CAP6671 Intelligent Systems

Lecture 14: Transfer for Reinforcement Learning

Instructor: Dr. Gita Sukthankar Email: gitars@eecs.ucf.edu Schedule: T & Th 9:00-10:15am Location: HEC 302 Office Hours (in HEC 232): T & Th 10:30am-12

Strengths/Problems of Paper?

Strengths/Problems of Paper?

Strengths

- Very interesting problem and approach
- Transfer learning has typically been applied to problems with same sensors/actions

Weaknesses

- Creating cross-domain mappings seems difficult
- Devising these alternate domains also seems non-intuitive

Rule Transfer

- 1. Learn a policy for the source task
- 2. Learn a decision list for the source policy
- 3. Modify the decision list for use in the target task
- 4. Use decision list to learn a policy in the target domain

Keepaway

- 3 Keepers prevent 2 Takers from intercepting the ball
- Learn policy for Keeper holding the ball
- A={hold, Pass1, Pass2}
- Takers follow fixed strategy
- Keepers without ball either 1) attempt to capture an open ball or 2) get free for a pass
- Reward per timestep ball is in play
- Simulated noise in perception

Ringworld

- Opponent moves towards player on every timestep
- Player can either stay in current location or run towards a target
- As opponent approaches player the probability of the player being tagged increases
- A={Stay, RunNear, RunFar}
- Size of ring/prob of tagging chosen to be similar to Keepaway
- Reward per timestep

Knight Joust

- Players alternate moves on a grid board
- Player can either move directly north or knight's move east or west
- Players' moves are deterministic and opponent has a fixed stochastic policy
- Similarity: favor distance between player and opponent
- Reward for advancing distance

Translation between Tasks

 Define translation functions between state variables and actions

Cross-Domain Mappings for Ringworld to Keepaway			
Ringworld	Keepaway		
δ_A			
Stay	Hold Ball		
Run_{Near}	$Pass_1$: Pass to K_2		
Run_{Far}	$Pass_2$: Pass to K_3		
δ_X			
dist(P, O)	$dist(K_1, T_1)$		
$dist(P, Target_1)$	$dist(K_1, K_2)$		
$dist(Target_1, O)$	$\operatorname{Min}(\operatorname{dist}(K_2, T_1), \operatorname{dist}(K_2, T_2))$		
$ang(O, P, Target_1)$	$Min(ang(K_2, K_1, T_1))$		
	$ang(K_2, K_1, T_2))$		
$dist(P, Target_2)$	$dist(K_1, K_3)$		
$dist(Target_2, O)$	$\operatorname{Min}(\operatorname{dist}(K_3, T_1), \operatorname{dist}(K_3, T_2))$		
$ang(O, P, Target_2)$	$\operatorname{Min}(ang(K_3, K_1, T_1),$		
	$ang(K_3, K_1, T_2))$		

Rule Utilization

- Value Bonus: give constant bonus to Q-value as recommended by the translated decision list
- Extra Action: add action to target task such that when the agent selects this pseudo-action it follows the action recommended by D (have exploration policy favor this action)
- Extra Variable: add extra state variable to target state description that takes on the value of the index for the action recommended by D (have exploration policy favor this action)

RL Method

- SARSA: "State-Action State-Reward-State Action"
- Learning rule uses 2-step lookahead instead of expected value

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \phi Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$

Remember: standard Q-learning rule

$$Q(s, a) := Q(s, a) + \alpha (r + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

 Radial basis function approximation to handle continuous state space

Procedure

- Use SARSA to learn Q-funciton for source domain
- Learn decision list summarizing source task policy (RIPPER, rule induction algorithm)
- Use decision list to train an agent in the target domain
- Measure
 - Initial performance
 - Asymptotic performance after learning plateaus (40 simulator hours)
 - Accumulated reward (sum of average reward per hour)

RIPPER

- Rule induction algorithm that improves on the efficiency of IREP
- Split training data into growing set and pruning set
- GrowRule: add conditions to an empty conjunction
- PruneRule: deleting conditions from the rule to make it more general
- Example rule produced by algorithm

IF $((\text{dist}(K_1, T_1) \le 4) \text{ AND} (\text{Min}(dist(K_3, T_1), dist(K_3, T_2)) >= 12.8) \text{ AND} (ang(K_3, K_1, T) >= 36))$ THEN Pass to K₃

Evaluations

- Evaluate transfer from Keepaway to Keepaway to determine reasonable parameters
- Transfer of Ringworld to Keepaway produced benefits in all 3 metrics
- Transfer of KnightJoust to Keepaway only improves initial performance
- All 3 rule utilization schemes were effective with ExtraAction being slightly superior
- Also did a sensitivity analysis to show that the learning is not that dependent on parameters of RIPPER

Transfer Results

	Ringworld to Keepaway				
	Initial	Asymptotic	Accumulated		
	Performance	Performance	Reward		
	Without Transfer				
	7.8 ± 0.1	21.6 ± 0.8	756.7 ± 21.8		
Added					
Constant		Value Bonus			
5	11.1 ± 1.4	19.8 ± 0.6	722.3 ± 24.3		
10	11.5 ± 1.7	22.2 ± 0.8	813.7 ± 23.6		
Initial					
Episodes		Extra Action			
100	11.9 ± 1.8	23.0 ± 0.5	842.0 ± 26.9		
250	11.8 ± 1.9	23.0 ± 0.8	827.4 ± 33.0		
Initial					
Episodes		Extra Variable			
100	11.8 ± 1.9	21.9 ± 0.9	784.8 ± 27.0		
250	11.7 ± 1.8	22.4 ± 0.8	793.5 ± 22.2		

Knight	Joust	into	Kee	paway	V

	-		-	
Param	Initial	Asymptotic	Accumulated	
	Performance	Performance	Reward	
Without Transfer				
	7.8 ± 0.1	21.6 ± 0.8	756.7 ± 21.8	
Extra Action				
100	13.8 ± 1.1	21.8 ± 1.2	758.5 ± 29.3	
250	13.5 ± 0.9	21.6 ± 0.9	747.9 ± 25.3	

Future Work

- Want to be able to automatically derive the rule translation function
- General approach for deriving translation:
 - Identify state variables that are near 0 when episode ends
 - Identify variable that causes those variables to decrease
 - Construct mapping between other distances and angles
- Drawback: still seems fairly awkward and not possible to fully automate it

Other Ideas?

CAP6671: Dr. Gita Sukthankar