CAP6938-02 Plan, Activity, and Intent Recognition Lecture 10: **Sequential Decision-Making Under Uncertainty (part 1) MDPs and POMDPs** Instructor: Dr. Gita Sukthankar Email: gitars@eecs.ucf.edu

Reminder

- Turn-in questionnaire
- Homework (due Thurs):
 - 1 page describing the improvements that you plan to make to your project in the next half of the semester

Model: POMDP

- Applications?
- Strengths?
- Weaknesses?
- How does a POMDP differ from an HMM?

Model: POMDP

- Applications?
 - Human-robot interaction
 - Dialog management
 - Assistive technology
 - Agent interaction
- Strengths?
 - Integrates action selection directly with state estimation
- Weaknesses?
 - Intractable for real-world domains
- How does a POMDP differ from an HMM?
 - MDP and POMDP are for calculating optimal decisions from sequences of observations;
 - HMMs are for recognizing hidden state.from sequences of observations.
 - MDP and POMDP: actions and rewards

Markov Decision Processes

- Classical planning models:
 - logical representation of transition systems
 - goal-based objectives
 - plans as sequences
- Markov decision processes generalize this view
 - controllable, stochastic transition system
 - general objective functions (rewards) that allow tradeoffs with transition probabilities to be made
 - more general solution concepts (policies)

Markov Decision Processes

- An MDP has four components, S, A, R, Pr:
 - (finite) state set S (|S| = n)
 - (finite) action set A (|A| = m)
 - transition function Pr(s,a,t)
 - each Pr(s,a,-) is a distribution over S
 - represented by set of n x n stochastic matrices
 - bounded, real-valued reward function R(s)
 - represented by an n-vector
 - can be generalized to include action costs: R(s,a)
 - can be stochastic (but replacable by expectation)
- Model easily generalizable to countable or continuous state and action spaces

Transition Probabilities: Pr(s_i, a, s_j)

Prob. = 0.95

Transition Probabilities: Pr(s_i, a, s_k)

Reward Process

Assumptions

- Markovian dynamics (history independence)
 Pr(S^{t+1}|A^t,S^t,A^{t-1},S^{t-1},...,S⁰) = Pr(S^{t+1}|A^t,S^t)
- Markovian reward process
 Pr(R^t|A^t,S^t,A^{t-1},S^{t-1},...,S⁰) = Pr(R^t|A^t,S^t)
- Stationary dynamics and reward
 - $\Pr(S^{t+1}|A^t, S^t) = \Pr(S^{t'+1}|A^{t'}, S^{t'})$ for all t, t'
- Full observability
 - though we can't predict what state we will reach when we execute an action, once it is realized, we know what it is

Policies

- Nonstationary policy
 - π :S x T \rightarrow A
 - $\pi(s,t)$ is action to do at state s with t-stages-to-go
- Stationary policy
 - $\pi:S \to A$
 - $\pi(s)$ is action to do at state s (regardless of time)
 - analogous to reactive or universal plan
- These assume or have these properties:
 - full observability
 - history-independence
 - deterministic action choices
- MDP and POMDPs are methods for calculating the optimal lookup tables (policies).

Value of a Policy

- How good is a policy π? How do we measure "accumulated" reward?
- Value function V: $S \rightarrow \mathbb{R}$ associates value with each state (sometimes $S \times T$)
- $V_{\pi}(s)$ denotes value of policy at state s
 - how good is it to be at state s? depends on immediate reward, but also what you achieve subsequently
 - expected accumulated reward over horizon of interest
 - note $V_{\pi}(s) \neq R(s)$; it measures *utility*

Value of a Policy (con't)

- Common formulations of value:
 - Finite horizon n: total expected reward given π
 - Infinite horizon discounted: discounting keeps total bounded

Value Iteration (Bellman 1957)

- Markov property allows exploitation of DP principle for optimal policy construction
 - no need to enumerate $|A|^{Tn}$ possible policies
- Value Iteration

$$V^{0}(s) = R(s), \quad \forall s$$

$$V^{k}(s) = R(s) + \max_{a} \sum_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$$

$$\pi^{*}(s, k) = \arg\max_{s'} \Pr(s, a, s') \cdot V^{k-1}(s')$$

$$V^{k} \text{ is optimal k-stage-to-go value function}$$

Bellman backup

Value Iteration

 $\Pi^{\dagger}(s4) = \max \{ \blacksquare \blacksquare \}$

Value Iteration

 $V_1(s) := 0 \text{ for all } s$ t := 1 loop t := t + 1 $loop \text{ for all } s \in S \text{ and for all } a \in A$ $Q_t^a(s) := R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V_{t-1}(s')$ $V_t(s) := \max_a Q_t^a(s)$ end loop until $|V_t(s) - V_{t-1}(s)| < \epsilon$ for all $s \in S$

Complexity

- T iterations
- At each iteration |A| computations of n x n matrix times n-vector: O(|A|n³)
- Total O(T|A|n³)
- Can exploit sparsity of matrix: O(T|A|n²)

MDP Application: Electric Elves

- Calculating optimal transfer of control policy in an adjustable autonomy application
- Dynamically adjusts users' meetings
- State of world is known; future actions of users are unknown

Recognizing User Intent

MDP

POMDP

POMDPs

- Partially observable Markov Decision Process (POMDP):
 - a stochastic system $\Sigma = (S, A, P)$ as before
 - A finite set O of observations
 - $P_a(o|s)$ = probability of observation *o* in state *s* after executing action *a*
 - Require that for each *a* and *s*, $\sum_{o \text{ in } O} P_a(o|s) = 1$
- O models partial observability
 - The controller can't observe *s* directly; it can only observe *o*
 - The same observation *o* can occur in more than one state
- Why do the observations depend on the action a? Why do we have P_a(o/s) rather than P(o/s)?
 - This is a way to model *sensing actions*, which do not change the state but return information make some observation available (e.g., from a sensor)

Example of a Sensing Action

- Suppose there are a state s₁ action a₁, and observation
 o₁ with the following properties:
 - For every state s, $Pa_1(s|s) = 1$
 - a_1 does not change the state
 - $Pa_1(o_1/s_1) = 1$, and
 - $Pa_1(o_1/s) = 0$ for every state $s \neq s_1$
 - After performing a_1 , o_1 occurs if and only if we're in state s_1
- Then to tell if you're in state s_1 , just perform action a_1 and see whether you observe o_1
- Two states s and s' are *indistinguishable* if for every o and a, P_a(o/s) = P_a(o/s')

Belief States

- At each point we will have a probability distribution b(s) over the states in S
 - b(s) is called a *belief state* (our belief about what state we're in)
- Basic properties:
 - $0 \le b(s) \le 1$ for every s in S
 - $-\sum_{s \text{ in } S} b(s) = 1$
- Definitions:
 - $-b_a$ = the belief state after doing action *a* in belief state *b*
 - Thus $b_a(s) = P(\text{in } s \text{ after doing } a \text{ in } b) = \sum_{s' \text{ in } S} P_a(s/s') b(s')$
 - $b_a(o) = P(\text{observe } o \text{ after doing } a \text{ in } b)$ Marginalize over states = $\sum_{s \text{ in } S} P_a(o|s) b(s)$
 - $b_a^o(s) = P(\text{in } s \text{ after doing } a \text{ in } b \text{ and observing } o)$

Belief states are n-dimensional vectors representing the probability of being in every state.. SP2-25

Belief States (Continued)

- Recall that in general, P(x|y,z) P(y|z) = P(x,y|z)
- Thus
 - $P_a(o|s) b_a(s)$
 - = P(observe o after doing a in s) P(in s after doing a in b)
 - = *P*(in *s* and observe *o* after doing *a* in *b*)
- Similarly,
 - $b_a^{o}(s) b_a(o)$
 - = P(in s after doing a in b and observing o)
 - * *P*(observe *o* after doing *a* in *b*)
 - = *P*(in *s* and observe *o* after doing *a* in *b*)
- Thus $b_a^{o}(s) = P_a(o|s) b_a(s) / b_a(o)$ Formula for updating belief state
- Can use this to distinguish states that would otherwise be indistinguishable

Example

- Robot r1 can move between l1 and l2
 - move(r1,l1,l2)
 - move(r1,l2,l1)
- There may be a container c in location I2
 - in(c1,l2)
- *O* = {full, empty}
 - full: c1 is present
 - empty: c1 is absent
 - abbreviate full as f, and empty as e

Example (Continued)

- Neither "move" action returns useful observations
- For every state s and for a = either "move" action,
 - $P_{a}(f|s) = P_{a}(e|s) = P_{a}(f|s) = P_{a}(e|s) = 0.5$
- Thus if there are no other actions, then
 - s1 and s2 are indistinguishable
 - s3 and s4 are indistinguishable

Example (Continued)

- Suppose there's a sensing action see that works perfectly in location I2
 P_{see}(f|s4) = P_{see}(e|s3) = 1
 P_{see}(f|s3) = P_{see}(e|s4) = 0
- see does not work elsewhere

 $P_{\text{see}}(\mathbf{f}|\mathbf{s}1) = P_{\text{see}}(\mathbf{e}|\mathbf{s}1)$ $= P_{\text{see}}(\mathbf{f}|\mathbf{s}2) = P_{\text{see}}(\mathbf{e}|\mathbf{s}2) = 0.5$

- Then
 - s1 and s2 are still indistinguishable
 - s3 and s4 are now distinguishable

Modified Example

- Suppose we know the initial belief state is *b*
- Policy to tell if there's a container in I2:

$$-\pi = \{(b, move(r1, l1, l2)), (b', see)\}$$

Solving POMDPs

- Information-state MDPs
 - Belief states of POMDP are states in new MDP
 - Continuous state space
 - Discretise
- Policy-tree algorithms

Policy Trees

- Policy tree: an agent's non-stationary t-step policy
- Tree(a,T) create a new policy tree with action a at root and observation z=T(z)
- Vp vector for value function for policy tree p with one component per state
- Act(p) action at root of tree p
- Subtree(p,z) subtree of p after obs z
- Stval(a,z,p) vector for probability-weighted value of tree p after a,z

Application: Nursebot

- Robot assists elderly patients
- Model uncertainty about the user's dialog and position
- Exploit hierarchical structure to handle large state space

Value Functions

2-state

3-state

References

- Most slides were taken from Eyal Amir's course, CS 598, Decision Making under Uncertainty (lectures 12 and 13)
- L. Kaebling, M. Littman, and A. Cassandra, Planning and Acting in Partially Observable Stochastic Domains, Artificial Intelligence, Volume 101, pp. 99-134, 1998