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Abstract—Computational gaming requires the automatic gen-
eration of virtual opponents for different game levels. We have
turned to artificial evolution to automatically generate such
game players. In particular, we have used Genetic Programming
to automatically evolve computer programs for computer gam-
ing. With Genetic Programming, in theory, it is possible to gen-
erate any kind of program. The programs are not constrained as
much as they are in other computational learning approaches,
e.g. neural networks. We show how Genetic Programming
improved upon a manually crafted race car driver (proportional
controller). The open race car simulator TORCS was used to
evaluate the virtual drivers.

I. INTRODUCTION AND MOTIVATION

For computational games it is very important to be able
to create a diverse range of interesting opponents against
which a game player can measure its abilities. If the artificial
game player is too easy to outperform, the actual player may
quickly lose interest in the game. He may also lose interest,
if the virtual opponent is too good at playing the game. Such
virtual game players can of course be constructed manually.
However, we have turned to artificial evolution to automati-
cally generate game players using Genetic Programming [1],
[2], [3]. Humans, after all, are product of natural evolution
which created game playing ability in the first place. With
this contribution we show how artificial evolution was able
to improve upon a hand crafted virtual driver.

Genetic programming has already been used by several
researchers in the context of game playing. Reynolds [4]
evolved corridor following behavior for a vehicle driving in
a 2D world. He also used coevolution to evolve players for
the game of tag [5]. Siegel and Chaffee [6] evolved programs
which could play Tetris. Koza [1] and Rosca [7] evolved
programs which could control an agent in the Pac Man game.
Schloman and Blackford [8] evolved player strategies for
Quake 2. Anderson [9] evolved control algorithms for the
arcade game Asteroids. Additional 2D space game behaviors
were addressed by Jackson[10] and Francisco and dos Reis
[11], [12].

Ciesielski et al. [13] used Genetic Programming to evolve
different behaviors for the RoboCup tournament. Bajurnow
and Ciesielski [14] suggested to use layered learning to
evolve more complex behaviors. Corno et al. [15] evolved
assembly language programs for the game of corewar.
Crawford-Marks et al. [16] developed a Quidditch simulator
and coevolved teams for this game using the stack-based
programming language Push. Langdon and Poli [17] evolved
players for the game of pong which outperformed human
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Fig. 1.

Screenshot from the open source race car simulation TORCS.

players. Shichel et al. [18] evolved Robocode players which
finished third place in a competition of 27 players. Doherty
and O’Riordan [19] evolved team behaviors for combative
computer games. Agapitos et al. [20] used Genetic Program-
ming to evolve controller representations for a simulated car
racing game. They also compared the performance of the
evolved controllers to neural network controllers e.g. multi-
layer perceptrons [21]. Agapitos et al. found that the neural
network controllers performed better and generalized better.
Togelius et al. [22] experimented with multi-population com-
petitive coevolution within the same simulation environment.
Agapitos et al. [23] used multi-objective optimization to
jointly optimize different objectives such as distance traveled,
performance relative to competitors number of collisions
or speed. Tanev and Shimohara [24] used strongly typed
genetic programming to evolve parameters which are used to
control a remotely operated scale model of a car. The control
algorithm was first evolved in simulation and then ported to
the real car. Tanev and Shimohara report human competitive
performance of the optimized driver when compared to a
human controlled radio car.

II. TORCS — A VIRTUAL ENVIRONMENT FOR TESTING
RACE CAR DRIVERS

For our experiments, we have used the open source race
car simulation TORCS (torcs.sourceforge.net).
TORCS was created by Eric Espié and Christophe Guion-
neau. The current maintainer of the project is Bernhard
Wymann. The TORCS simulator provides 30 different tracks
on which driving abilities can be compared. A player can
choose one of 42 different cars and and he can also choose
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Fig. 2. The race car is equipped with 19 sensors .S; with ¢ € {0, ..., 18}
arranged around a half circle. Each sensor returns the distance in meters to
the track boundary. Distances larger than 100 are clipped to 100m.

among 50 opponents to race against. The virtual car can
be steered using a joystick, an actual steering wheel (if
supported), the mouse or the keyboard. The graphics output
is in 3D featuring lighting, smoke, skidmarks on the road and
glowing brake disks (Figure 1). Up to four different players
can race against each other using a split screen mode. It is
possible for users to develop their own robots which can be
used to drive a car by following the TORCS guidelines.

Loiacono et al. [25] have developed a race car client for the
WCCI 2008 competition. This car racing competition soft-
ware extends TORCS with a client-server architecture that
separates the development of car controllers from TORCS.
Participants in the competition can develop different robots
by simply modifying the client side. They do not have to fully
understand how TORCS works. The server-robot module is
integrated into TORCS. It is used to read out the current
state of the car’s sensors and also has access to additional
information from TORCS. Table I gives an overview about
the different sensors which are available from the car.

Data include the current orientation of the car along the
track («), the distance of the car measured from the start
line (distFromStart) , the total distance traveled (distRaced),
the time which has elapsed on the current track (fcurLap),
the time it took to complete the last lap (f1aswap) and the
current position in the race (racePos). Additional data which
is available is the total damage which has been incurred
to the car (damage), the remaining fuel (fuel), the current
gear (gear), the rounds per minute of the engine (rpm), the
velocity of the car in the direction of the track (v,), the
velocity of the car perpendicular to the direction of the track
(vy) as well as the velocity of the four wheels vypeer; With
i € {1,2,3,4}. Each car is also equipped with 19 distance
sensor which measure the distance from the car to the edge of
the track (S; with ¢ € {0, ..., 18}). Sensors are also available
to measure the distance to other cars in the race (O; with
ie{l,...,18}).

All of these data fields are periodically sent from the server
to the client. The client reacts to these data and tries to keep
the car on the track and finish the race as number one. The
car can be steered by specifying the position of the steering
wheel (steering). It can be accelerated by pushing the gas
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pedal (gas pedal). It is decelerated via the brake pedal (brake
pedal). The driver can also set the gear (gear). All effectors
are listed in Table II. The client sends the values for these
effectors to the server. This process continues until the robot
either finishes the race or the car leaves the race track.

We have built upon the client which was supplied for the
WCCI 2008 competition [27]. Loiacono et al. [26] summa-
rize the results of the WCCI 2008 competition. Apart from
a neural network controller, all other submissions were rule
based controllers. We try to evolve computer programs using
simulated evolution. In particular, we have used Genetic
Programming which allows us to evolve arbitrary computer
programs.

III. EVOLUTION OF VIRTUAL RACE CAR DRIVERS

Genetic Programming [1], [2], [3] is an automatic
method to automatically generate computer programs. For
our experiments we have used the Evolutionary Com-
putation in Java (ECJ) package developed by Luke et
al. (www.cs.gmu.edu/ eclab/projects/ecj). We
start off with a population of possible solutions to our
problem. Our problem is to complete the race in the shortest
amount of time. Therefore, each solution is a race car driver.
Given two race car drivers, the race car driver who has
finished the track in the shortest amount of time is clearly the
better driver. If both drivers steer off the track, the driver who
leaves the track last is the better driver. Given a population
of race car drivers of varying expertise (some may not be
able to drive successfully at all), we select the drivers which
perform best. The drivers are selected using the Darwinian
principle “survival of the fittest”. The successful drivers are
then modified slightly to create a new population of drivers
and the process is repeated. Over several generations, this
process causes the drivers to adapt to the problem (finishing
the race).

For our experiments we have used tree-based Genetic Pro-
gramming [1], [2]. With tree-based Genetic Programming,
programs are represented as trees. Each tree consists of
internal and external nodes. The external nodes are used to
provide input to the program. Each tree computes an output
based on the input supplied through the external nodes.
Since each car is basically controlled by turning the steering
wheel and by specifying whether it should accelerate or
decelerate we have decided that a car driving program, i.e. an
individual of the population, consists of two trees. The first
tree computes the steering direction of the steering wheel.
The second tree computes whether the car should accelerate
or decelerate. The gear is set automatically depending on
the rpm of the motor. Table III shows the set of terminal
symbols (external nodes) and the set of elementary functions
(internal nodes) which are used for the first tree. The set of
terminal symbols and elementary functions which are used
for the second tree are shown in Table IV. Steering and
the acceleration/deceleration can be controlled independently
since we use two separate trees for each. However, the
acceleration/deceleration tree has access to terminal symbols
vz (velocity of the car) and also the difference between the
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TABLE 1

SENSORS AVAILABLE FROM A SIMULATED CAR OF THE RACING SIMULATOR TORCS [26].

Name Range/Units Description
o [—m,m]/rad orientation of car relative to the current street orientation
distFromStart [0, co]/m distance from start line to current position of car measured along race track
distRaced [0, oo)/m total distance traveled since beginning of race
teurLap [0, c0)/s elapsed time on current lap
UastLap [0, o0] time elapsed for last lap
racePos 1,2, .. current rank of car in race
damage [0, co]/point total dame incurred to car
fuel [0, o0]/1 fuel left in fuel tank
gear {-1,0,1,...,6} current gear position (-1: backwards, 0: neutral)
rpm [2000—7000]/rpm  rounds per minute of the motor
dy [—1,1] displacement of car from center of track (normalized to 1)
Vg [—00, 0]/ %“ velocity of car in track direction
Vy [—o0, 0]/ kn—’:‘ velocity of car perpendicular to track direction
Vwheel [0, 00] /4 velocity of wheel i € {1,2,3,4}
S [0, 100]/m dist. to track boundary measured by 19 sensors ¢ € {0, ..., 18} as shown in Figure 2
O; [0,100]/m distance to opponents measured by 18 sensors i € {1, ..., 18}
TABLE II
ACTUATORS OF A SIMULATED CAR OF THE RACING SIMULATOR TORCS [26].
Name Range Description
gas pedal [0,1] acceleration
brake pedal [0,1] brake (0: don’t brake, 1: full brake)
steering [—1,1] orientation of steering wheel (-1: maximum left, 1: maximum right)
gear -1,0, 1,..., 6 shift into gear as specified
meta control 0,1 meta control flag (0: do nothing, 1: restart race)

SET OF TERMINAL SYMBOLS AND ELEMENTARY FUNCTIONS OF TREE 1 WHICH WAS USED TO STEER THE CAR.

TABLE III

Name Arguments ~ Description

ERCl1 0 ephemeral random constant with range [—1, 1]

ERCI150 0 ephemeral random constant with range [—150, 150]

cp 0 constant for hand-crafted proportional controller ¢, = —0.0234

LRO 0 average difference between left and right track sensors %(515 +S14) — %(53 + S4)
abs 1 absolute value of argument

+ 2 sum of both arguments

- 2 difference of both arguments

* 2 product of both arguments

/ 2 protected division

TABLE IV
SET OF TERMINAL SYMBOLS AND ELEMENTARY FUNCTIONS OF TREE 2 WHICH WAS USED TO OPERATE GAS AND BRAKES.
Name Arguments  Description
ERC1 0 ephemeral random constant with range [—1, 1]
ERC50 0 ephemeral random constant with range [—150, 150]
c1 0 first constant (used by hand-crafted gas/brake controller) ¢; = —0.022
c2 0 second constant (used by hand-crafted gas/brake controller) co = 100
LRI 0 difference between left and right front facing track sensors (Sg — S10)
Sg 0 front facing sensor
Vg 0 velocity of car
abs 1 absolute value of argument
+ 2 sum of both arguments
- 2 difference of both arguments
* 2 product of both arguments
/ 2 protected division
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steering angle

gas/brake pedal

(a) (b)

Fig. 3. Sample individual. Manually constructed using the set of terminal
symbols and the set of elementary functions shown in Table III and Table
IV. (a) tree which controls the steering angle of the car. (b) tree which
controls the gas/brake pedal.

front facing sensors Sg and Sio. Therefore it is possible
to evolve a correlated steering and acceleration/deceleration
behavior.

The idea behind the set of terminal symbols and the
set of elementary functions which were used for the two
trees is that evolution would build or improve a proportional
controller [28]. We evolve the error expression used by the
proportional controller. The goal of the steering controller is
that it should keep the car in the middle of the road. The car is
exactly in the middle of the road if the left and right sensors
show approximately the same measurements. In order to get
reliable measurements, we averaged the sensor data from Sy
and S14 to get a reading towards the right hand side of the
car. We averaged the sensor data from sensors S3 and Sy
to get a reading towards the left side of the car. Both are
subtracted from each other to obtain an error measure which
is available through a terminal symbol (LRO). Such an error
measure allows easy control of a vehicle to steer toward the
center of the track and is reminiscent of a Braitenberg vehicle
[29]. Braitenberg showed how crossed connections from the
sensors to the actuators can be used to steer a vehicle. The
other symbols (ephemeral constants and arithmetic functions)
were supplied to fully construct a proportional controller.
An ephemeral random constant is selected once the node is
generated from the allowed range and then stays constant
during the life of the node. The constant ¢, was useful for
a manually constructed controller that’s why we included it
in the set of elementary functions.

Figure 3(a) shows a tree which actually steers the car
and was constructed manually using the nodes from Table
III. This tree is evaluated in the car client. It receives its
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Fig. 4. Outline of the evolutionary algorithm which we used to evolve
race car drivers. Starting from an initial population of individuals, a new
generation of individuals is created by selecting highly fit individuals and
then applying the genetic operators mutation (Figure 5) and crossover
(Figure 6). This process is repeated until a maximum number of generations
has been reached.

input from the terminal node LRO and transforms this data
into an output value. This output value is used to provide
the angle of the steering wheel for the next iteration. For
each time step of the simulation this tree is evaluated and
issues the desired steering angle to the robot server. The
acceleration/deceleration command is issued in the same time
step but is computed by the second tree.

The nodes which are available to construct the tree to
accelerate or decelerate include sensors which are oriented
toward the front of the car. The function LR1 provides the
difference between the sensors Sg and S1¢. The frontal sensor
Sy is also included in the set of functions. In order to react
to the current speed of the car, the current velocity of the
car was also included (v,). We again included arithmetic
functions and constants which we thought would be useful.
Constants ¢y and co were used for a manually constructed
tree which controls the speed of the car as shown in Figure
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ﬁ Mutation %

Fig. 5. Mutation operator. A randomly selected node is replaced by a
newly generated subtree.

P

Fig. 6. Crossover operator. Two subtrees are exchanged between two
selected individuals.

3(b). The output of this tree is used to specify the value of
the desired acceleration (gas pedal) if the value returned is
positive. Otherwise the absolute value of the tree output is
used to specify the value of the brake (brake pedal).

The evolutionary algorithm which we use to evolve such
individuals is shown in Figure 4. The randomly generated
individuals of the first generation are generated using ramped
half and half initialization using a minimum depth of 2 and
a maximum depth of 6 [1]. Maximum depth of generated
trees during evolution is limited to 17. Each individual is
evaluated on five different tracks which are shown in Figure
7. We initially used only a single track to evolve race car
drivers. However, the drivers did not generalize very well
to unknown tracks. The first and fourth track feature a left
turn at the beginning of the race track. The second, third and
fifth track feature a right turn at the beginning of the track.
The five tracks also differ in the length of the straight part
of the track before the first turn shows up. The manually
constructed driver is able to stay on two of the tracks for
the allotted time steps. The fitness f of an individual is the
average of the performance f; with i € {1,2,3,4,5}. Each
individual is evaluated for 1000 time steps on each track. No
other drivers are present on the track during evolution. The
fitness on each track is given as

fi:dmax_d (1)

where d is the distance traveled along the track. The distance
is subtracted from the maximum possible distance which the
car can drive along the track within 1000 time steps and is
computed using dpa = tim’:;g’s% - Upmax Where Upmax 1S
the maximum velocity of the car.

We have used tournament selection with a tournament
size of 7. The best 3 individuals are always copied into
the next generation. Since the fitness may vary slightly
from one evaluation to the next, we maintain a running
average of all evaluations of an individual. The remaining
individuals of the next generation are filled by applying
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one of two operators (mutation and crossover) to selected
individuals. Each operator is applied with a probability of
50%. The mutation operator selects a random node of the
tree and generates a new random subtree. The crossover
operator selects two individuals and then exchanges two
random subtrees between these two individuals to generate
two offspring. Internal nodes are selected with a probability
of 90% and external nodes are selected with a probability of
10%.

IV. EXPERIMENTS AND RESULTS

We conducted four experiments. Each experiment starts off
with a population of 200 individuals. We first tried to improve
upon a manually constructed individual. For this experiment
1, we inserted the manually constructed individual which is
shown in Figure 3 into the first generation. We also tried to
evolve a successful controller from scratch (experiment 2).
We repeated these two experiments with an extended function
set (experiments 3 and 4). For these experiments we added
two elementary functions sum and last. The function sum
takes a single argument and sums up this argument over all
time steps. For each time step, the current sum is returned.
The function last stores the argument and returns the value
which was computed during a previous evaluation of the
node. By adding these two elementary functions which also
have side effects it is possible to evolve PID controllers in
experiments 3 and 4.

For each experiment, we conducted five runs with different
starting seeds. Figure 8 shows the fitness statistics. The
top four graphs show the minimum fitness for experiments
1-4. The bottom four graphs show the average fitness.
Experiments 1 and 3 created the best car drivers after 50
generations. For these experiments, the manually constructed
controller was added to the initial population. Artificial evo-
lution was able to considerably improve upon the manually
constructed controller. Evolution was not able to evolve a
comparable controller from scratch within the same number
of generations and a population size of 200 individuals. We
used a t-test to investigate statistical significance between the
four experiments. Starting from an entirely random popula-
tion made the problem more difficult (statistically significant
with a confidence of 94.7%). Making the set of elementary
functions more powerful by adding elementary functions
which also allow the evolution of PID controllers did not
help. There is no statistical significant difference between
experiments 1 and 3 and also not between 2 and 4.

The performance of the best evolved driver on tracks (a),
(c), and (e) is shown in Figure 9. The plots show the lateral
offset of the car along the track. The steering angle and the
desired acceleration (gas pedal) and the desired deceleration
(brake pedal) of the driver are also shown. The plots show the
performance of the best evolved driver of generation 0, 10,
20, 30, 40, and 50. The best car at generation O left the track
when evaluated on tracks (c), (d), and (e). The plots clearly
show the driver improved during the course of evolution. In
generation 50, the driver is able to keep the car on the track
and actually manages to drive in the center of the track for
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Fig. 8.
generation is shown in the bottom four graphs.

most of the simulation. Whenever the car drifts off to the
left, the evolved driver steers the car to the right and vice
versa. What can also be seen nicely in the plots showing
the performance of generation 50 is that the evolved driver
anticipates that the car is about to veer of the track. It actually
brakes slightly before the car is about the leave the center of
the track.

At the first generation, the best individual is able to drive
for a maximum distance of 498m (on track (b)). At the
end of evolution the best individual was able to cover a
distance of 642m for this same track. On track (e), the
best controller from generation O actually left the track after
only 66m. However, after generation 50, it was able to drive
for 624m on track (e) without leaving the track. The best
evolved controller uses only the current speed and the front
facing sensor (Sg) to control the acceleration of the car. It
is currently not able to compete with other more elaborate
manually constructed drivers. However such drivers usually
have access to knowledge about the track curvature. It may
be possible to evolve better controllers using a different
representation, e.g. by supplying the angle to the distance
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(e)

Track (a)-(e) were used to evaluate the performance of the evolved drivers. The starting position along the track is also shown.
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Fitness statistics for experiments 1-4. The minimum fitness for each generation is shown in the top four graphs. The average fitness for each

sensor with the largest response as suggested by Butz and
Lonneker [30].

Agapitos et al. [20] noted that evolved neural network
and genetic programming drivers tend to oscillate quickly
between different driving commands. In contrast to the
experiments by Agapitos, with our representation, it should
be noted that the evolved drivers show rather smooth steering
behavior on tracks (a)-(d). Agapitos et al. also compared
the performance of stateless and stateful controllers and
noted that they did not find any difference between these
two representations. In our experiments it seems that using
stateful controllers, i.e. those which included the functions
(sum and last) made the problem more difficult.

V. CONCLUSIONS

We have used Genetic Programming to evolve symbolic
expressions which provide an error measure to control a
virtual car (proportional controllers). Evolution was able to
improve upon a manually constructed controller. Each car
controller consisted of two symbolic expressions, the first
controlling the steering angle and the second controlling the
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Fig. 9. Performance of the best evolved race car driver on tracks (a), (c), and (e) shown in Figure 7.
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acceleration/deceleration of the car. The symbolic expression
were represented as trees which were constructed by the
Genetic Programming paradigm. In our experiments we
found that it was particularly important to evaluate a single
controller in different situations, i.e. on different tracks, in
order to obtain a reliable assessment of the quality of the
individual’s ability to drive the car. Individuals evaluated only
on single tracks tended to be overfitted to the track which
was used during evolution.
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