
CAP6671 Intelligent Systems

Lecture 7:
Trading Agent Competition:
Bidding under Uncertainty
Instructor: Dr. Gita Sukthankar

Email: gitars@eecs.ucf.edu
Schedule: T & Th 9:00-10:15am

Location: HEC 302
Office Hours (in HEC 232):

T & Th 10:30am-12



2CAP6671: Dr. Gita Sukthankar

TAC Problem

Acquire a certain number of items within a 
period of time
Can we write a plan to handle item acquisition?

Input: domain information
State: current ask/sell prices
Output: list of bidding actions

Bid(Item, Price, Time, Number)
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Problems with Planning for TAC

Continuous state, action space makes it difficult 
to consider all alternatives
High probability of failure at every decision point
Simultaneous decision on multiple items
Irrecoverable errors
Dependencies between goals
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28 Simultaneous Auctions
Flights: Inflight days 1-4, Outflight days 2-5 (8)

Separate auction for each type of plane ticket
Ask price set by server periodically increases/decreases randomly
Obtain ticket by bidding at or above ask price

Hotels: Expensive hotel/cheap hotel for days 1-4 (8)
16 rooms per auction; 16th price ascending English auction; no resale
Ask price published by server is 16th highest price; no information about 
other bids
No bid withdrawal; no resale
Hotel auctions can close after a specified period of inactivity

Entertainment: 3 different types of tickets, 4 nights (12)
Agents start with a set of entertainment tickets
Server publishes bid-ask spreads (highest bid price, lowest ask price)
Continuous double auction (no trading phases, prices to buy and sell 
may be submitted at any time
Resale allowed
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Bidding Strategies

Flights: delay commitment
Entertainment tickets: resell sub-optimal 
decisions
Hotels?

Irrevocable resource commitment
Simultaneous auctions
Combinatorial valuations
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Complements

Camera, flash, and tripod

Substitutes

Canon AE-1 and A-1

Combinatorial Valuations
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Marginal Utility

Marginal utility is a mechanism for determining 
whether it’s worth bidding on a new object
Definition:

Difference between the utility of owning the set plus 
the new object vs. owning the set without the new 
object minus purchase costs

Formally:

Example:
MU(camera+flash) vs MU(flash alone)
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Problems with Marginal Utility

Simultaneous auctions
Marginal utility doesn’t take into account the 
possibility of obtaining other substitute valuations 
through simultaneous auctions.
Amy’s example:
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Research Problem

Comparison of marginal utility bidding (ATTac) 
and policy search (RoxyBOT)
Results:

Marginal utility is not optimal in simultaneous
auction (as shown by example)
Optimal in sequential option
Empirical results demonstrate that MU bidding is a 
reasonable heuristic for TAC Classic hotel auctions
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ATTac

Bidding:
Calculate G* (most profitable allocation of goods to 
clients based on current holdings and predicted future 
prices)  for use in bidding
Buy/sell bids for entertainment based on a sliding 
price strategy (dependent on time till end of game)

Allocation:
Uses MILP to find optimal allocation

Online adaptation to game conditions:
Passive/active bidding modes based on server latency
Allocation strategy based on time required for MILP
Hotel bidding based on closing prices in previous 
games
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RoxyBot

Allocation
Using an A* search with admissible heuristic or 
variable-width beam search 

Completer
Optimal quantity of resources to buy and sell using 
priceline structure to forecast future costs
Pricelines are learned using ML techniques (whereas 
ATTac uses heuristics to estimate future prices)
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Markov Decision Processes
Sequential auctions can be modeled as an MDP.
Classical planning models:

logical representation of transition systems
goal-based objectives
plans as sequences

Markov decision processes generalize this view
controllable, stochastic transition system
general objective functions (rewards) that allow tradeoffs with 
transition probabilities to be made
more general solution concepts (policies)
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Markov Decision Processes
An MDP has four components, S, A, R, Pr:

(finite) state set S   (|S| = n)
(finite) action set A   (|A| = m)
transition function Pr(s,a,t)

each Pr(s,a,-) is a distribution over S
represented by set of n x n stochastic matrices

bounded, real-valued reward function R(s)
represented by an n-vector
can be generalized to include action costs: R(s,a)
can be stochastic (but replacable by expectation)

Model easily generalizable to countable or continuous 
state and action spaces
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System Dynamics

Finite State Space S
State s1013:

Loc = 236
Joe needs printout
Craig needs coffee
...
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System Dynamics

Finite Action Space A
Pick up Printouts?
Go to Coffee Room?
Go to charger?
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System Dynamics

Transition Probabilities: Pr(si, a, sj)

Prob. = 0.95
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System Dynamics

Transition Probabilities: Pr(si, a, sk)

Prob. = 0.05

s1 s2 ... sn
s1 0.9 0.05 ... 0.0
s2 0.0 0.20 ... 0.1

sn 0.1  0.0 ... 0.0

...
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Reward Process

Reward Function: R(si)
- action costs possible

Reward = -10

R
s1 12
s2 0.5

sn 10

...
...
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Assumptions
Markovian dynamics (history independence)

Pr(St+1|At,St,At-1,St-1,..., S0) = Pr(St+1|At,St) 

Markovian reward process
Pr(Rt|At,St,At-1,St-1,..., S0) = Pr(Rt|At,St)

Stationary dynamics and reward
Pr(St+1|At,St) = Pr(St’+1|At’,St’) for all t, t’

Full observability
though we can’t predict what state we will reach when we 
execute an action, once it is realized, we know what it is
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MDP for Bidding

Optimal policy: bid expected marginal utility
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Simultaneous Auctions

How are simultaneous auctions different?
Camera and flash scenario:

U(camera, flash)=750
U(camera)=0
U(flash)=0
Price(flash)=50
Price(camera) either $500 (0.5) or $1000 (0.5)
What to bid?

Bid of (0,0) yields an expected utility of $9
Bid of (500,50) yields an expected utility of $150 ($200 half 
the time, -$50 half the time)
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Problem Formulation

Compute expectation over all possible outcomes 
(win good 1, win good 2)
Problem: exactly computing this expectation is 
exponential in number of goods
Approaches:

Expected MU bidding
Expected value with MU bidding
Stochastic sampling technique
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Expected MU bidding (ATTac)

Method: calculate expectation on marginal utility
Result: expected marginal utility bidding (bid 1 on both goods) is 
suboptimal
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Expected Value Method

Expected value: solve deterministic version of 
problem using prices calculated by expected 
values

U(camera, flash)=750
Price(flash)=50
Price(camera) either $500 (0.5) or $1000 (0.5)
Calculate policy using expected price 
$750+$50=$800
Since expected price is higher than utility, expected 
value recommends no bid
But that isn’t quite right either…
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Expected Value Method/MU Bid

Marginal utility bidding can do better than using 
the expected value:

Combine approaches:
Compute optimal set of goods using expected value
Bid for the goods using marginal utility
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Sample Average Approximation

Used by RoxyBot-02 (TAC-02)
Solve stochastic program using a subset of 
scenarios
Without heuristics just a form of generate and 
test
Policies can be generated using MU, EVMU or 
expected MU
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Results

MU outperforms expected MU
RoxyBot-00 outperforms MU
RoxyBot-02 (using SAA) outperforms-00

Problems:
SAA is very slow if it just uses brute force search
Needs a good heuristic to direct the search
Computing policies to direct the search is in itself 
computationally expensive
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Reading

Reading: David Pardoe and Peter Stone. An 
Autonomous Agent for Supply Chain 
Management. In Gedas Adomavicius and Alok
Gupta, editors, Handbooks in Information 
Systems Series: Business Computing, Elsevier, 
2007. 


