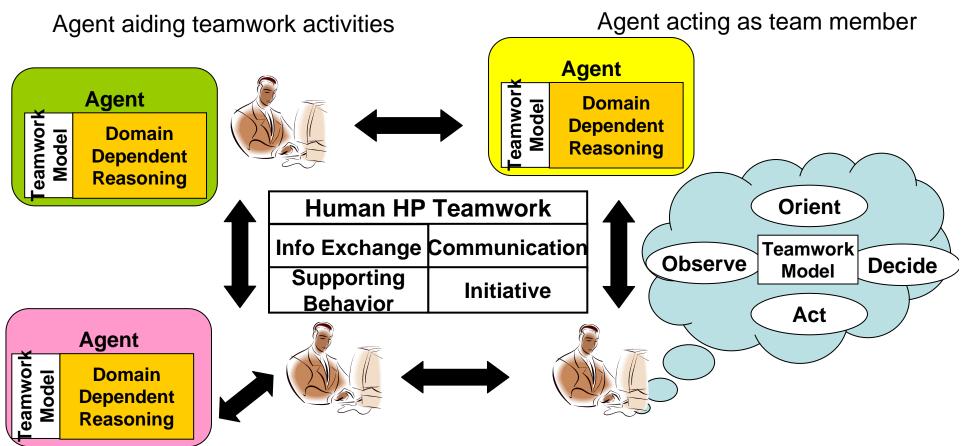
CAP6671 Intelligent Systems

Lecture 20:

Human-Agent Teamwork Instructor: Dr. Gita Sukthankar Email: gitars@eecs.ucf.edu Schedule: T & Th 9:00-10:15am Location: HEC 302 Office Hours (in HEC 232): T & Th 10:30am-12

Why have human-agent teams?


Why have human-agent teams?

- Enhance human information processing capabilities
- Augment human reasoning with agents capable of doing task-specific calculations
- Monitor human performance

Research Projects

- Enhancing team search operations (Sukthankar, Sycara, and Giampapa, 2007)
- Cognitive load modeling (Fan and Yen, 2007)

Models of Human-Agent Teams

Agent serving as human team member assistant

Principle: By equipping software agents with domain-independent models of teamwork, agents are 1) able to assume the role of full team members 2) more capable of recognizing, monitoring and aiding teamwork activities between human teammates.

CAP6671: Dr. Gita Sukthankar

Towards Agent-Based Teamwork

- Establish a baseline of human-only team performance
- Understand how people organize, divide tasks, plan, execute, etc.
- Discover opportunities in which humans can be aided
- Understand the types of communication and coordination humans use
- Understand the strategies people use
 - E.g. Search widely and hastily or carefully in a limited areas?
 - Identify cues humans use when changing strategies

Implications of Pilot Experiments

- Understand the types of measures that can be used in agent-aiding experiments
- Future task manipulations
- Future task variations to be tested
- "Points of insertion" of agent aiding
- Utility of different agent aiding schemes
- Logging and data collection requirements

Opportunities for Error in Human Teams: Gaps in Search Patterns

- Influencing factors:
 - Being conditioned by terrain features (e.g. ridges, hills, hedge rows, tree lines, etc.)
 - Being conditioned by cultural features

 (e.g. buildings, courtyards, radial vs. grid layout of village roads, etc.)
 - Discovery of sought object outside of search path/area
 - Taking short-cuts during search
 - Difficulty orienting self with terrain, map, other players

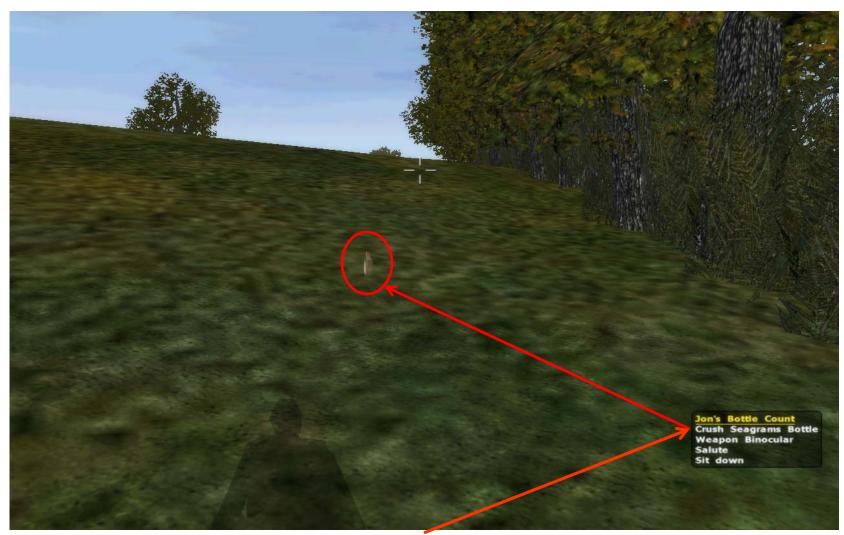
Opportunities for Error in Human Teams

- Poor priority assignments in the search plan due to false clues or hunches
 - Strong but unmotivated convictions about where to locate sought objects
 - Duplicated, unnecessary and repeated searching of "preferred" areas
- Poor pacing during time-critical tasks
 - Initial difficulty estimating the pace at which to perform search
 - Difficulty in maintaining pace until the final critical minutes

Experimental setting

- 17 teams of 3 subjects each
- Goal:
 - To find & crush as many bottles as possible
 - Bottle placement follows a different probability distribution each session
 - Individual and team score: 1 point per bottle
- Subjects are unconstrained to:
 - Organize their team, decide and allocate roles,
 - Planning before/during execution, execute plans, etc.
- Three sessions:
 - One practice session to familiarize subjects with the software environments and available tools (e.g. 2-D map, binoculars, compass, watch, commands)
 - Two test conditions:
 - Total bottle count is revealed to the team ("<u>Known</u>" condition)
 - Total bottle count unknown ("<u>Unknown</u>" condition)
 - The two conditions were ran in alternating sequences for the subject teams
- Subject audio communications
 - Were recorded during all three sessions
 - Audio logs are being manually transcribed and coded

Experimental Testbed: 2-D Map + Instruments


- Implementation in <u>Operation Flashpoint</u>
- Subjects use virtual tools such as compass, binoculars, and watch
- Communication takes place over headsets and is recorded for postexperiment analysis using <u>*TeamSpeak*</u>

Subject Viewpoint

- Scenario requires subjects to locate and crush bottles that are hidden on the map
- Screenshot shows a practice area with a high density of bottles

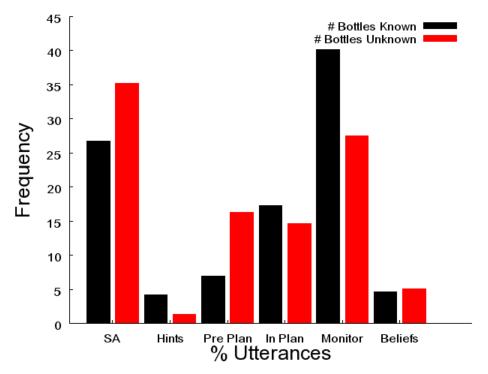
Bottle Collection Interface

The command to "crush" a bottle only becomes available when the player is near it. CAP6671: Dr. Gita Sukthankar

Communication Categories

- Increasing team situational awareness
 - Communicating teammate locations Where are you? I am here.
 - Terrain/map features
 There are some impassable hedges by the NATO headquarters.
 - Bottle locations
 I see a bottle by the British flag.
- Hints, sharing individual search strategies How do L scan for bottles?
- Team Planning, Before or During Execution
 - Role allocation

The character with the farthest 2-D sensing should scan the most map squares.


 Division of execution space You scan the village.

Communication Categories

- Task Progress Monitoring
 - Bottle counts We have 20 bottles and need 15 more in 10 minutes.
 - Coverage progress
 I have covered this sector.
- Internal Beliefs
 - Object density
 I think that there is a hidden cache of bottles.
 - Object locations
 There seem to be more bottles in the town.
- Miscellaneous
 - System problems My keyboard locked up!

Personal discussions
 All these bottles lying around ... looks like our apartment, eh?

Communication Patterns

- Communication frequency averaged across four teams of subjects
- <u># Bottles Known</u> condition
 - Subjects appear to spend more time monitoring their task progress
- <u># Bottles Unknown</u> condition
 - Subjects appear to spend more time planning prior to execution
 - More communication devoted to increasing team's situation awareness

Search Pattern Coordination Analysis

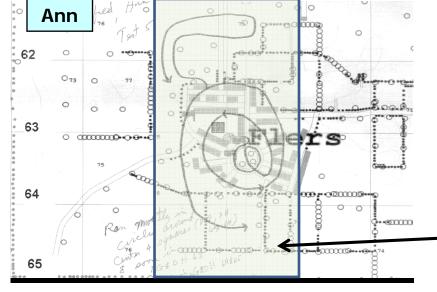
- Subjects indicate their search paths on a paper map.
- Patterns are used to estimate subject and team area coverage.
- Drawbacks:
 - Coarse-grained encoding of the search space (24 grid cells)
 - Does not illustrate <u>all</u> holes in search patterns due to:
 - Gaps in line of sight caused by variations of terrain elevation
 - Obstructions: buildings, hedges, trees, low brush
 - Self-reported by subjects, usually post experiment session
- Benefits:
 - Quantifies degree of terrain covered and search path overlap
 - Indicates <u>some</u> holes in team-coordinated search patterns
 - Highlights search area responsibilities that subjects assumed

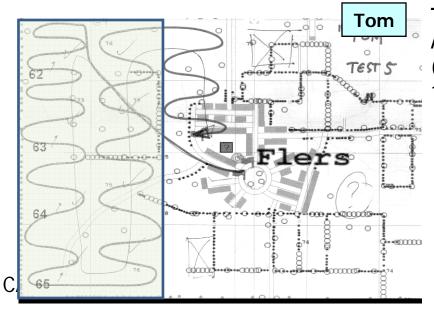
Terrain Coverage by Worst Performing Team_____

Jon

073

62


63


64

Designated Search Area

65

Unsearched Areas

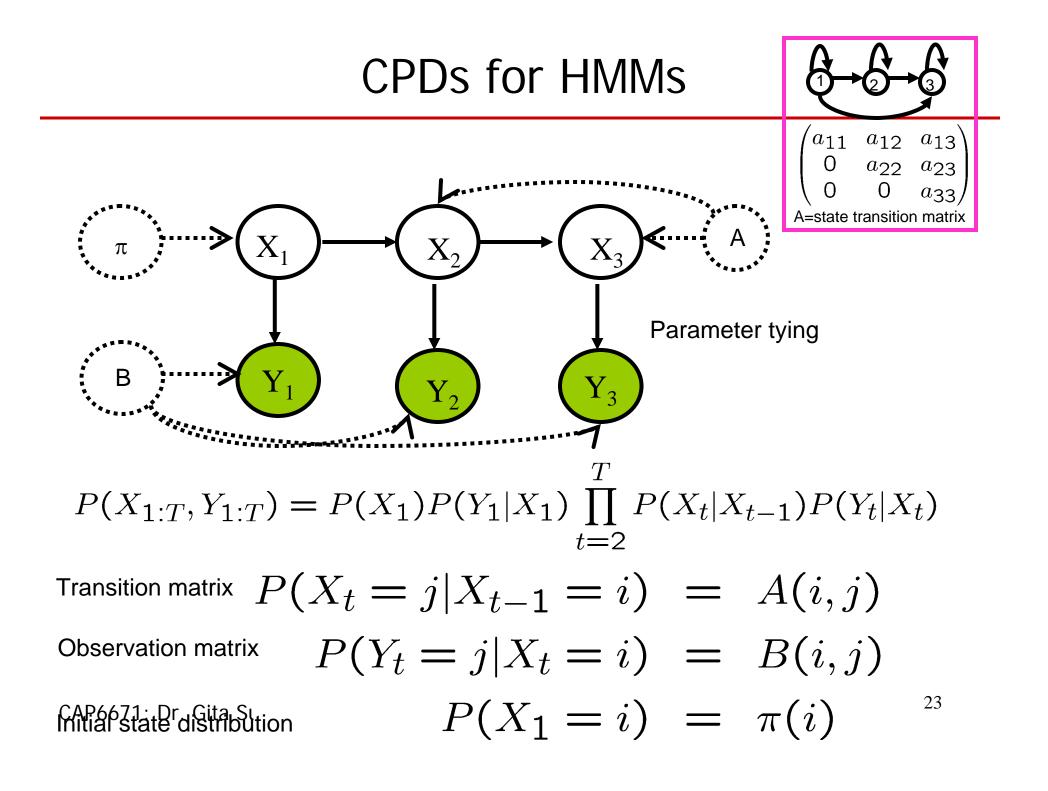
Team 4 – "Bottle Count Unknown" Condition Ann (Novice), Jon (Novice), Tom (Medium) (6 + 7 + 2) / 42 = 35.71% bottles found 100% Terrain Coverage (33%, 46%, 50%) 29% Terrain Coverage Overlap

Notwithstanding the holes in Jon's declared search pattern, he found more bottles (7) than Tom (2), who declared a `complete' search pattern. 18

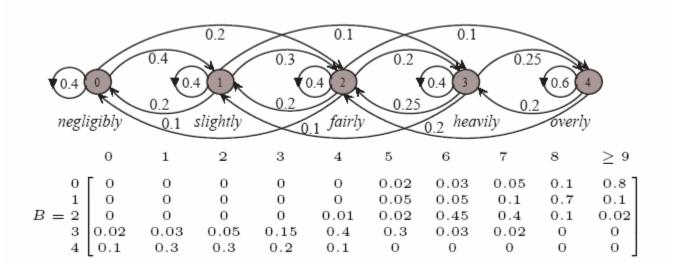
Observed Egocentric Bias

- Most human subjects preferred to search the village
 - Rationale: *There seem to be more bottles in the village.*
 - Hypothesis:
 - The bottles were <u>easier to find</u> in in the village.
 - Subjects sought quicker & easier gratification
- Egocentric bias:
 - Leaving mutually-agreed upon search area to search village
 - Other teammates were doing the same
 - Individuals either did not know, or
 - They were not thinking about the consequences
- Negative consequences:
 - Breaking team commitments to roles and strategy, increased need for monitoring
 - Unnecessary duplication of "easy" effort
 - Less time to search areas with more difficult terrain

Conclusion: Where Agents May Help


- Aiding the individual in a team
 - Assist in individual performance monitoring/improvement functions:
 - Completeness of terrain search
 - Compliance with commitments
 - Be a personal coach for maintaining proper execution pace and technique
 - Be an on-demand guide when individual becomes disoriented
- Helping the team
 - Assist in team performance monitoring/improvement functions
 - Collecting, disseminating and appropriately displaying situation awareness information
 - Monitoring team member compliance to committed goals
 - Suggesting corrective actions when team under-performs
 - Proactively retrieve performance history and outcome of similar tasks, and indicate parallels with current task

Cognitive Load Modeling (Fan & Yen)


- Theories of human teamwork say:
 - To perform effectively teams need to establish shared mental models of the situation
 - Establishing shared mental models requires communication
- Problem: Too much communication causes information overload!
- Solution:
 - Agents model human information load using an HMM formalism to recognize hidden state
 - Reduce communication to overloaded agents

Cognitive Load

- Human information-processing system:
 - Sensory store (one second)
 - Working memory (approx 7 elements for several seconds)
 - Long-term memory
- Cognitive load arises due to the limitations of working memory.
- Can be measured:
 - Directly (physiological measures)
 - Indirectly (performance of a secondary task)

Cognitive Load HMM

Estimate hidden state (load) from observed secondary task of items remembered

Load-Sensitive Information Processing

- Depending on their load, agents will behave differently:
 - Overly: ignore incoming info
 - Heavily: randomly process half info from some of the agents and ignore all info from rest of agents
 - Fairly: process half info from any teammate
 - Slightly: process all info from some of the agents and randomly process half of the info from the rest of the agents

SMMAII

- Shared Mental Models for All: cognitive agent architecture for supporting human-centric collaborative computing
- Supported functionality includes:
 - Multi-party communication for communicating to different sections of the team
 - Shared belief map: visual display that highlights differences in information known to different team members
 - HMM models to track human processing loads

Experiment

- HAP teams must selectively share information in a timely manner to develop global situation awareness
- Humans perform 2 tasks:
 - Secondary: remember and mark belief map cells being illuminated
 - Primary: share information with right party at right time
- To decide whether to share info, humans must decide whether:
 - Info is associated with a changed belief map cell
 - Who to send the info to
 - When to send the info to

Results

- Measured mental model overlapping percentages (intersection of shared information relative to union of information)
- Demonstrated that teams that took cognitive load into account performed better at information sharing task
- HMM cognitive load model accurately tracks human cognitive load

Conclusion

- To assist human teams agents must model a wide range of factors:
 - Taskwork indicators
 - E.g. search patterns
 - Teamwork indicators
 - Communication
 - Shared mental models
 - Human's internal state
 - Cognitive load
- Standard optimal planning techniques fall short in this domain.
- Highly active and interesting research area!