
CAP6671 Intelligent Systems

Lecture 7:

Trading Agent Competition: Supply Chain Competition

Instructor: Dr. Gita Sukthankar Email: gitars@eecs.ucf.edu Schedule: T & Th 9:00-10:15am Location: HEC 302

Office Hours (in HEC 232): T & Th 10:30am-12

CAP66/1: Dr. Gita Sukthankar

Why is this interesting/difficult?

Why is this interesting/difficult?

- Competitive setting more rigorously tests model
- Use of prediction in decision-making
- Supply chain management is an important problem
- Must make complicated decisions in rapid-time frame (each day 15 seconds)
- Clever use of abstraction makes problem easier

What are the limitations?

CAP6671: Dr. Gita Sukthankar

What are the limitations?

- Simulator creates world using:
 - Linear models
 - Simple distributions
 - Small number of known parameters.
- TAC Agent makes its prediction by calculating probable values of the same parameters used by the simulator.
- Prediction of events in the real world requires a much larger number of (unknown) parameters and a multi-modal distribution

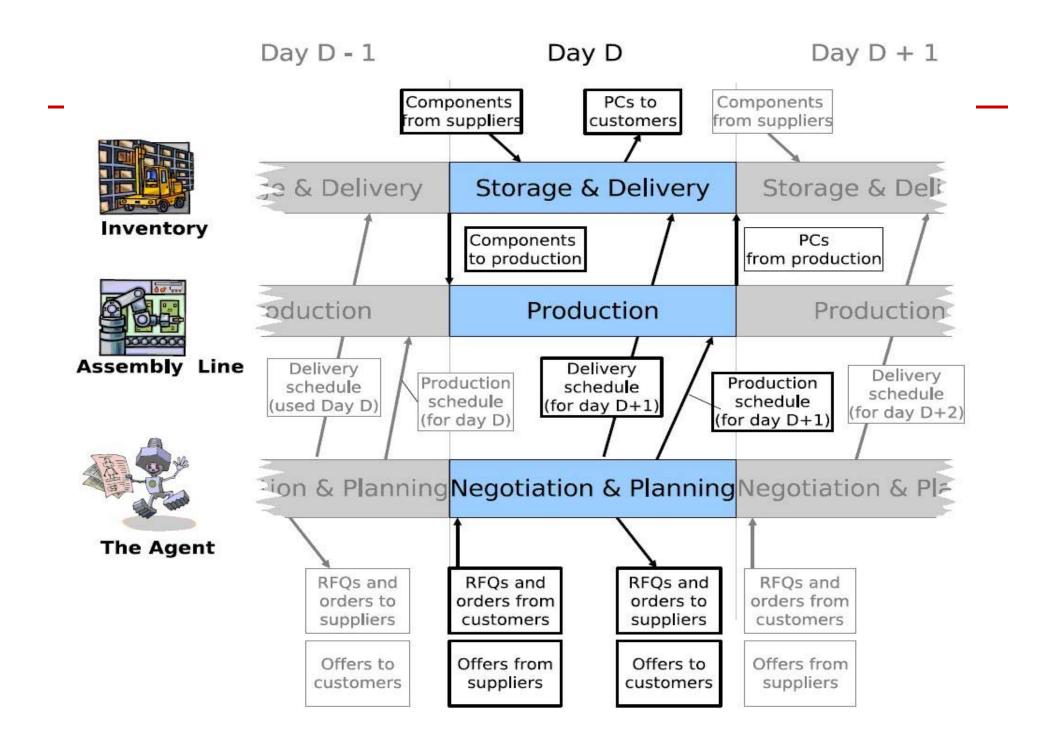
Game overview

- A simulated economy consisting of computer manufacturers, customers, and component suppliers
- Six teams per game compete as manufacturers
- Customers and suppliers controlled by a game server
- One game lasts for 220 simulated days, each lasting 15 seconds (about 1 hour)
- Simulator includes:
 - Manufacturers
 - Suppliers
 - Customers
 - Factories

TAC Agent Tasks

- Function as manufacturer
- Buy components from suppliers
- Manage a factory that assembles and delivers computers
- Sell computers to customers

Supplier Interaction


- Manufacturers send Requests for Quotes (RFQs) on component deliveries
- Suppliers respond with offers
- Manufacturers accept or reject offers
- Suppliers deliver components

Customer Interaction

- Customers send RFQs on computers to each Manufacturer
- Each manufacturer responds with an offer
- The lowest offer results in an order (thus a first price sealed bid reverse auction)
- The winning manufacturer delivers the computers

Factory Interaction

- Factory has limited production capacity
- Manufacturer receives inventory report each day
- Each day, manufacturer sends next day's production schedule
- Manufacturer also sends next day's delivery schedule
- Simplified version of real-life problem since you only have to dictate schedule 1 day in advance

Component E		Base price	Supplier			Description				
	100		1000		Pintel			Pintel CPU, 2.0	GHz	
-	101			.500	Pintel		Pintel CPU, 5.0 GHz			
	110	1		.000	IMD		IMD CPU, 2.0 G	Hz		
	111			.500	IMD		IMD CPU, 5.0 GHz			
	200	2		50	Basus, Macrostar		Pintel motherboard			
	210		2	50	Basus,	Macrostar		IMD motherboard		
	300	2		.00	MEC,		ζ	Memory, 1 GB		
	301			200	MEC, Queenmax		ζ	Memory, 2 GB		
	400		300		Watergate, Mintor		\mathbf{or}	Hard disk, 300 G	В	
	401		400 Water		Waterg	gate, Mintor		Hard disk, 500 G	В	
	SKU Cor		Compone	ents Cycles N		Ν	farket segment			
	1		-	100, 200, 300, 400		4		ow range		
		2		100, 200, 30 100, 200, 30	/	5		ow range		
		3		100, 200, 30	/	5		lid range		
		4		100, 200, 30	,	6		lid range		
		5		101, 200, 30	/	5		lid range		
		6		101, 200, 30	,	6		igh range		
		7		101, 200, 30	01, 400	6		igh range		
		8		101, 200, 30	01, 401	7	Н	igh range		
		9		110, 210, 30	00, 400	4	L	ow range		
		10		110, 210, 30	00, 401	5	L	ow range		
		11		110, 210, 30	01, 400	5	L	ow range		
		12		110, 210, 30	01, 401	6	М	lid range		
		13		111, 210, 30	00, 400	5	М	lid range		
		14		111, 210, 30	00, 401	6	М	lid range		
		15		111, 210, 30	01,400	6	Η	igh range		
r	. Gita Su	16		111, 210, 30	01, 401	7	Η	igh range		

CAP6671: Dr. Gita S

Customer RFQs

- Computer type (1 of 16)
- Quantity (1 20)
- Due date (3 12 days in the future)
- Reserve price (.75 1.25 times base)
- Penalty (.05 .15 daily for up to 5 days)
- Only the high/low prices announced

Customer Demand

- 3 segments: low, mid, high
- Each segment's state: demand D, trend t
 - D in [25, 100] for low, high, [30, 120] for mid
 - T in [.95, 1/.95]
- Number of RFQs is Poisson(D)
- D is multiplied by t each day
- t follows a random walk

RFQs to suppliers

- Each manufacturer can send 5/day
- Quantity, due date, reserve price
- Supplier offers a price
- Alternatives: reduced quantity, later date
- Manufacturer must accept offer next day, 10% down payment
- Reputation tracks fraction accepted

Supplier Capacity

- Daily capacity follows a random walk that reverts to 500
- Suppliers produce at full capacity as long as they have sufficient orders
- Delivery dates can be pushed back; latest orders given priority, no notice given
- Manufacturer agent must be robust to these supplier failures and be able to get orders to customers in a timely fashion without incurring penalties.

Supplier RFQ handling

- Determine capacity needed for current orders
- Consider groups of RFQs in order of *reputation* (fraction of offered components accepted)
- Add new demand to capacity used, determine prices, remove RFQs based on reserve prices
- If insufficient capacity, divide up available, make partial offers, then consider late offers
- Determine price for each offer and make offers

Supplier Pricing

$$P_{d,i} = P_c^{base} \left(1 - \delta \left(\frac{C_{d,i}^{avl'}}{i C_d^{ac}} \right) \right)$$

- d is curr
- i is days in furure
- Delta = .5
- C^{avl'} is available capacity
- C^{ac} is total capacity

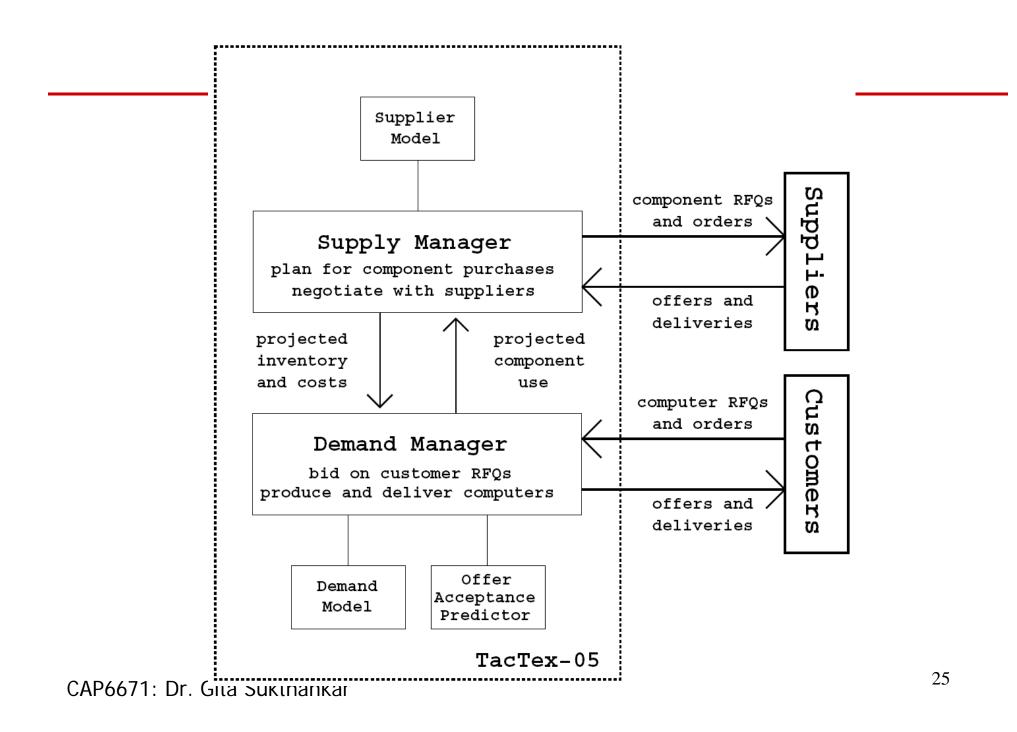
Factory

- Production schedule gives number of each computer to produce, must have enough components and cycles
- Delivery schedule lists each order to ship
- Deliveries can be early, but payment is on time
- Storage cost: about .1 .2% per day
- Interest: 3-6% over the game, double for debt

Challenges in TAC SCM

- Planning, scheduling, optimization
- Incomplete information
- Limited time for decisions
- Multiagent interactions
- Adapting to opponent behavior

Agent Tasks


- 1. Requesting components from suppliers (RFQ)
- 2. Deciding which offers from suppliers to accept
- 3. Bidding on RFQs from customers to request components
- 4. Sending the daily production schedule to the factory
- 5. Delivering completed computers

What approach would you use?

CAP6671: Dr. Gita Sukthankar

Their Approach

- Handle decision-making like a control problem
- Include prediction into the system rather than just making the controller purely reactive

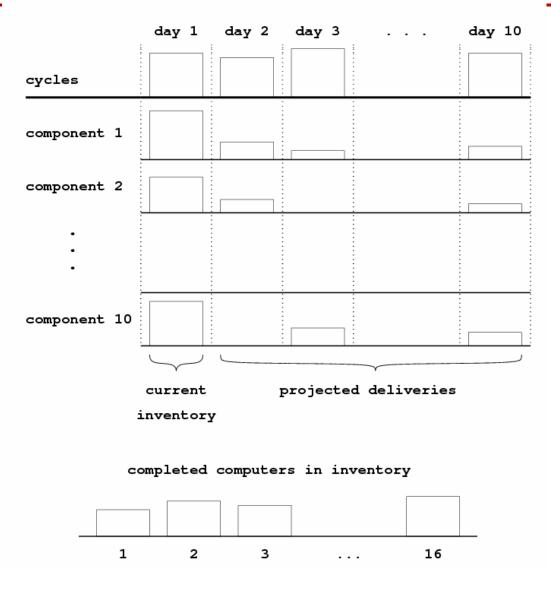
Method

- Record info from server and update prediction modules
- Supply manager
 - Input: supplier component offers
 - Output: which components to buy
 - Update: projected future inventory, replacement costs
- Demand manager
 - Input: customer RFQs, current orders, projected inventory, and replacement costs
 - Output: accepting RFQs, production schedule
 - Updates: future customer demand, future component use
- Supply manager
 - Determines future deliveries needed to maintain inventory
 - Uses Supplier Model to predict future component prices
 - Decides what RFQs need to be sent

Predicting Customer Demand

- Bayesian approach adapted from DeepMaize
- Keep distribution over demand and trend
- Update distribution based on observation
- Then update according to trend
- Can predict future demand

Bayes Filter Reminder


Prediction

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

• Correction

$$bel(x_t) = \eta p(z_t \mid x_t) bel(x_t)$$

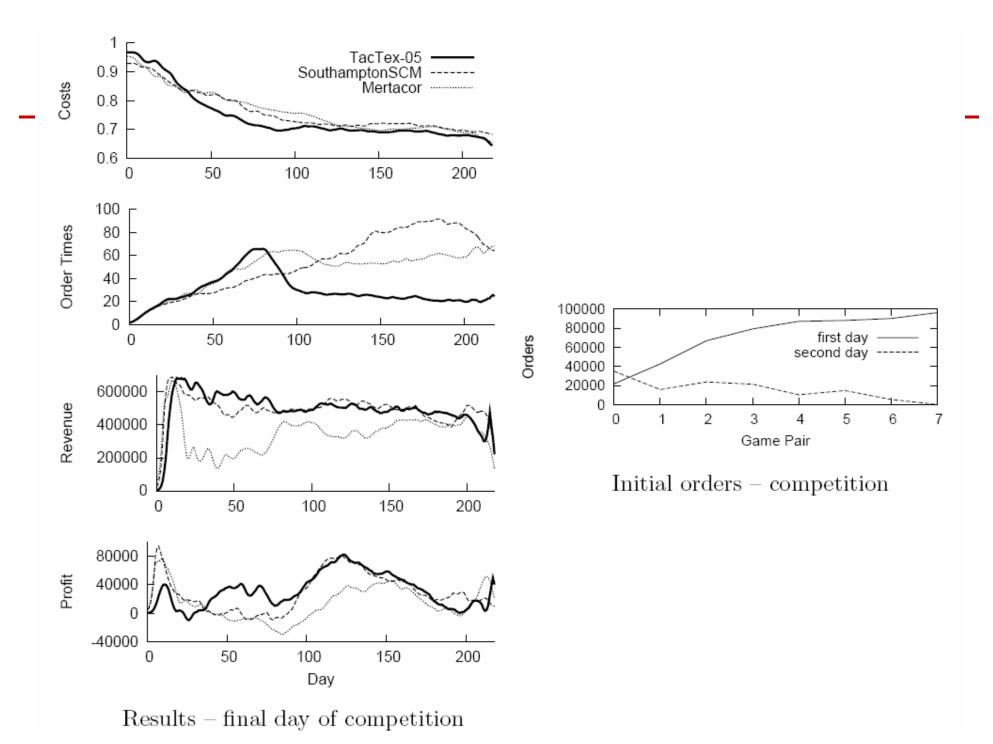
Production Algorithm

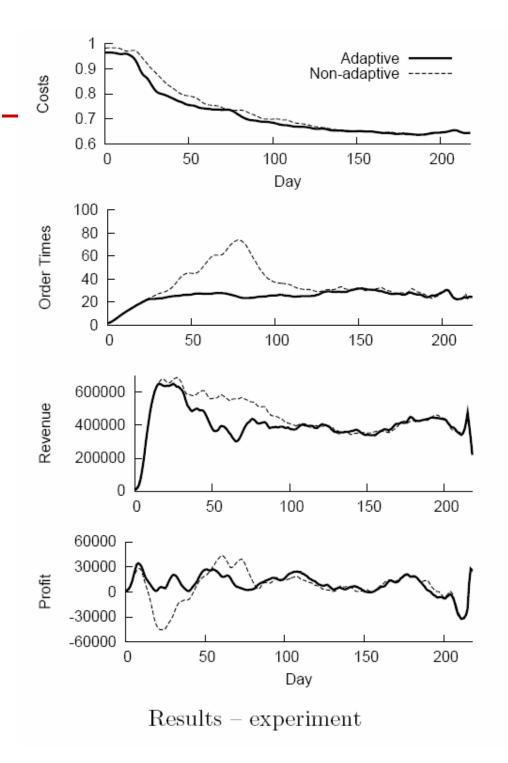
- Greedy works well (similar to LP)
- Given orders, future inventory, costs
- Choose order with most profit
- Try to produce as late as possible
- Take from inventory if needed
- Push back due date and mark late if needed

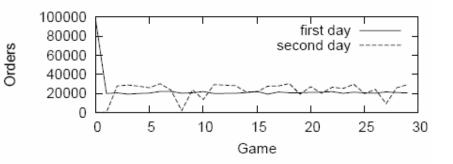
CAP6671: Dr. Gita Sukthankar

Produce, Deliver, Bid

- First handle orders that are due
- Then apply to other orders and RFQs
- Extract tomorrow's deliveries, production
 - Deliver only if due or extra inventory
 - Fill in gaps in tomorrow's production
- Record predicted future component use


Experiments with Predictions


- Demand prediction accuracy has little impact
- Acceptance predictions somewhat important but shape of distribution not so much
- Supply price predictions very important
- Better to wait to order, even if supply prices increase slightly


Exp. #	Description	Score	Util.	Revenue	Costs	Win $\%$
0	no changes	\$7.28M	83%	104.7M	\$94.5M	-
1	no component price prediction increase	-1.42	+3%	+3.51	+4.79	23%
2	no computer price change prediction	-3.51	-1%	-4.50M	70M	0%
3	no particle filter	-1.97	-7%	-10.05M	-8.03M	0%
4	no particle filter or prediction	-3.93	-6%	-10.99M	-6.83M	0%
5	heuristic price change prediction	-1.74	0%	-1.14M	64M	13%

Adaptation

- First day ordering
 - Most agents hardcode orders
 - Can predict prices on first day, later
 - Order if cheapest on first day
- End of game bidding
 - Opponents often have surplus or shortage
 - Can save computers or sell early

Initial orders – experiment

Future Work

- Improve prediction accuracy
 - Possibly with learning
 - Adapt predictions during competition
- Make better use of supply price predictions
 - Wait to order if possible
- Predict *future* computer prices
 - Sell computers now or save for later

References

 Most of the slides here are directly from D. Pardoe and P. Stone's talk http://www.cs.utexas.edu/~pstone/Papers/bib2 html/