CAP6671 Intelligent Systems

Lecture 8:

Agent Reputation and Trust Testbed

Instructor: Dr. Gita Sukthankar Email: gitars@eecs.ucf.edu Schedule: T & Th 9:00-10:15am Location: HEC 302 Office Hours (in HEC 232): T & Th 10:30am-12

Trust Decisions in Reputation Exchange Networks

- Agents perform transactions to obtain needed resources
 - Transactions have risk because partners may be untrustworthy
 - Agents must learn whom to trust and how trustworthy to be
- When agents can exchange reputations
 - Agents must also learn when to request reputations and what reputations to tell

Reputation & Trust

- Models realistic economies in which agents depend on each other but are still self-interested
- Tradeoffs between selfish and altruistic behavior
- Reputation helps the agent make money by increasing the opinion requests
- But expending too many resources increasing one's reputation might not be worth it....
- Modeling trust allows the agent not to be exploited by other agents
- Agent must be adaptive to avoid exploitation

Enumerating Decisions in a Trust Strategy

CAP6671: Dr. Gita Sukthankar

Agent Reputation and Trust (ART) Testbed

- An open-source tool for
 - <u>Experimentation</u>: Easily-repeatable experiments in a common environment
 - <u>Competitions</u>: Most promising trust technologies are identified

ART vs. TAC?

CAP6671: Dr. Gita Sukthankar

ART Testbed Game Rules

ART Competition Rules

- Game is an unknown number of iterations
- Agents (acting as art appraisers) make money by:
 - Performing appraisals for clients (\$100)
 - Generating opinions for other agents (\$10)
 - Answering reputation requests for other agents (\$1)
- Agents can spend money:
 - On their appraisals (either for their client or for opinions)
 - Buying opinions and reputation requests
- Agents get new clients based on performance from previous timesteps.

ART Testbed

Appraisals

- Agents are initialized with a private expertise vector
- Expertise vector determines the variance of error when appraising a painting while spending a certain amount of money
- Simulator generates appraisals according to the formula:

$$var(e_i) = v^2 \left(s_i + \frac{\alpha}{C_i}\right)^2$$

 $v=painting value$
 $s=expertise value$
 $C=money expended$

Combining Appraisals

• All appraisals are calculated by the testbed according to this formula:

$$\overline{e} = \sum_{i=0}^{q} w_i \cdot e_i \qquad \begin{array}{c} \mathsf{E} = \mathsf{estimate} \\ \mathsf{w} = \mathsf{weight} \end{array}$$

Agents need to decide:

- Which opinions (if any) to solicit
- How to weight opinions
- No exploration in function space is permitted

IAM Client-Service Decisions

- 1. How much it should spend on its own appraisal given its expertise vector
- 2. Whether it needs to ask for external opinions for an order and which agents opinions it should choose
- Whether it should ask for reputation values and how these values can be incorporated into the choice of agent opinions
- 4. Setting the weights on the opinions it receives

IAM Agent Services

- How much money to spend on generating opinions for other agents
- How to generate reputation values for other agents

What strategy would you use?

IAM Agent

Methods

- IAM uses several statistical and optimization technoiues to improve its performance
- Calculate optimal weights based on variances of the opinions
- Estimate variances based on a Bayesian analysis to determine the most likely values of (s,C) used by other agents
- Use chi-square statistical test to identify liars
- Minimizing amount of money spent in estimates

Calculating Optimal Weights

- Must aggregate opinions from different agents
- Weighting function must be linear
- Minimize mean square error
- Best Linear Unbiased Estimates uses information about variance to determine weight

$$w_i = \frac{1/var(e_i)}{\sum_{i=0}^q 1/var(e_i)}$$

IAM doesn't use reputation value in weight estimates.

Estimating Truthful Variances

 Calculate expected variance by marginalizing over values of (s,C) used by the agents

$$E[var(e_i/v)] = \sum_{s_i \in \mathcal{S}} \sum_{C_i \in \mathcal{C}} P(s_i, C_i) \left(s_i + \frac{\alpha}{C_i}\right)^2$$

 Maintain a conditional probability table and update it according to agent experience

Identifying Liars

- Use chi-squared test to test the hypothesis that the agents last k opinions are truthful
- Calculate the maximum mse based on max and min bounds on (s,C)

$$Q_k = \frac{1}{2.25} \sum_{i=1}^k (e_i/v_i - 1)^2$$

 Calculate probability that last k opinions were generated truthfully

Generating Appraisals

- Determine how much money it is worth spending on each appraisal
- Even for different values of s \$4 is a good break point based on the simulator parameters

Combining Opinions

- Always use your own opinion regardless of your expertise value
- Sort other agents into estimated variances for the art era of the painting
- Eliminate agents if they have p > 0.6 of cheating on chi-square test
- Calculate reduction in variance for adding each agent from the list
- If combined variance of final appraisal is reduced less than 15% stop the selection process

Earning thru Honesty

- Generate good appraisals (\$4) for non-cheating agents
- Retaliate against cheating agents by spending a fraction of that money (0.01)
- Generate fair reputation values
- For cheating agents provide random reputation values

Competition Results

Agent	Affiliation	Revenue	Cost	Profit
IAM	University of	149812	18299	131583
	Southampton			
Neil	Nanyang Techno-	116764	13741	103023
	logical University			
Frost	Bogazici Univer-	120753	18176	102577
	sity			
Sabatini	Universidad Car-	127137	25726	101411
	los III de Madrid			
Joey	University of	111985	19506	92479
	Nebraska-Lincoln			
	mean	125290	19076	106215

Cost Percentages

Agent	Opinion	Opinion	Reputation
	\mathbf{Costs}	Generation	\mathbf{Costs}
		\mathbf{Costs}	
IAM	59.46	40.54	0.00
Neil	6.80	92.03	1.16
Frost	31.65	68.35	0.00
Sabatini	38.85	61.15	0.00
Joey	0.00	100.00	0.00

Revenue Percentages

Agent	Client	Opinion	Reputation
	Pay-	Pay-	Payments
	\mathbf{ments}	\mathbf{ments}	
IAM	96.09	3.89	0.03
Neil	98.63	1.37	0.00
Frost	98.45	1.52	0.03
Sabatini	88.25	11.72	0.03
Joey	96.96	3.00	0.04

Discussion

- Agents can benefit from 3rd party info if it is easier to establish the information as reliable (e.g. combining appraisals)
- Generally more economical to purchase opinions from 3rd parties than to invest heavily in own opinion
- For reputation it was easier to learn reputation models for other agents than to purchase them because of:
 - Small number of agents
 - Problems with reputation semantics

References

K. Fullam slides from

https://webspace.utexas.edu/fullamkk/