
1 Project: Fast Trajectory Replanning for Computer Games

Figure 1: Total Annihilation by Cavedog

Consider characters in real-time computer games, such as Total Annihilation shown in Figure 1.
To make them easy to control, the player can click on known or unknown terrain, and the game
characters then move autonomously to the location that the player clicked on. They always
observe the terrain within their limited field of view and then remember it for future use but do
not know the terrain initially (due to “fog of war”).

We study a variant of this search problem in a gridworld where an agent has to move from its
current cell to the given cell of a non-moving target. Gridworlds are commonly used in real-time
computer games. They are discretizations of terrain into square cells that are either blocked
or unblocked. The initial cell of the agent is unblocked. The agent can move from its current
cell in the four main compass directions (east, south, west and north) to any adjacent cell, as
long as that cell is unblocked and still part of the gridworld. All moves take one time step for
the agent and thus have cost one. The agent always knows which (unblocked) cell it is in and
which (unblocked) cell the target is in. The agent knows that blocked cells remain blocked and
unblocked cells remain unblocked but does not know initially which cells are blocked. However,
it can always observe the blockage status of its four adjacent cells (which is its field of view) and
remember this information for future use. The objective of the agent is to reach the target.

A common-sense and tractable movement strategy for the agent is the following one: The agent
assumes that cells are unblocked unless it has already observed them to be blocked and uses
search with the freespace assumption, that is, always moves along a path that satisfies three
properties: 1) It is a path from the current cell of the agent to the target. 2) It is a path that the
agent does not know to be blocked and thus assumes to be unblocked (= a presumed unblocked
path). 3) It is a shortest such path. Whenever the agent observes additional blocked cells while
it follows its current path, it remembers this information for future use. If such cells block its
current path, then its current path might no longer be a shortest presumed unblocked path from
the current cell of the agent to the target. Then, the agent stops moving along its current path,
searches for another shortest presumed unblocked path from its current cell to the target, taking
into account the blocked cells that it knows about, and then moves along this path. The cycle
stops when the agent either reaches the target or determines that it cannot reach the target
because there is no presumed unblocked path from its current cell to the target and it is thus
separated from the target by blocked cells. In the former case, the agent reports that it reached
the target. In the latter case, it reports that it cannot reach the target. This movement strategy
has two desirable properties: 1) The agent is guaranteed to reach the target if it is not separated
from it by blocked cells. 2) The trajectory is provably short (but not necessarily optimal). 3)

3



21

D
C
B
A

3 4 5

E A T

21

D
C
B
A

3 4 5

E A T

Figure 2: First Example Search Problem (left) and Initial Knowledge of the Agent (right)

The trajectory is believable since the movement of the agent is directed toward the target and
takes the blockage status of all observed cells into account but not the blockage status of any
unobserved cell.

As an example, consider the gridworld of size 5 × 5 shown in Figure 2 (left). Black cells are
blocked, and white cells are unblocked. The initial cell of the agent is marked A, and the target
is marked T. The initial knowledge of the agent about blocked cells is shown in Figure 2 (right).
The agent knows black cells to be blocked and white cells to be unblocked. It does not know
whether grey cells are blocked or unblocked. The trajectory of the agent is shown in Figure 3.
The left figures show the actual gridworld. The center figures show the knowledge of the agent
about blocked cells. The right figures again show the knowledge of the agent about blocked
cells, except that all cells for which it does not know whether they are blocked or unblocked
are now shown in white since the agent assumes that they are unblocked. The arrows show
the shortest presumed unblocked paths that the agent attempts to follow. The agent needs to
find another shortest presumed unblocked path from its current cell to the target whenever it
observes its current path to be blocked. The agent finds such a path by finding a shortest path
from its current cell to the target in the right figure. The resulting paths are shown in bold
directly after they were computed. For example, at time step 1, the agent searches for a shortest
presumed unblocked path and then moves along it for three moves (first search). At time step
4, the agent searches for another shortest presumed unblocked path since it observed its current
path to be blocked and then moves along it for one move (second search). At time step 5, the
agent searches for another shortest presumed unblocked path (third search), and so on. When
the agent reaches the target it has observed the blockage status of every cell although this is not
the case in general.

1.1 Modeling and Solving the Problem

The state spaces of the search problems are simple: The states correspond to the cells, and the
actions allow the agent to move from cell to cell. Initially, all action costs are one. When the
agent observes a blocked cell for the first time, it increases the action costs of all actions that
enter or leave the corresponding state from one to infinity or, alternatively, removes the actions.
A shortest path in this state space then is a shortest presumed unblocked path in the gridworld.

Thus, the agent needs to search in state spaces in which action costs can increase or, alternatively,
actions can be removed. The agent searches for a shortest path in the state space whenever the
length of its current path increases (to infinity). Thus, the agent (of the typically many agents
in real-time computer games) has to search repeatedly until it reaches the target. It is therefore

4



Time Step 1
21

D
C
B
A

3 4 5

E A T

21

D
C
B
A

3 4 5

E A T

3

21

D
C
B
A

3 4 5

E A T

Time Step 2
21

D
C
B
A

3 4 5

E A T

21

D
C
B
A

3 4 5

E A T

3

21

D
C
B
A

3 4 5

E A T

Time Step 3
21

D
C
B
A

3 4 5

E
A

T

21

D
C
B
A

3 4 5

E
A

T

3

21

D
C
B
A

3 4 5

E
A

T

Time Step 4
21

D
C
B
A

3 4 5

E

A

T

21

D
C
B
A

3 4 5

E

A

T

3

21

D
C
B
A

3 4 5

E

A

T

Time Step 5
21

D
C
B
A

3 4 5

E

A

T

21

D
C
B
A

3 4 5

E

A

T

3

21

D
C
B
A

3 4 5

E

A

T

Time Step 6
21

D
C
B
A

3 4 5

E

A

T

21

D
C
B
A

3 4 5

E

A

T

3

21

D
C
B
A

3 4 5

E

A

T

Time Step 7
21

D
C
B
A

3 4 5

E

A

T

21

D
C
B
A

3 4 5

E

A

T

3

21

D
C
B
A

3 4 5

E

A

T

Time Step 8
21

D
C
B
A

3 4 5

E

A

T

21

D
C
B
A

3 4 5

E

A

T

3

21

D
C
B
A

3 4 5

E

A

T

Time Step 9
21

D
C
B
A

3 4 5

E

A

T

21

D
C
B
A

3 4 5

E

A

T

3

21

D
C
B
A

3 4 5

E

A

T

Time Step 10
21

D
C
B
A

3 4 5

E

A

T

21

D
C
B
A

3 4 5

E

A

T

3

21

D
C
B
A

3 4 5

E

A

T

Time Step 11
21

D
C
B
A

3 4 5

E

A

T

21

D
C
B
A

3 4 5

E

A

T

21

D
C
B
A

3 4 5

E

A

T

Time Step 12
21

D
C
B
A

3 4 5

E
A

T

21

D
C
B
A

3 4 5

E
A

T

21

D
C
B
A

3 4 5

E
A

T

Time Step 13
21

D
C
B
A

3 4 5

E A

21

D
C
B
A

3 4 5

E A

21

D
C
B
A

3 4 5

E A

Figure 3: Trajectory of the Agent for the First Example Search Problem

important for the searches to be as fast as possible to ensure that the agent responds quickly
and moves smoothly even on computers with slow processors in situations where the other
components of real-time computer games (such as the graphics and user interface) use most of
the available processor cycles. Moore’s law does not solve this problem since the number of
game characters of real-time computer games will likely grow at least as quickly as the processor
speed. In the following, we use A* to determine the shortest paths, resulting in Repeated A*.

5



1 procedure ComputePath()
2 while g(sgoal) > min

s
′∈OPEN(g(s′) + h(s′))

3 remove a state s with the smallest f-value g(s) + h(s) from OPEN;
4 CLOSED := CLOSED ∪ {s};
5 for all actions a ∈ A(s)
6 if search(succ(s, a)) < counter

7 g(succ(s, a)) := ∞;
8 search(succ(s, a)) := counter;
9 if g(succ(s, a)) > g(s) + c(s, a)

10 g(succ(s, a)) := g(s) + c(s, a);
11 tree(succ(s, a)) := s;
12 if succ(s, a) is in OPEN then remove it from OPEN;
13 insert succ(s, a) into OPEN with f-value g(succ(s, a)) + h(succ(s, a));

14 procedure Main()
15 counter := 0;
16 for all states s ∈ S
17 search(s) := 0;
18 while sstart $= sgoal

19 counter := counter + 1;
20 g(sstart) := 0;
21 search(sstart) := counter;
22 g(sgoal) := ∞;
23 search(sgoal) := counter;
24 OPEN := CLOSED := ∅;
25 insert sstart into OPEN with f-value g(sstart) + h(sstart);
26 ComputePath();
27 if OPEN = ∅
28 print “I cannot reach the target.”;
29 stop;
30 follow the tree-pointers from sgoal to sstart and then move the agent along the resulting path

from sstart to sgoal until it reaches sgoal or one or more action costs on the path increase;
31 set sstart to the current state of the agent (if it moved);
32 update the increased action costs (if any);
33 print “I reached the target.”;
34 stop;

Figure 4: Pseudocode of Repeated Forward A*

A* can search either from the current cell of the agent toward the target (= forward), resulting
in Repeated Forward A*, or from the target toward the current cell of the agent (= backward),
resulting in Repeated Backward A*.

1.2 Repeated Forward A*

The pseudocode of Repeated Forward A* is shown in Figure 4. (The minimum over an empty
set is infinity on Line 2.) It performs the A* searches in ComputePath(). A* is described in your
textbook and therefore only briefly discussed in the following, using the following notation that
can be used to describe general search problems rather than only search problems in gridworlds:
S denotes the finite set of states. sstart ∈ S denotes the start state of the A* search (which is
the current state of the agent), and sgoal ∈ S denotes the goal state of the A* search (which
is the state of the target). A(s) denotes the finite set of actions that can be executed in state
s ∈ S. c(s, a) > 0 denotes the action cost of executing action a ∈ A(s) in state s ∈ S, and
succ(s, a) ∈ S denotes the resulting successor state.

A* maintains five values for all states s that it encounters: a g-value g(s) (which is infinity
initially), which is the length of the shortest path from the start state to state s found by the A*
search and thus an upper bound on the distance from the start state to state s; an h-value (=
heuristic) h(s) (which is user-supplied and does not change), which estimates the goal distance
of state s (= the distance from state s to the goal state); an f-value f(s) := g(s) + h(s), which
estimates the distance from the start state via state s to the goal state; a tree-pointer tree(s)

6



(which is undefined initially), which is necessary to identify a shortest path after the A* search;
and a search-value search(s), which is described below.

A* maintains an open list (a priority queue which contains only the start state initially). A*
identifies a state s with the smallest f-value in the open list [Line 2]. If the f-value of state
s is no smaller than the g-value of the goal state, then the A* search is over. Otherwise, A*
removes state s from the open list [Line 3] and expands it. We say that it expands state s when
it inserts state s into the closed list (a set which is empty initially) [Line 4] and then performs
the following operations for all actions that can be executed in state s and result in a successor
state whose g-value is larger than the g-value of state s plus the action cost [Lines 5-13]: First,
it sets the g-value of the successor state to the g-value of state s plus the action cost [Line 10].
Second, it sets the tree-pointer of the successor state to (point to) state s [Line 11]. Finally, it
inserts the successor state into the open list or, if it was there already, changes its priority [Line
12-13]. (We say that it generates a state when it inserts the state for the first time into the open
list.) It then repeats the procedure.

Remember that h-values h(s) are consistent (= monotone) iff they satisfy the triangle inequalities
h(sgoal) = 0 and h(s) ≤ c(s, a)+ h(succ(s, a)) for all states s with s $= sgoal and all actions a that
can be executed in state s. Consistent h-values are admissible (= do not overestimate the goal
distances). A* searches with consistent h-values have the following properties. Let g(s) and f(s)
denote the g-values and f-values, respectively, after the A* search: First, A* searches expand all
states at most once each. Second, the g-values of all expanded states and the goal state after the
A* search are equal to the distances from start state to these states. Following the tree-pointers
from these states to the start state identifies shortest paths from the start state to these states
in reverse. Third, the f-values of the series of expanded states over time are monotonically
nondecreasing. Thus, it holds that f(s) ≤ f(sgoal) = g(sgoal) for all states s that were expanded
by the A* search (that is, all states in the closed list) and g(sgoal) = f(sgoal) ≤ f(s) for all states
s that were generated by the A* search but remained unexpanded (that is, all states in the
open list). Fourth, an A* search with consistent h-values h1(s) expands no more states than
an otherwise identical A* search with consistent h-values h2(s) for the same search problem
(except possibly for some states whose f-values are identical to the f-value of the goal state) if
h1(s) ≥ h2(s) for all states s.

Repeated Forward A* itself executes ComputePath() to perform an A* search. Afterwards, it
follows the tree-pointers from the goal state to the start state to identify a shortest path from
the start state to the goal state in reverse. Repeated Forward A* then makes the agent move
along this path until it reaches the target or action costs on the path increase [Line 30]. In
the first case, the agent has reached the target. In the second case, the current path might no
longer be a shortest path from the current state of the agent to the state of the target. Repeated
Forward A* then updates the current state of the agent and repeats the procedure.

Repeated Forward A* does not initialize all g-values up front but uses the variables counter and
search(s) to decide when to initialize them. The value of counter is x during the xth A* search,
that is, the xth execution of ComputePath(). The value of search(s) is x if state s was generated
last by the xth A* search (or is the goal state). The g-value of the goal state is initialized at
the beginning of an A* search [Line 22] since it is needed to test whether the A* search should
terminate [Line 2]. The g-values of all other states are initialized directly before they might be
inserted into the open list [Lines 7 and 20] provided that state s has not yet been generated by
the current A* search (search(s) < counter). The only initialization that Repeated Forward A*
performs up front is to initialize search(s) to zero for all states s, which is typically automatically
done when the memory is allocated [Lines 16-17].

7



Time Step 1

21

D
C
B
A

3 4 5

E 81012

76323

65434

7654

81246

88368

888810

10101010

1

3

01234

12345

23456

34567

45678

A T

Time Step 4

21

D
C
B
A

3 4 5

E 71323

67312

54401

43212

5432

71557

79357

77857

77779

9999

1

3

01234

12345

23456

34567

45678

A

T

g f
h

Figure 5: Repeated Forward A*

1.3 Implementation Details

Your version of Repeated A* should use a binary heap to implement the open list. The reason
for using a binary heap is that it is often provided as part of standard libraries and, if not, that
it is easy to implement. At the same time, it is also reasonably efficient in terms of processor
cycles and memory usage. You will get extra credit if you implement the binary heap from
scratch, that is, if your implementation does not use existing libraries to implement the binary
heap or parts of it. We give you this extra credit to allow you to make connections to other
classes and experience first hand how helpful the algorithms and data structure class that you
once took can be. You can read up on binary heaps, for example, in Cormen, Leiserson and
Rivest, Introduction to Algorithms, MIT Press, 2001.

Your version of Repeated A* should use the Manhattan distances as h-values. The Manhattan
distance of a cell is the sum of the absolute difference of the x coordinates and the absolute
difference of the y coordinates of the cell and the cell of the target. The reason for using the
Manhattan distances is that they are consistent in gridworlds in which the agent can move only
in the four main compass directions.

Your implementation of Repeated A* needs to be efficient in terms of processor cycles and
memory usage since game companies place limitations on the resources that trajectory planning
has available. Thus, it is important that you think carefully about your implementation rather
than use the pseudocode from Figure 4 blindly since it is not optimized. (For example, the closed
list in the pseudocode is shown only to allow us to refer to it later when explaining Adaptive
A*.) Make sure that you never iterate over all cells except to initialize them once before the
first A* search since your program might be used in large gridworlds. Do not determine which
cells are in the closed list by iterating over all cells (represent the closed list explicitly instead,
for example in form of a linked list). This is also the reason why the pseudocode of Repeated
Forward A* does not initialize the g-values of all cells at the beginning of each A* search but
initializes the g-value of a cell only when it is encountered by an A* search.

Do not use code written by others but test your implementations carefully. For example, make
sure that the agent indeed always follows a shortest presumed unblocked path if one exists and
that it reports that it cannot reach the target otherwise. Make sure that each A* search never
expands a cell that it has already expanded (= is in the closed list).

We now discuss the example search problem from Figure 2 (left) to give you data that you can
use to test your implementations. Figure 5 shows the first two searches of Repeated Forward A*
for the example search problem from Figure 2 (left). Figure 5 (left) shows the first A* search,

8



Time Step 1

21

D
C
B
A

3 4 5

E 01878

12367

23456

3456

218810

443810

666810

88810

1

3

21012

32323

43234

54345

65456

A T

Time Step 4

21

D
C
B
A

3 4 5

E 01

123

2347

34567

567

51

553

5587

77779

999

1

3

51323

43312

32401

43212

54323

A

T

g f
h

Figure 6: Repeated Backward A*

and Figure 5 (right) shows the second A* search. In our example problems, A* breaks ties
among cells with the same f-value in favor of cells with larger g-values and remaining ties in
an identical way. All cells have their user-supplied h-values in the lower left corner, namely the
Manhattan distances. Generated cells (= cells that are or were in the open list) also have their
g-values in the upper left corner and their f-values in the upper right corner. Expanded cells
(= cells that are in the closed list) are shown in grey. (The cell of the target does not count
as expanded since the A* search stops immediately before expanding it.) The arrows represent
the tree-pointers, which are necessary to identify a shortest path after the A* search. Similarly,
Figure 6 shows the first two searches of Repeated Backward A*, which searches from the target
to the current cell of the agent.

1.4 Improving Repeated Forward A*

Adaptive A* uses A* searches to repeatedly find shortest paths in state spaces with possibly
different start states but the same goal state where action costs can increase (but not decrease)
by arbitrary amounts between A* searches.1 It uses its experience with earlier searches in the
sequence to speed up the current A* search and run faster than Repeated Forward A*. It first
finds the shortest path from the current start state to the goal state according to the current
action costs. It then updates the h-values of the states that were expanded by this search to make
them larger and thus future A* searches more focused. Adaptive A* searches from the current
state of the agent to the target since the h-values estimate the goal distances with respect to a
given goal state. Thus, the goal state needs to remain unchanged, and the state of the target
remains unchanged while the current state of the agent changes. Adaptive A* can handle action
costs that increase over time.

To understand the principle behind Adaptive A*, assume that the action costs remain unchanged
to make the description simple. Assume that the h-values are consistent. Let g(s) and f(s)
denote the g-values and f-values, respectively, after an A* search from the current state of the
agent to the target. Let s denote any state expanded by the A* search. Then, g(s) is the distance
from the start state to state s since state s was expanded by the A* search. Similarly, g(sgoal)
is the distance from the start state to the goal state. Thus, it holds that g(sgoal) = gd(sstart),
where gd(s) is the goal distance of state s. Distances satisfy the triangle inequality:

1Start state refers to the start of the search, and goal state refers to the goal of the search. The start state of
the A* searches of Repeated Forward A*, for example, is the current state of the agent. The start state of the
A* searches of Repeated Backward A*, on the other hand, is the state of the target.

9



gd(sstart) ≤ g(s) + gd(s)

gd(sstart) − g(s) ≤ gd(s)

g(sgoal) − g(s) ≤ gd(s).

Thus, g(sgoal)−g(s) is an admissible estimate of the goal distance of state s that can be calculated
quickly. It can thus be used as a new admissible h-value of state s (which was probably first
noticed by Robert Holte). Adaptive A* therefore updates the h-values by assigning

h(s) := g(sgoal) − g(s)

for all states s expanded by the A* search. Let hnew(s) denote the h-values after the updates.

The h-values hnew(s) have several advantages. They are not only admissible but also consistent.
The next A* search with the h-values hnew(s) thus continues to find shortest paths without
expanding states that have already been expanded by the current A* search. Furthermore, it
holds that

f(s) ≤ gd(sstart)

g(s) + h(s) ≤ g(sgoal)

h(s) ≤ g(sgoal) − g(s)

h(s) ≤ hnew(s)

since state s was expanded by the current A* search. Thus, the h-values hnew(s) of all expanded
states s are no smaller than the immediately preceeding h-values h(s) and thus, by induction,
also all previous h-values, including the user-supplied h-values. An A* search with consistent
h-values h1(s) expands no more states than an otherwise identical A* search with consistent
h-values h2(s) for the same search problem (except possibly for some states whose f-values are
identical to the f-value of the goal state, a fact that we will ignore in the following) if h1(s) ≥ h2(s)
for all states s. Consequently, the next A* search with the h-values hnew(s) cannot expand more
states than with any of the previous h-values, including the user-supplied h-values. It therefore
cannot be slower (except possibly for the small amount of runtime needed by the bookkeeping
and h-value update operations), but will often expand fewer states and thus be faster. You can
read up on Adaptive A* in Koenig and Likhachev, Adaptive A* [Poster Abstract], Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
1311-1312, 2005.

Figure 7 shows the first two searches of Adaptive A* for the example search problem from Figure
2 (left). The number of cell expansions is smaller for Adaptive A* (20) than for Repeated
Forward A* (23), demonstrating the advantage of Adaptive A* over Repeated Forward A*.
Figure 7 (left) shows the first A* search of Adaptive A*. All cells have their h-values in the
lower left corner. The goal distance of the current cell of the agent is eight. The lower right
corners show the updated h-values after the h-values of all grey cells have been updated to
eight minus their g-values, which makes it easy to compare them to the h-values before the
h-value update in the lower left corners. Cells D2, E1, E2 and E3 have larger h-values than their
Manhattan distances to the target, that is, the user-supplied h-values. Figure 7 (right) shows
the second A* search of Adaptive A*, where Adaptive A* expands three cells (namely, cells E1,
E2 and E3) fewer than Repeated Forward A*, as shown in Figure 5 (right).

10



Time Step 1

21

D
C
B
A

3 4 5

E 81012

76323

65434

7654

81246

88368

888810

10101010

1876

1365

2345

01234

12345

23456

34567

45678

A T

Time Step 4

21

D
C
B
A

3 4 5

E 7123

67312

54401

43212

5432

7199

79377

77857

77779

9999

1

1365

2476

3456

01876

12365

23456

34567

45678

A

T

g f
hnewh

Figure 7: Adaptive A*

21

D
C
B
A

3 4 5

E A T

Figure 8: Second Example Search Problem

1.5 Experiments

Perform all experiments in the same 50 gridworlds of size 101 × 101. Generate their corridor
structure with a depth-first search (with random tie breaking) and then make 100 randomly
chosen blocked cells unblocked. See the program at idm-lab.org/gameai for details, which you
are free to use. Note that sometimes more than one shortest presumed unblocked path exists.
Different search algorithms might then move the agent along different shortest presumed un-
blocked paths (as seen in Figures 5 and 6), and the agent might observe different cells to be
blocked. Then, the shortest presumed unblocked paths and the trajectories of the agent can
start to diverge. This is okay since it is difficult to make all search algorithms find the same
shortest presumed unblocked path in case there are several of them.

2 Questions

Answer the following questions.

2.1 Question 0: Very Easy

Read the chapter in your textbook on uninformed and informed (heuristic) search and then read
the project description again. Make sure that you understand A* and the concepts of admissible
and consistent h-values. Explain why the first move of the agent for the example search problem
from Figure 8 is to the east rather than the north given that the agent does not know initially
which cells are blocked.

11


