Gita Sukthankar

RL Method

SARSA: “State-Action State-Reward-State
Action”
Learning rule uses 2-step lookahead instead of
expected value

Radial basis function approximation to handle
continuous state space

Remember: standard Q-learning rule

11CAP6671: Dr. Gita Sukthankar

Procedure

Use SARSA to learn Q-funciton for source
domain
Learn decision list summarizing source task
policy (RIPPER, rule induction algorithm)
Use decision list to train an agent in the target
domain
Measure

Initial performance
Asymptotic performance after learning plateaus (40
simulator hours)
Accumulated reward (sum of average reward per
hour)

12CAP6671: Dr. Gita Sukthankar

Rule induction algorithm that improves on the
efficiency of IREP
Split training data into growing set and pruning
set
GrowRule: add conditions to an empty
conjunction
PruneRule: deleting conditions from the rule to
make it more general
Example rule produced by algorithm

RIPPER

13CAP6671: Dr. Gita Sukthankar

Evaluations

Evaluate transfer from Keepaway to Keepaway
to determine reasonable parameters
Transfer of Ringworld to Keepaway produced
benefits in all 3 metrics
Transfer of KnightJoust to Keepaway only
improves initial performance
All 3 rule utilization schemes were effective with
ExtraAction being slightly superior
Also did a sensitivity analysis to show that the
learning is not that dependent on parameters of
RIPPER

14CAP6671: Dr. Gita Sukthankar

Transfer Results

15CAP6671: Dr. Gita Sukthankar

Future Work

Want to be able to automatically derive the rule
translation function
General approach for deriving translation:

Identify state variables that are near 0 when episode
ends
Identify variable that causes those variables to
decrease
Construct mapping between other distances and
angles

Drawback: still seems fairly awkward and not
possible to fully automate it

16CAP6671: Dr. Gita Sukthankar

Other Ideas?

