
■ Automated planning technology has become
mature enough to be useful in applications that
range from game playing to control of space
vehicles. In this article, Dana Nau discusses
where automated-planning research has been,
where it is likely to go, where he thinks it should
go, and some major challenges in getting there.
The article is an updated version of Nau’s invit-
ed talk at AAAI-05 in Pittsburgh, Pennsylvania.

In ordinary English, plans can be many dif-
ferent kinds of things, such as project plans,
pension plans, urban plans, and floor plans.

In automated-planning research, the word
refers specifically to plans of action: 

representations of future behavior ... usually a
set of actions, with temporal and other con-
straints on them, for execution by some agent
or agents.1

One motivation for automated-planning
research is theoretical: planning is an impor-
tant component of rational behavior—so if one
objective of artificial intelligence is to grasp the
computational aspects of intelligence, then cer-
tainly planning plays a critical role. Another
motivation is very practical: plans are needed
in many different fields of human endeavor,
and in some cases it is desirable to create these
plans automatically. In this regard, automated-
planning research has recently achieved sever-
al notable successes such as the Mars Rovers,
software to plan sheet-metal bending opera-
tions, and Bridge Baron. The Mars Rovers (see
figure 1) were controlled by planning and

scheduling software that was developed joint-
ly by NASA’s Jet Propulsion Laboratory and
Ames Research Center (Estlin et al. 2003). Soft-
ware to plan sheet-metal bending operations
(Gupta et al. 1998) is bundled with Amada Cor-
poration’s sheet-metal bending machines such
as the one shown in figure 2. Finally, software
to plan declarer play in the game of bridge
helped Bridge Baron to win the 1997 world
championship of computer bridge (Smith,
Nau, and Throop 1998). 

The purpose of this article is to summarize
the current status of automated-planning
research, and some important trends and
future directions. The next section includes a
conceptual model for automated planning,
classifies planning systems into several differ-
ent types, and compares their capabilities and
limitations; and the Trends section discusses
directions and trends.

Conceptual Model for Planning
A conceptual model is a simple theoretical
device for describing the main elements of a
problem. It may fail to address several of the
practical details but still can be very useful for
getting a basic understanding of the problem.
In this article, I’ll use a conceptual model for
planning that includes three primary parts (see
figure 4a and 4b, which are discussed in the fol-
lowing sections: a state-transition system, which
is a formal model of the real-world system for
which we want to create plans; a controller,
which performs actions that change the state
of the system; and a planner, which produces
the plans or policies that drive the controller. 
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State-Transition Systems
Formally, a state-transition system (also called a
discrete-event system) is a 4-tuple Σ = (S, A, E, γ),
where 

S = {s0, s1, s2, …} is a set of states; 

A = {a1, a2, …} is a set of actions, that is, state
transitions whose occurrence is controlled by
the plan executor; 

E = {e1, e2, …} is a set of events, that is, state tran-
sitions whose occurrence is not controlled by
the plan executor; 

γ : S × (A ∪ E) → 2S is a state-transition function. 

A state-transition system may be represented
by a directed graph whose nodes are the states
in S (for example, see figure 5). If s′ ∈ γ (s, e),
where e ∈ A ∪ E is an action or event, then the
graph contains a state transition (that is, an arc)

from s to s′ that is labeled with the action or
event e.2

If a is an action and γ(s, a) is not empty, then
action a is applicable to state s: if the plan execu-
tor executes a in state s, this will take the system
to some state in γ(s, a). 

If e is an event and γ(s, e) is not empty, then e
may possibly occur when the system is in state s.
This event corresponds to the internal dynamics
of the system, and cannot be chosen or triggered
by the plan executor. Its occurrence in state s will
bring the system to some state in γ(s, e). 

Given a state-transition system Σ, the pur-
pose of planning is to find which actions to
apply to which states in order to achieve some
objective, when starting from some given situ-
ation. A plan is a structure that gives the appro-
priate actions. The objective can be specified in
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Figure 1. One of the Mars Rovers.



several different ways. The simplest specifica-
tion consists of a goal state sg or a set of goal
states Sg. For example, if the objective in figure
5 is to have the container loaded onto the robot
cart, then the set of goal states is Sg = {s4, s5}. In
this case, the objective is achieved by any
sequence of state transitions that ends at one of
the goal states. More generally, the objective
might be to get the system into certain states, to
keep the system away from certain other states,
to optimize some utility function, or to perform
some collection of tasks.

Planners
The planner’s input is a planning problem,
which includes a description of the system Σ,
an initial situation and some objective. For
example, in figure 5, a planning problem P
might consist of a description of Σ, the initial
state s0, and a single goal state s5.

The planner’s output is a plan or policy that
solves the planning problem. A plan is a
sequence of actions such as 

<take, move1, load, move2>.

A policy is a partial function from states into
actions, such as 

{(s0, take), (s1, move1), (s3, load), (s4, move2)}.3

The aforementioned plan and policy both solve
the planning problem P. Either of them, if exe-
cuted starting at the initial state s0, will take Σ
through the sequence of states �s1, s2, s3, s4, s5�.4

In general, the planner will produce actions
that are described at an abstract level. Hence it
may be impossible to perform these actions
without first deciding some of the details. In
many planning problems, some of these details
include what resources to use and what time to
do the action. 

What Resources to Use. Exactly what is meant
by a resource depends on how the problem is
specified. For example, if Σ contained more
than one robot, then one approach would be
to require the robot’s name as part of the action
(for example, move1(robot) and move1(robot2)),
and another approach would be to consider
the robot to be a resource whose identity will
be determined later. 

What Time to Do the Action. For example, in
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Figure 2. A Sheet-Metal Bending Machine. 

(Figure used with permission of Amada Corporation).



order to load the container onto the robot, we
might want to start moving the crane before
the robot arrives at location1, but we cannot
complete the load operation until after the
robot has reached location1 and has stopped
moving. 

In such cases, one approach is to have a sep-
arate program called a scheduler that sits in
between the planner and the controller (see fig-
ure 4c), whose purpose is to determine those
details. Another approach is to integrate the
scheduling function directly into the planner.
The latter approach can substantially increase
the complexity of the planner, but on complex
problems it can be much more efficient than
having a separate scheduler.

Controllers
The controller’s input consists of plans (or
schedules, if the system includes a scheduler)

and observations about the current state of the
system. The controller’s output consists of
actions to be performed in the state-transition
system.

In figure 4, notice that the controller is
online. As it performs its actions, it receives
observations, each observation being a collec-
tion of sensor inputs giving information about
Σ’s current state. The observations can be mod-
eled as an observation function η : S → O that
maps S into some discrete set of possible obser-
vations. Thus, the input to the controller is the
observation o = η(s), where s is the current
state.

If η is a one-to-one function, then from each
observation o we can deduce exactly what state
Σ is in. In this case we say that the observations
provide complete information. For example, in
figure 5, if there were a collection of sensors
that always provided the exact locations of the
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robot and the container, then this sensor
would provide complete information—or, at
least, complete information for the level of
abstraction used in the figure.

If η is not a one-to-one function, then the
best we can deduce from an observation o is that
Σ is in one of the states in the set η–1(o) ⊆ S, and
in this case we say that the observations pro-
vide incomplete information about Σ’s current
state. For example, in figure 5, if we had a sen-
sor that told us the location of the robot but
not the location of the container, this sensor
would provide incomplete information.

Offline and Online Planning
The planner usually works offline, that is, it
receives no feedback about Σ’s current state.
Instead, it relies on a formal description of the
system, together with an initial state for the
planning problem and the required objective.
It is not concerned with the actual state of the
system at the time that the planning occurs but
instead with what states the system may be in
when the plan is executing.

Most of the time, there are differences
between Σ and the physical system it repre-
sents—for example, the state-transition system
in figure 5 does not include the details of the
low-level control signals that the controller will
need to transmit to the crane and the robot. As

a consequence, the controller and the plan
must be robust enough to cope with differ-
ences between Σ and the real world. If the dif-
ferences can become too great for the con-
troller to handle from what is expected in the
plan, then more complex control mechanisms
will be required than what we have described
so far. For example, the planner (and scheduler,
if there is one) may need feedback about the
controller’s execution status (see the dashed
lines in the figure), so that planning and acting
can need be interleaved. Interleaving planning
and acting will require the planner and sched-
uler to incorporate mechanisms for supervi-
sion, revision, and regeneration of plans and
schedules.

Types of Planners
Automated planning systems can be classified
into the following categories, based on whe -
ther—and in what way—they can be config-
ured to work in different planning domains:
domain-specific planners, domain-indepen-
dent planners, and domain-configurable plan-
ners.

Domain-specific planners are planning sys-
tems that are tailor-made for use in a given
planning domain and are unlikely to work in
other domains unless major modifications are
made to the planning system. This class
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includes most of the planners that have been
deployed in practical applications, such as the
ones depicted in figures 1–3.

In domain-independent planning systems, the
sole input to the planner is a description of a
planning problem to solve, and the planning
engine is general enough to work in any plan-
ning domain that satisfies some set of simpli-
fying assumptions. The primary limitation of
this approach is that it isn’t feasible to develop
a domain-independent planner that works effi-
ciently in every possible planning domain: for
example, one probably wouldn’t want to use
the same planning system to play bridge, bend
sheet metal, or control a Mars Rover. Hence, in
order to develop efficient planning algorithms,
it has been necessary to impose a set of simpli-
fying assumptions that are too restrictive to
include most practical planning applications.

Domain-configurable planners are planning
systems in which the planning engine is
domain-independent but the input to the
planner includes domain-specific knowledge to
constrain the planner’s search so that the plan-
ner searches only a small part of the search
space. Examples of such planners include HTN
Planners such as O-Plan (Tate, Drabble, and Kir-
by 1994), SIPE-2 (Wilkins 1988), and SHOP2
(Nau et al. 2003), in which the domain-specif-
ic knowledge is a collection of methods for

decomposing tasks into subtasks, and control-
rule planners such as TLPlan (Bacchus and
Kabanza 2000) and TALplanner (Kvarnström
and Doherty 2001), in which the domain-spe-
cific knowledge is a set of rules for how to
remove nodes from the search space.5

The next two sections are overviews of
domain-independent and domain-config-
urable planners. This article does not include a
similar overview of domain-specific planners,
since each of these planners depends on the
specific details of the problem domain for
which it was constructed.

Domain-Independent Planning
For nearly the entire time that automated plan-
ning has existed, it has been dominated by
research on domain-independent planning.
Because of the immense difficulty of devising a
domain-independent planner that would work
well in all planning domains, most research
has focused on classical planning domains, that
is, domains that satisfy the following set of
restrictive assumptions: 

Assumption A0 (Finite Σ). The system Σ has a
finite set of states.

Assumption A1 (Fully Observable Σ). The system
Σ is fully observable, that is, one has complete
knowledge about the state of Σ; in this case the
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observation function η is the identity function.

Assumption A2 (Deterministic Σ). The system Σ is
deterministic, that is, for every state s and event
or action u, |γ(s, u)| ≤ 1. If an action is applica-
ble to a state, its application brings a determin-
istic system to a single other state. Similarly for
the occurrence of a possible event.

Assumption A3 (Static Σ). The system Σ is static,
that is, the set of events E is empty. Σ has no
internal dynamics; it stays in the same state
until the controller applies some action.6

Assumption A4 (Attainment Goals). The only
kind of goal is an attainment goal, which is spec-
ified as an explicit goal state or a set of goal
states Sg. The objective is to find any sequence
of state transitions that ends at one of the goal
states. This assumption excludes, for example,
states to be avoided, constraints on state trajec-
tories, and utility functions.

Assumption A5 (Sequential Plans). A solution
plan to a planning problem is a linearly ordered
finite sequence of actions.

Assumption A6 (Implicit Time). Actions and
events have no duration, they are instanta-
neous state transitions. This assumption is
embedded in the state-transition model, which
does not represent time explicitly.

Assumption A7 (Off-line Planning). The planner
is not concerned with any change that may
occur in Σ while it is planning; it plans for the
given initial and goal states regardless of the
current dynamics, if any. 

In summary, classical planning requires com-
plete knowledge about a deterministic, static,
finite system with restricted goals and implicit
time. Here planning reduces to the following
problem: 

Given Σ = (S, A, γ), an initial state s0 and a subset
of goal states Sg, find a sequence of actions cor-
responding to a sequence of state transitions
(s0, s1, …, sk) such that s1 ∈ γ (s0, a1), s2 ∈ γ (s1, a2),
…, sk ∈ γ (sk−1, ak), and sk ∈ sg. 

Classical planning may appear trivial: plan-
ning is simply searching for a path in a graph,
which is a well understood problem. Indeed, if
we are given the graph Σ explicitly then there
is not much more to say about planning for
this restricted case. However, it can be shown
(Ghallab, Nau, and Traverso 2004) that even in
very simple problems, the number of states in
Σ can be many orders of magnitude greater
than the number of particles in the universe!
Thus it is impossible in any practical sense to
list all of Σ’s states explicitly. This establishes
the need for powerful implicit representations
that can describe useful subsets of S in a way
that both is compact and can easily be
searched.

The simplest representation for classical
planning is a set-theoretic one: a state s is repre-

sented as a collection of propositions, the set of
goal states Sg is represented by specifying a col-
lection of propositions that all states in Sg must
satisfy, and an action a is represented by giving
three lists of propositions: preconditions to be
met in a state s for an action a to be applicable
in s, propositions to assert, and propositions to
retract from s in order to get the resulting state
γ(s, a). A plan is any sequence of actions, and
the plan solves the planning problem if, start-
ing at s0, the sequence of actions is executable,
producing a sequence of states whose final
state is in Sg.

7

A more expressive representation is the clas-
sical representation: starting with a function-free
first-order language L, a state s is a collection of
ground atoms, and the set of goal states Sg is
represented by an existentially closed collec-
tion of atoms that all states must satisfy. An
operator is represented by giving two lists of
ground or unground literals: preconditions and
effects. An action is a ground instance of an
operator. A plan is any sequence of actions, and
the plan solves the planning problem if, start-
ing at s0, the sequence of actions is executable,
producing a sequence of states whose final
state satisfies in Sg. The de facto standard for
classical planning is to use some variant of this
representation.

Classical Planning Algorithms
In the following paragraphs, I provide brief
summaries of some of the best-known tech-
niques for classical planning: plan-space plan-
ning, planning graphs, state-space planning,
and translation into other problems.

Plan-Space Planning. In plan-space plan-
ning, the basic idea is to plan for a set of goals
{g1, …, gk} by planning for each of the individ-
ual goals more-or-less separately, but maintain-
ing various bookkeeping information to detect
and resolve interactions among the plans for
the individual goals. For example, a simple
domain called the Dock Worker Robots
domain (Ghallab, Nau, and Traverso 2004),
which includes piles of containers, robots that
can carry containers to different locations, and
cranes that can put containers onto robots or
take them off of robots. Suppose there are sev-
eral piles of containers as shown in state s0 of
figure 6, and the objective is to rearrange them
as shown in state sg. Then a plan-space planner
such as UCPOP (Penberthy and Weld, 1992)
will produce a partially ordered plan like the
one shown in the figure. 

Planning Graphs. A planning graph is a
structure such as the one shown in figure 7.
For each n, level n includes every action a such
that at level n – 1, a’s preconditions are satis-
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fied and do not violate certain kinds of mutu-
al-exclusion constraints. The literals at level n
include the literals at level n – 1, plus all effects
of all actions at level n. Thus the planning
graph represents a relaxed version of the plan-
ning problem in which several actions can
appear simultaneously even if they conflict
with each other. The basic GraphPlan algo-
rithm is as follows:

For n = 1, 2, ... until a solution is found, 

Create a planning graph of n levels. 

Do a backwards state-space search from the
goal to try to find a solution plan, but restrict
the search to include only the actions in the
planning graph. 

The planning graph can be computed relative-
ly quickly (that is, in a polynomial amount of
time), and the restriction that the backward
search must operate within the planning graph
dramatically improves the efficiency of the
backward search. As a result, GraphPlan runs
much faster than plan-space planning algo-
rithms. Researchers have created a large num-
ber of planning algorithms based on Graph-
plan, including IPP, CGP, DGP, LGP, PGP, SGP,
TGP, and others.8

State-Space Planning. Although state-space
search algorithms are very well known, it was
not until a few years ago that they began to
receive much attention from classical planning
researchers, because nobody knew how to
come up with a good heuristic function to
guide the search. The breakthrough came
when it was realized that heuristic values could
be computed relatively quickly by extracting

them from relaxed solutions (such as the plan-
ning graphs discussed earlier). This has led to
planning algorithms such as HSP (Bonet and
Geffner 1999) and FastForward (Hoffmann and
Nebel 2001).

Translation Into Other Problems. Here,
the basic idea consists of three steps. First,
translate the planning problem into another
kind of combinatorial problem—such as satis-
fiability or integer programming—for which
efficient problem solvers already exist. Second,
use a satisfiability solver or integer-program-
ming solver to solve the translated problem.
Third, take the solution found by the problem
solver and translate it into a plan. This
approach has led to planners such as Satplan
(Kautz and Selman 1992).

Limitations of Classical Planning
For nearly the entire time that automated plan-
ning has existed, it has been dominated by
research on classical planning. In fact, for
many years the term domain-independent plan-
ning system was used almost synonymously
with classical planning, as if there were no lim-
itations on what kind of planning domains
could be represented as classical planning
domains. But since classical planning requires
all of the restrictive assumptions in the
Domain-Independent Planning section, it
actually is restricted to a very narrow class of
planning domains that exclude most problems
of practical interest. For example, Mars explo-
ration (figure 1) and sheet-metal bending (fig-
ure 2) satisfy none of the assumptions in the
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Domain-Independent Planning section, and
the game of bridge (figure 3) satisfies only A0,
A2, and A6.

On the other hand, several of the concepts
developed in classical planning have been
quite useful in developing planners for non-
classical domains. This will be discussed further
in the Directions for Growth section.

Domain-Configurable Planners
Domain-specific and domain-configurable
planners make use of domain-specific knowl-
edge to constrain the search to a small part of
the search space. As an example of why this
might be useful, consider the task of traveling
from the University of Maryland in College
Park, Maryland, to the LAAS research center in
Toulouse, France. We may have a number of
actions for traveling: walking, riding a bicycle,
roller skating, skiing, driving, taking a taxi, tak-
ing a bus, taking a train, flying, and so forth.
We may also have a large number of locations
among which one may travel: for example, all
of the cities in the world. Before finding a solu-
tion, a domain-independent planner might

first construct a huge number of nonsensical
plans, such as the following one: 

Walk from College Park to Baltimore, then bicy-
cle to Philadelphia, then take a taxi to Pitts-
burgh, then fly to Chicago, …. 

In contrast, anyone who has ever had much
practical experience in traveling knows that
there are only a few reasonable options to con-
sider. For traveling from one location to anoth-
er, we would like the planner to concentrate
only on those options. To do this, the planner
needs some domain-specific information about
how to create plans. 

In a domain-specific planner, the domain-
specific information may be encoded into the
planning engine itself. Such a planner can be
quite efficient in creating plans for the target
domain but will not be usable in any other
planning domain. If one wants to create a plan-
ner for another domain—for example, plan-
ning the movements of a robot cart—one will
need to build an entirely new planner. 

In a domain-configurable planner, the plan-
ning engine is domain independent, but the
input to the planner includes a domain descrip-
tion, that is, a collection of domain-specific
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knowledge written in a language that is under-
standable to the planning engine. Thus, the
planning engine can be reconfigured to work
in another problem domain by giving it a new
domain description.

The existing domain-configurable planners
can be divided into two types: hierarchical task
network (HTN) planners and control-rule plan-
ners. These planners are discussed in the fol-
lowing two sections.

HTN Planners
In a hierarchical task network (HTN) planner,
the planner’s objective is described not as a set
of goal states but instead as a collection of tasks
to perform.9 Planning proceeds by decompos-
ing tasks into subtasks, subtasks into subsub-
tasks, and so forth in a recursive manner until
the planner reaches primitive tasks that can be
performed using actions similar to the actions
used in a classical planning system. To guide
the decomposition process, the planner uses a
collection of methods that give ways of decom-
posing tasks into subtasks.

As an illustration, figure 8 shows two meth-
ods for the task of traveling from one location
to another: air travel and taxi travel. Traveling
by air involves the subtasks of purchasing a
plane ticket, traveling to the local airport, fly-
ing to an airport close to our destination, and
traveling from there to our destination. Trav-
eling by taxi involves the subtasks of calling a
taxi, riding in it to the final destination, and
paying the driver. The preconditions specify
that the air-travel method is applicable only for
long distances and the taxi-travel method is
applicable only for short distances. Now, con-
sider again the task of traveling from the Uni-

versity of Maryland to LAAS. Since this is a
long distance, the taxi-travel method is not
applicable, so we must choose the air-travel
method. As shown in figure 9, this decompos-
es the task into the following subtasks: (1) pur-
chase a ticket from IAD (Washington Dulles)
airport to TLS (Toulouse Blagnac), (2) travel
from the University of Maryland to IAD, (3) fly
from IAD to TLS, and (4) travel from TLS to
LAAS. 

For the subtasks of traveling from the Uni-
versity of Maryland to BWI and traveling from
Logan to MIT, we can use the taxi-travel
method to produce additional subtasks as
shown in figure 9.

HTN-planning research has been much more
application-oriented than most other AI-plan-
ning research. Domain-configurable systems
such as O-Plan (Tate, Drabble, and Kirby 1994),
SIPE-2 (Wilkins 1988), and SHOP2 (Nau et al.
2003) have been used in a variety of applica-
tions, and domain-specific HTN planning sys-
tems have been built for several application
domains (for example, Smith, Nau, and Throop
[1998]).

Control-Rule Planners
In a control-rule planner, the domain-specif-
ic information is a set of rules describing con-
ditions under which the current node can be
pruned from the search space. In most cases,
the planner does a forward search, starting
from the initial state, and the control rules
are written in some form of temporal logic.
Don’t read too much into the name temporal
logic, because the logical formalisms used in
these planners provide only a simple repre-
sentation of time, as a sequence of states of
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Method: taxi-travel(x, y)
Task: travel(x, y)
Precond: short-distance(x, y)
Subtasks: get-taxi

ride(x, y)
pay-driver

Method: air-travel(x, y)
Task: travel(x, y)
Precond: long-distance(x, y)
Subtasks: get-ticket(a(x), a(y))

travel(x, a(x))
fly(a(x), a(y))
travel(a(y), y)

Method: get-ticket(x, y)
Task: travel(x, y)
Precond: short-distance(x, y)
Subtasks: find-flights(x, y)

select-flight(x, y, f)
buy-ticket(f)

Figure 8. HTN Methods for a Simple Travel-Planning Domain. 

In this example, the subtasks are to be done in the order that they appear.



the world s0 = the initial state, s1 = γ (s0 , a1), s2

= γ (s1 , a2), … where a1, a2, … are the actions
of a plan.

As an example, the planning problem of fig-
ure 5 is in a simple planning domain called the
Dock Worker Robots domain (Ghallab, Nau,
and Traverso 2004), which includes piles of
containers, robots that can carry containers to
different locations, and cranes that can put
containers onto robots or take them off of
robots. In this domain, suppose that the only
kind of goal that we have is to put various con-
tainers into various piles. Then the following
control rule may be useful: 

Don’t ever pick up a container from the top of
any pile p unless at least one of the containers
in p needs to be in another pile. 

Here is a way to write this rule in the temporal
logic used by TLPlan: 

■■ [top(p, x) ∧ ¬∃[y:in(y, p)] ∃[q: GOAL(in(y, q)]
(q ≠ p) ⇒ 〇 (¬∃[k:holding(k, x)]) ]

What this rule says, literally, is the following: 
In every state of the world, if x is at the top of p
and there are no y and q such that (1) y is in p,
(2) there’s a goal saying that y should be in q,
and (3) q ≠ p, then in the next state, no crane is
holding x. 

If a planner such as TLPlan reaches a state that
does not satisfy this rule, it will backtrack and
try a different direction in its search space.

Comparisons
The three types of planners — domain-inde-
pendent, domain-specific, and domain-config-
urable — compare with each other in the fol-
lowing respects (see table 1): (1) effort to
configure the planner for a new domain, (2)
performance in a given domain, and (3) cover-
age across many domains.

Effort to Configure the Planner for a New
Domain. Domain-specific planners require the
most effort to configure, because one must
build an entire new planner for each new
domain—an effort that may be quite substan-
tial. Domain-independent planners (provided,
of course, that the new domain satisfies the
restrictions of classical planning) require the
least effort, because one needs to write only
definitions of the basic actions in the domain.
Domain-configurable planners are somewhere
in between: one needs to write a domain
description but not an entire planner. 

Performance in a Given Domain. A domain-
independent planner will typically have the
worst level of performance because it will not
take advantage of any special properties of the
domain. A domain-specific planner, provided
that one makes the effort to write a good one,
will potentially have the highest level of per-
formance, because one can encode domain-
specific problem-solving techniques directly
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get-ticket(IAD, TLS)

travel(UMD, IAD)

fly(IAD, Toulouse)
travel(TLS, LAAS)

get-taxi
ride(TLS,Toulouse)
pay-driver

find-flights(IAD,TLS)
select-flight(IAD,TLS)
buy-ticket

get-taxi
ride(UMD, IAD)
pay-driver

get-ticket(BWI, TLS)

travel(UMD, BWI)
fly(BWI, Toulouse)
travel(TLS, LAAS)

find-flights(BWI,TLS)
select-flight(BWI,TLS)

buy-ticket
 

 BACKTRACK

travel(UMD, LAAS)

Figure 9. Backtracking Search to Find a Plan for Traveling from UMD to LAAS. 

The downward arrows indicate task decompositions; the upward ones indicate backtracking.



into the planner. A sufficiently capable
domain-configurable planner should have
nearly the same level of performance, because
it should be possible to encode the same
domain-specific problem-solving techniques
into the domain description that one might
encode into a domain-specific planner.10

Coverage across Many Domains. A domain-
specific planner will typically work in only one
planning domain, hence will have the least
coverage. One might think that domain-inde-
pendent and domain-configurable planners
would have roughly the same coverage—but in
practice, domain-configurable planners have
greater coverage. This is due partly to efficien-
cy and partly to expressive power.

As an example, let us consider the series of
semiannual International Planning Competi-
tions, which have been held in 1998, 2000,
2002, 2004, and 2006. All of the competitions
included domain-independent planners; and
in addition, the 2000 and 2002 competitions
included domain-configurable planners. In the
2000 and 2002 competitions, the domain-con-
figurable planners solved the most problems,
solved them the fastest, usually found better
solutions, and worked in many nonclassical
planning domains that were beyond the scope
of the domain-independent planners. 

A Cultural Bias
If domain-configurable planners perform bet-
ter and have more coverage than domain-inde-
pendent ones, then why were there no
domain-configurable planners in the 2004 and
2006 International Planning Competitions?
One reason is that it is hard to enter them in
the competition, because you must write all of
the domain knowledge yourself. This is too
much trouble except to make a point. The
authors of TLPlan, TALplanner, and SHOP2 felt
they had already made their point by demon-
strating the high performance of their planners
in the 2002 competition, hence they didn’t feel
motivated to enter their planners again.

So why not revise the International Planning
Competitions to include tracks in which the
necessary domain descriptions are provided to
the contestants? There are two reasons. The
first is that unlike classical planning, in which
PDDL11 is the standard language for represent-
ing planning domains, there is no standard
domain-description representation for do -
main-configurable planners. The second is that
there is a cultural bias against the idea. For
example, when Drew McDermott, in an invit-
ed talk at the 2005 International Conference
on Planning and Scheduling (ICAPS-05), pro-
posed adding an HTN-planning track to the
International Planning Competition, several
audience members objected that the use of
domain-specific knowledge in a planner some-
how constitutes “cheating.”

Whenever I’ve discussed this bias with
researchers in fields such as operations
research, control theory, and engineering, they
generally have found it puzzling. A typical
reaction has been, “Why would anyone not
want to use the knowledge they have about a
problem they’re trying to solve?” 

Historically, there is a very good reason for
the bias: it was necessary and useful for the
development of automated planning as a
research field. The intended focus of the field is
planning as an aspect of intelligent behavior, and
it would have been quite difficult to develop
this focus if the field had been tied too closely
to any particular application area or set of
application areas.

While the bias has been very useful histori-
cally, I would argue that it is not so useful any
more: the field has matured, and the bias is too
restrictive. Application domains in which
humans want to do planning and scheduling
typically have the following characteristics: a
dynamically changing world; multiple agents
(both cooperative and adversarial); imperfect
and uncertain information about the world;
the need to consult external information
sources (sensors, databases, human users) to get
information about the world; time durations,
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Up Front Human Effort Performance Coverage

Highest Domain Specific

Configurable

Lowest Domain Independent Domain Specific

Domain Specific

Configurable

Configurable

Domain Independent

Domain Independent

Table 1. Relative Comparisons of the Three Types of Planners.



time constraints, and overlapping actions;
durations, time constraints, asynchronous
actions; and numeric computations involving
resources, probabilities, geometric and spatial
relationships. Classical planning excludes all of
these characteristics. 

Trends
Fortunately, automated-planning research is
moving away from the restrictions of classical
planning. As an example, consider the evolu-
tion of the international planning competi-
tions: The 1998 competition concentrated
exclusively on classical planning. The 2000
competition concentrated primarily on classi-
cal planning, but one of its tracks (one of the
versions of the Miconic-10 elevator domain
[Koehler and Schuster 2000]) included some
nonclassical elements. The 2002 competition
added some elementary notions of time dura-
tions, resources. The 2004 competition added
inference rules and derived effects, plus a a new
track for planning in probabilistic domains.
The 2006 competition added soft goals, trajec-
tory constraints, preferences, plan metrics, and
constraints expressed in temporal logic. 

Another reason for optimism is the success-
ful use of automated planning and scheduling
algorithms in high-profile projects such as the
Remote Agent (on Deep Space 1) (Muscettola et
al. 1998) and the Mars Rovers (Estlin et al.
2003). Successes such as this create excitement
about building planners that work in the real
world; and applications such as the Mars
Rovers provide opportunities for synergy
between theory and applications: a better
understanding of real-world planning leads to
better theories, and better theories lead to bet-
ter real-world planners.

Finally, automated-planning research has
produced some very powerful techniques for
reducing the size of the search space, and these
techniques can be generalized to work in non-
classical domains. Examples include partial-
order planning, HTN planning, and planning
in nondeterministic and probabilistic domains. 

Partial-Order Planning. The planning algo-
rithms used in the Remote Agent and the Mars
Rovers are based on the plan-space planning
technique described in the Classical Planning
Algorithms subsection. Some of the primary
extensions are ways to reason about time, dura-
tions, and resources. 

HTN Planning. As I discussed earlier, HTN
planners have been used in a variety of appli-
cation domains. Although most HTN planners
have been influenced heavily by concepts from
classical planning, they incorporate capabili-

ties that go in various ways beyond the restric-
tions of classical planning.

Planning in Nondeterministic and Probabilistic
Domains. In probabilistic planning domains
such as Markov Decision Processes (Boutilier,
Dean, and Hanks 1996), the actions have mul-
tiple possible outcomes, with probabilities for
each outcome (see figure 10a). Nondeterminis-
tic planning domains (Cimatti et al. 2003) are
similar except that no probabilities are
attached to the outcomes (see figure 10b).

A series of recent papers have shown how to
extend domain-configurable planning tech-
niques to work in nondeterministic (Kuter et
al. 2005) and probabilistic (Kuter and Nau
2005) planning domains. In comparison with
previous algorithms for such domains, these
new algorithms exhibit substantial perform-
ance advantages—advantages analogous to the
ones for domain-configurable algorithms in
classical planning domains (see the Domain-
Configurable Planners section).

Directions for Growth
In my view, some of the more important direc-
tions for growth in the near future include
planning in multiagent environments, reason-
ing about time, dynamic external information,
acquiring domain knowledge, and cross-polli-
nation with other fields. I’ll discuss each of
these in greater detail in the following subsec-
tions.

Planning in Multiagent Environments
Automated planning research has traditionally
assumed that the planner is a monolithic pro-
gram that solves the problem by itself. But in
real-world applications, the planner is general-
ly part of a larger system in which there are
other agents, either human or automated or
both. When these agents interact with the
planner, it is important for the planner to rec-
ognize what those agents are trying to accom-
plish, in order to generate an appropriate
response. Examples of such situations include
mixed-initiative and embedded planning,
assisted cognition, customer service hotlines,
and computer games.

Reasoning about Time
Classical planning uses a trivial model of time,
consisting of a linear sequence of instanta-
neous states s0, s1, s2, …; and several temporal
logics do the same thing. A more comprehen-
sive model of time would include (1) time
durations for actions, overlapping actions, and
actions whose durations depend on the condi-
tions under which they are executed; (2)
resource assignments, and integrated plan-
ning/scheduling; (3) continuous change (for
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example, vehicle movement); and (4) tempo-
rally extended goals (for example, conditions
that must be maintained over time). 

A healthy amount of growth is already
occurring in this direction: for example, vari-
ous forms of temporal planning were included
in the last three International Planning Com-
petitions. But several things remain to be done:
for example, the PDDL language used in the
competitions does not yet allow actions whose
duration depends on the conditions under
which they are executed.

Dynamic Environments. In most automat-
ed-planning research, the information avail-
able is assumed to be static, and the planner
starts with all of the information it needs. In
real-world planning, planners may need to
acquire information from an information
source such as a web service, during planning
and execution. This raises questions such as
What information to look for? Where to get it?
How to deal with lag time and information
volatility? What if the query for information
causes changes in the world? If the planner
does not have enough information to infer all
of the possible outcomes of the planned
actions, or if the plans must be generated in
real time, then it may not be feasible to gener-
ate the entire plan in advance. Instead, it may

be necessary to interleave planning and plan
execution.

Some of these questions, I believe, are suffi-
ciently formalizable that a new track could be
developed for them in the International Plan-
ning Competitions.

Acquiring Domain Knowledge. At many
points in this article, I have emphasized the
benefits of using domain knowledge during
planning, but this leaves the problem of how
to acquire this domain knowledge—whether
through machine learning, human input, or
some combination of the two. This is one of
the least appreciated problems for automated-
planning research; but in my view it is one of
the most important: if we had good ways of
acquiring domain knowledge, we could make
planners hundreds of times more useful for
real-world problems.

Researchers are starting to realize the impor-
tance of this problem. For example, at ICAPS-
05 there was an informal “Knowledge Engi-
neering Competition” that was more of an
exposition than a competition: the partici-
pants exhibited GUIs for creating knowledge
bases and ways for planners to learn domain
knowledge automatically. 

A promising source of planning knowledge
is the immense collection of data that is now
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Desired outcome

Undesired outcome

Initial state
0.999

0.001Location 1                Location 2

Location 1                Location 2

Location 1                Location 2

Move to
location 2

Figure 10. A Simple Example of an Action with a Probabilistic Outcome.

If the robot tries to move to location 2, there is a 99.9 percent chance that it will do so successfully and a 0.1 percent chance it will get a
flat tire. An action with a nondeterministic outcome would be similar except that the probabilities would be omitted.



available on the web, which is likely to include
information about plans in many different
contexts. Can we datamine these plans from
the web? 

Cross-Pollination with Other Fields. Var-
ious kinds of planning are studied in many dif-
ferent fields, including computer games, game
theory, operations research, economics, psy-
chology, sociology, political science, industrial
engineering, systems science, and control the-
ory. Some of the approaches and techniques
developed in these fields have much in com-
mon. But it is difficult to tell what the rela-
tionships are because the research groups are
often nearly disjoint, with different terminolo-
gy, assumptions, and ideas of what’s impor-
tant. Provided that the appropriate bridges can
be made among these fields, there is tremen-
dous potential for cross-pollination. Markov
decision processes and computational cultural
dynamics are two examples. 

Markov decision processes (MDPs) are used
in operations research, control theory, and sev-
eral different subfields of AI including auto-
mated planning and reinforcement learning.
The MDP models used in automated-planning
research typically assume the rewards and
probabilities are known, but in reinforcement
learning (and often in OR and control theory)
they are unknown. MDPs in automated-plan-
ning research generally have finitely many
states with no good continuous approxima-
tions, hence use discrete optimization—but the
MDP models used in OR and control theory
include features such as infinitely many states,
continuous sets of states, actions and costs and
rewards that are differentiable functions, hence
use linear and nonlinear optimization tech-
niques. Many important problems are hybrids
of these differing MDP models, and it would be
interesting to combine and extend the tech-
niques from the various fields. 

We have instituted a new laboratory at the
University of Maryland called the Laboratory
for Computational Cultural Dynamics. It
brings together faculty in computer science,
political science, psychology, criminology, sys-
tems engineering, linguistics, and business.
The objective is to develop the theory and algo-
rithms needed for tools to support decision
making in cultural contexts, to help under-
stand how/why decision makers in various cul-
tures make decisions. The potential benefits of
such research include more effective cross-cul-
tural interactions, better governance when dif-
ferent cultures are involved, recovery from
conflicts and disasters, and improving quality
of life in developing countries. 

Conclusion
Automated-planning research has made great
strides in recent years. Historically, the field
was been limited by its focus on classical plan-
ning—but the scope of the field is broadening
to include a variety of issues that are important
for planning in the real world. As a conse-
quence, automated-planning techniques are
finding increased use in practical settings rang-
ing from space exploration to automated man-
ufacturing. Some of the most important areas
for future growth of the field include reasoning
about other agents, temporal planning, plan-
ning in dynamic environments, acquiring
domain knowledge, and the potential for cross-
pollination with other fields.

Notes
1. Austin Tate (MIT Encyclopedia of the Cognitive Sci-
ences, 1999).

2. Here we are using a Markov game model of a state-
transition function, which assumes that actions and
events cannot occur at the same time. To include cas-
es where actions and events could occur simultane-
ously, we would need γ : S × A × E → 2S. 

3. Policies have traditionally been defined to be total
functions rather than partial functions. But it is not
always necessary to know what to do in every state of
S, because the policy may prevent the system from
ever reaching some of the states.

4. Whether to use a plan, a policy, or a more general
structure, such as a conditional plan or an execution
structure, depends on what kind of planning prob-
lem we are trying to solve. In the above example, a
plan and a policy work equally well—but more gen-
erally, there are some policies that cannot be
expressed as plans (for example, in environments
where some of the actions have nondeterministic
outcomes) and some plans that cannot be expressed
as policies (for example, if we come to the same state
twice and want to do something different the second
time).

5. Note that for an HTN planner or control-rule plan-
ner to be domain-configurable, the planning engine
must be domain-independent. For example, the ver-
sion of Bridge Baron mentioned earlier was not
domain-configurable because its HTN planning
engine was specifically tailored for the game of
bridge.

6. Technically, the name of this assumption is inac-
curate, because the plan is intended precisely to
change the state of the system. What the name
means is that the system remains static unless con-
trolled transitions take place.

7. This has also been called STRIPS-style representa-
tion, after an early planning system that used a sim-
ilar representation scheme.

8. Anyone who wants to write a successor of Graph-
Plan may want to do so soon, before the supply of
three-letter acronyms runs out! 

9. In some HTN planners, goals can be specified as
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tasks such as “achieve(g)” where g is the goal. But as
shown in figure 8, tasks can also represent activities
that do not correspond to goals in the classical sense.

10. By analogy, in writing a computer system, one
can get the highest level of performance by writing
assembly code—but one can get nearly the same lev-
el of performance with much less effort by writing in
a high-level language.

11. See Drew McDermott’s web page, cs-www.cs.yale.
edu/homes/dvm.
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