CAP6938-02

Plan, Activity, and Intent Recognition

Lecture 10:
Sequential Decision-Making Under
Uncertainty (part 1)
MDPs and POMDPs

Instructor: Dr. Gita Sukthankar
Email: gitars@eecs.ucf.edu

Reminder

- Turn-in questionnaire
- Homework (due Thurs):
- 1 page describing the improvements that you plan to make to your project in the next half of the semester

Model: POMDP

- Applications?
- Strengths?
- Weaknesses?
- How does a POMDP differ from an HMM?

Model: POMDP

- Applications?
- Human-robot interaction
- Dialog management
- Assistive technology
- Agent interaction
- Strengths?
- Integrates action selection directly with state estimation
- Weaknesses?
- Intractable for real-world domains
- How does a POMDP differ from an HMM?
- MDP and POMDP are for calculating optimal decisions from sequences of observations;
- HMMs are for recognizing hidden state.from sequences of observations.
- MDP and POMDP: actions and rewards

Markov Decision Processes

- Classical planning models:
- logical representation of transition systems
- goal-based objectives
- plans as sequences
- Markov decision processes generalize this view
- controllable, stochastic transition system
- general objective functions (rewards) that allow tradeoffs with transition probabilities to be made
- more general solution concepts (policies)

Markov Decision Processes

- An MDP has four components, S, A, R, Pr:
- (finite) state set $S \quad(|S|=n)$
- (finite) action set A $(|A|=m)$
- transition function $\operatorname{Pr}(\mathrm{s}, \mathrm{a}, \mathrm{t})$
- each $\operatorname{Pr}(\mathrm{s}, \mathrm{a},-)$ is a distribution over S
- represented by set of $\mathrm{n} \times \mathrm{n}$ stochastic matrices
- bounded, real-valued reward function $R(s)$
- represented by an n-vector
- can be generalized to include action costs: $\mathrm{R}(\mathrm{s}, \mathrm{a})$
- can be stochastic (but replacable by expectation)
- Model easily generalizable to countable or continuous state and action spaces

System Dynamics

SP2-7

System Dynamics

Finite Action Space A

SP2-8

System Dynamics

Transition Probabilities: $\operatorname{Pr}\left(\mathrm{si}_{\mathrm{i}}, \mathrm{a}, \mathrm{s}_{\mathbf{j}}\right)$

System Dynamics

Transition Probabilities: $\operatorname{Pr}\left(\mathrm{si}_{\mathrm{i}}, \mathrm{a}, \mathrm{s}_{\mathrm{k}}\right)$

SP2-10

Reward Process

SP2-11

Assumptions

- Markovian dynamics (history independence)
$-\operatorname{Pr}\left(\mathrm{S}^{\mathrm{t}+1} \mid \mathrm{A}^{\mathrm{t}}, \mathrm{S}^{\mathrm{t}}, \mathrm{A}^{\mathrm{t}-1}, \mathrm{St}^{\mathrm{t}-1}, \ldots, \mathrm{~S}^{0}\right)=\operatorname{Pr}\left(\mathrm{S}^{\mathrm{t}+1} \mid \mathrm{A}^{\mathrm{t}}, \mathrm{S}^{\mathrm{t}}\right)$
- Markovian reward process
$-\operatorname{Pr}\left(R^{t} \mid A^{t}, S^{t}, A^{t-1}, S^{t-1}, \ldots, S^{0}\right)=\operatorname{Pr}\left(R^{t} \mid A^{t}, S^{t}\right)$
- Stationary dynamics and reward
$-\operatorname{Pr}\left(S^{t+1} \mid A^{t}, S^{t}\right)=\operatorname{Pr}\left(S^{t+1} \mid A^{t^{\prime}}, S^{t^{\prime}}\right)$ for all t, t^{\prime}
- Full observability
- though we can't predict what state we will reach when we execute an action, once it is realized, we know what it is

Policies

- Nonstationary policy
- $\pi: S \times T \rightarrow A$
$-\pi(s, t)$ is action to do at state s with t-stages-to-go
- Stationary policy
$-\pi: S \rightarrow A$
$-\pi(s)$ is action to do at state s (regardless of time)
- analogous to reactive or universal plan
- These assume or have these properties:
- full observability
- history-independence
- deterministic action choices
- MDP and POMDPs are methods for calculating the optimal lookup tables (policies).

Value of a Policy

- How good is a policy π ? How do we measure "accumulated" reward?
- Value function $V: S \rightarrow \mathbb{R}$ associates value with each state (sometimes $S \times T$)
- $\mathrm{V}_{\pi}(\mathrm{s})$ denotes value of policy at state s
- how good is it to be at state s ? depends on immediate reward, but also what you achieve subsequently
- expected accumulated reward over horizon of interest
- note $\mathrm{V}_{\pi}(\mathrm{s}) \neq \mathrm{R}(\mathrm{s})$; it measures utility

Value of a Policy (con't)

- Common formulations of value:
- Finite horizon n: total expected reward given π
- Infinite horizon discounted: discounting keeps total bounded

Value Iteration (Bellman 1957)

- Markov property allows exploitation of DP principle for optimal policy construction
- no need to enumerate $|A|^{T n}$ possible policies
- Value Iteration

Bellman backup

$$
V^{0}(s)=R(s), \quad \forall s
$$

$$
V^{k}(s)=R(s)+\max _{a} \sum_{s^{\prime}} \operatorname{Pr}\left(s, a, s^{\prime}\right) \cdot V^{k-1}\left(s^{\prime}\right)
$$

$\pi^{*}(s, k)=\arg \max \sum_{S^{\prime}} \operatorname{Pr}\left(s, a, s^{\prime}\right) \cdot V^{k-1}\left(s^{\prime}\right)$ a
Vk is optimal k -stage-to-go value function

Value Iteration

Value Iteration

SP2-18

Value Iteration

```
\(V_{1}(s):=0\) for all \(s\)
\(t:=1\)
loop
    \(t:=t+1\)
    loop for all \(s \in \mathcal{S}\) and for all \(a \in \mathcal{A}\)
        \(Q_{t}^{a}(s):=R(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} T\left(s, a, s^{\prime}\right) V_{t-1}\left(s^{\prime}\right)\)
        \(V_{t}(s):=\max _{a} Q_{t}^{a}(s)\)
    end loop
until \(\left|V_{t}(s)-V_{t-1}(s)\right|<\epsilon\) for all \(s \in \mathcal{S}\)
```


Complexity

- T iterations
- At each iteration $|A|$ computations of $n \times n$ matrix times n-vector: $\mathrm{O}\left(|A| \mathrm{n}^{3}\right)$
- Total $O(T|A| n 3)$
- Can exploit sparsity of matrix: $O\left(T|A| n^{2}\right)$

MDP Application: Electric Elves

- Calculating optimal transfer of control policy in an adjustable autonomy application
- Dynamically adjusts users' meetings
- State of world is known; future actions of users are unknown

Recognizing User Intent

MDP
POMDP

POMDPs

- Partially observable Markov Decision Process (POMDP):
- a stochastic system $\Sigma=(S, A, P)$ as before
- A finite set O of observations
- $P_{a}(o \mid s)=$ probability of observation o in state s after executing action a
- Require that for each a and $s, \sum_{o \text { in } o} P_{a}(o \mid s)=1$
- O models partial observability
- The controller can't observe s directly; it can only observe o
- The same observation o can occur in more than one state
- Why do the observations depend on the action a ? Why do we have $P_{a}(o \mid s)$ rather than $P(o \mid s)$?
- This is a way to model sensing actions, which do not change the state but return information make some observation available (e.g., from a sensor)

Example of a Sensing Action

- Suppose there are a state s_{1} action a_{1}, and observation O_{1} with the following properties:
- For every state $s, P a_{1}(s \mid s)=1$
- a_{1} does not change the state
$-P a_{1}\left(o_{1} \mid s_{1}\right)=1$, and $P a_{1}\left(o_{1} \mid s\right)=0$ for every state $s \neq s_{1}$
- After performing a_{1}, o_{1} occurs if and only if we're in state s_{1}
- Then to tell if you're in state s_{1}, just perform action a_{1} and see whether you observe o_{1}
- Two states s and s^{\prime} are indistinguishable if for every o and $a, P_{a}(o \mid s)=P_{a}\left(o \mid s^{\prime}\right)$

Belief states

- At each point we will have a probability distribution $b(s)$ over the states in S
- $b(s)$ is called a belief state (our belief about what state we're in)
- Basic properties:
$-0 \leq b(s) \leq 1$ for every s in S
$-\sum_{s \text { in } s} b(s)=1$
- Definitions:
$-b_{a}=$ the belief state after doing action a in belief state b
- Thus $b_{\mathrm{a}}(s)=P($ in s after doing a in $b)=\sum_{s^{\prime} \text { in } s} P_{a}\left(s \mid s^{\prime}\right) b\left(s^{\prime}\right)$
- $b_{\mathrm{a}}(o)=P$ (observe o after doing a in b) Marginalize over states

$$
=\sum_{s \text { in } s} P_{\mathrm{a}}(o \mid s) b(s)
$$

$-b_{a}{ }^{\circ}(s)=P$ (in s after doing a in b and observing o)
Belief states are n-dimensional vectors representing the probability of being in every state..

BeIIef states (sontinued)

- Recall that in general, $P(x \mid y, z) P(y \mid z)=P(x, y \mid z)$
- Thus

$$
\begin{aligned}
& P_{\mathrm{a}}(o \mid s) b_{\mathrm{a}}(s) \\
& \quad=P(\text { observe } o \text { after doing } a \text { in } s) P(\text { in } s \text { after doing } a \text { in } b) \\
& \quad=P(\text { in } s \text { and observe } o \text { after doing } a \text { in } b)
\end{aligned}
$$

- Similarly, $b_{a}{ }^{\circ}(s) b_{a}(o)$
$=P$ (in s after doing a in b and observing o)
* P (observe o after doing a in b)
$=P$ (in s and observe o after doing a in b)
- Thus $b_{a}{ }^{o}(s)=P_{a}(o \mid s) b_{a}(s) / b_{a}(o) \quad$ Formula for updating belief state
- Can use this to distinguish states that would otherwise be indistinguishable
belief state b

Example

- Robotr1 can move between I1 and I2
- move(r1,I1,I2)
- move(r1,l2,11)
- There may be a container c in location I2
- in(c1,l2)
- $O=\{$ \{full, empty $\}$
- full: c1 is present
- empty: c1 is absent
- abbreviate full as f, and empty as e

$$
a=\operatorname{move}(\mathrm{r} 1, \mathrm{l} 1, \mathrm{l} 2)
$$

belief state b_{a}

belief state b

Example (Continued)

- Neither "move" action returns useful observations
- For every state s and for a = either "move" action,
- $P_{\mathrm{a}}(\mathrm{f} \mid \mathrm{s})=P_{\mathrm{a}}(\mathrm{e} \mid \mathrm{s})=$ $P_{a}(f \mid s)=P_{a}(e \mid s)=0.5$
- Thus if there are no other actions, then
- s1 and s2 are indistinguishable
- s3 and s4 are indistinguishable

belief state b

Example (Continued)

- Suppose there's a sensing action see that works perfectly in location I2

$$
\begin{align*}
& P_{\text {see }}(\mathrm{f} \mid \mathrm{s} 4)=P_{\text {see }}(\mathrm{e} \mid \mathrm{s} 3)=1 \tag{in}\\
& P_{\text {see }}(\mathrm{f} \mid \mathrm{s} 3)=P_{\text {see }}(\mathrm{e} \mid \mathrm{s} 4)=0
\end{align*}
$$

- see does not work elsewhere

$$
\begin{aligned}
& P_{\text {see }}(\mathrm{f} \mid \mathrm{s} 1)=P_{\text {see }}(\mathrm{e} \mid \mathrm{s} 1) \\
& \quad=P_{\text {see }}(\mathrm{f} \mid \mathrm{s} 2)=P_{\text {see }}(\mathrm{e} \mid \mathrm{s} 2)=0.5
\end{aligned}
$$

$$
a=\operatorname{move}(\mathrm{r} 1, \mathrm{l} 1, \mathrm{l} 2)
$$

- Then
- s1 and s2 are still indistinguishable
- s3 and s4 are now distinguishable

belief state b

Example (Continued)

- By itself, see doesn't tell us the state with certainty

$$
\begin{aligned}
& -b_{\text {see }}(\mathrm{s} 3) \\
& \quad=P_{\text {see }}(\mathrm{e} \mid \mathrm{s} 3) \\
& \quad * b_{\text {see }}(\mathrm{s} 3) / b_{\text {see }}(\mathrm{e}) \\
& \quad=1 * 0.25 / 0.5=0.5
\end{aligned}
$$

- If we first do $a=$ move $(11, I 2)$ then do see, this will tell the state with certainty
- Let $b^{\prime}=b_{a}$
$-b_{\text {see }}{ }^{\mathrm{e}}{ }^{(\mathrm{s}} \mathrm{s}^{(\mathrm{s})}$
$=P_{\text {see }}(\mathrm{els} 3)$
${ }^{*} b_{\text {see }}^{\prime}(\mathrm{s} 3) / b_{\text {see }}^{\prime}(\mathrm{e})$
$=1$ * $0.5 / 0.5=1$

$$
a=\operatorname{move}(\mathrm{r} 1, \mathrm{l} 1, \mathrm{l} 2)
$$

belief state $b^{\prime}=b_{a}$

belief state b

Modified Example

- Suppose we know the initial belief state is b

- Policy to tell if there's a container in I2:
$-\pi=\{(b$, move(r1,I1,|2)), (b^{\prime}, see) $\}$

$$
a=\operatorname{move}(\mathrm{r} 1, \mathrm{I} 1, \mathrm{l} 2)
$$

belief state $b^{\prime}=b_{a}$

Solving POMDPs

- Information-state MDPs
- Belief states of POMDP are states in new MDP
- Continuous state space
- Discretise
- Policy-tree algorithms

Policy Trees

- Policy tree: an agent's non-stationary t-step policy
- Tree (a, T) - create a new policy tree with action a at root and observation $\mathrm{z}=\mathrm{T}(\mathrm{z})$
- $\quad V p$ - vector for value function for policy tree p with one component per state
- Act(p) - action at root of tree p
- Subtree (p, z) - subtree of p after obs z
- Stval(a,z,p) - vector for probability-weighted value of tree pafter a,z

Application: Nursebot

- Robot assists elderly patients
- Model uncertainty about the user's dialog and position
- Exploit hierarchical structure to handle large state space

Value Functions

References

- Most slides were taken from Eyal Amir's course, CS 598, Decision Making under Uncertainty (lectures 12 and 13)
- L. Kaebling, M. Littman, and A. Cassandra, Planning and Acting in Partially Observable Stochastic Domains, Artificial Intelligence, Volume 101, pp. 99-134, 1998

