CAP6938-02 Plan, Activity, and Intent Recognition

Lecture 6:

Introduction to Graphical Models (Part 1)

Instructor: Dr. Gita Sukthankar Email: gitars@eecs.ucf.edu Schedule: T & Th 1:30-2:45pm Location: CL1 212 Office Hours (HEC 232): T 3-4:30pm, Th 10-11:30am

Reminder

- Homework:
 - Start project implementation
 - Hand in 1-2 page specification of how your implementation is going to work (Sept 13)
 - Be as detailed as possible about the input and output of the system
 - Timeline:
 - This week: specification
 - Sept 20: demo your system (no writeup)
 - Sept 27: present evaluation of your system

Instances of graphical models

Graphical Model Definitions

- Representation: compactly representing joint probability distributions
- Inference: determine hidden states of a system given noisy observations
- Learning: how to estimate parameters and structure of the model
- Decision theory: how to convert belief into action

Outline (today)

Part 1: Representation

- Fundamentals
- Bayes nets
- D-separation
- Dynamic Bayes nets
 - Hidden Markov models
- Commonly used variations

Future Topics

- Part 2: Exact inference in DBNs; learning parameters from data
- Part 3: Approximate inference in DBNs
- Part 4: Undirected graphical models (Markov Random Fields)
- Part 5: Determining model structure from data (emerging research area)
- Part 6: Decision-making models (MDP, POMDP)

Applications

- Too numerous to name....
- Bayes nets:
 - User interfaces
 - Medical diagnosis
 - Fault diagnosis
- Dynamic Bayes nets:
 - Speech recognition (hidden Markov models)
 - Command line interfaces
 - Motion tracking and prediction

Bayes Net Toolbox

- Available at sourceforge: http://bnt.sourceforge.net
- Developed by Kevin Murphy
- Open-source collection of Matlab functions for inference and learning of (directed) graphical models
- Over 100,000 hits and about 30,000 downloads since May 2000
- About 43,000 lines of code (of which 8,000 are comments)

Probabilities

Probability distribution $P(X|\xi)$ • X is a random variable

Discrete

Continuous

 ξ is background state of information

@ 1997 Jack Breese, Microsoft Corporation and Daphne Koller, Stanford University. All rights reserved.

Discrete Random Variables

Finite set of possible outcomes

$$X \in \{x_1, x_2, x_3, \dots, x_n\}$$

8

(8) 1997 Jack Breese, Microsoft Corporation and Daphne Koller, Stanford University. All rights reserved.

Continuous Random Variable

- Probability distribution (density function) over continuous values
 - $X \in [0,10] \qquad P(x) \ge 0$
 - $\int^{10} P(x) dx = 1 \qquad P(x)$

 $P\left(5 \le x \le 7\right) = \int P(x) \, dx$

© 1997 Jack Breese, Microsoft Corporation and Daphne Koller, Stanford University. All rights reserved.

More Probabilities

Conditional $P(x \mid y) \equiv P(X = x \mid Y = y)$

• Probability that X=x given we know that Y=yJoint

$$P(x, y) \equiv P(X = x \land Y = y)$$

Probability that both X=x and Y=y

(8) 1997 Jack Breese, Microsoft Corporation and Daphne Koller, Stanford University. All rights reserved.

Rules of Probability

Product Rule P(X,Y) = P(X | Y)P(Y) = P(Y | X)P(X)

Marginalization

 $P(Y) = \sum_{i=1}^{n} P(Y, x_i)$ X binary: $P(Y) = P(Y, x) + P(Y, \overline{x})$

© 1997 Jack Breese, Microsoft Corporation and Daphne Koller, Stanford University. All rights reserved.

Bayes Rule P(H,E) = P(H|E)P(E) = P(E|H)P(H)

 $P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$

 $P(h|e) = \frac{P(e|h)P(h)}{P(e,h) + P(e,\overline{h})}$ $= \frac{P(e|h)P(h)}{P(e|h)P(h) + P(e|\overline{h})P(\overline{h})}$

© 1997 Jack Breese, Microsoft Corporation and Daphne Koller, Stanford University. All rights reserved.

Bayesian Networks

 $S \in \{no, light, heavy\}$ (Smoking)

 $C \in \{none, benign, malignan\}$

lancer

Smoking=	по	light	heavy
P(C=none)	0.96	0.88	0.60
P(C=benign)	0.03	0.08	0.25
P(C=malig)	0.01	0.04	0.15

(8) 1997 Jack Breese, Microsoft Corporation and Daphne Koller, Stanford University. All rights reserved.

Marginalization

P(Smoke)

17

$S \Downarrow C \Rightarrow$	none	benign	malig	total
no	0.768	0.024	0.008	.80
light	0.132	0.012	0.006	.15
heavy	0.035	0.010	0.005	.05
total	0.935	0.046	0.019	

P(Cancer)

© 1997 Jack Breese, Microsoft Corporation and Daphne Koller, Stanford University. All rights reserved.

Independence

Age and Gender are independent.

P(A,G) = P(G)P(A)

$$\begin{split} P(A|G) &= P(A) \quad A \perp G \\ P(G|A) &= P(G) \quad G \perp A \end{split}$$

$$\begin{split} P(A,G) &= P(G|A) \ P(A) = P(G)P(A) \\ P(A,G) &= P(A|G) \ P(G) = P(A)P(G) \end{split}$$

20

© 1997 Jack Breese, Microsoft Corporation and Daphne Koller, Stanford University. All rights reserved.

Independence in directed graphs

- A path between A and B is blocked if there is a node C such that:
 - The path has converging arrows at C and none of C or its descendants are given.
 - The path does not have converging arrows at C and C is given.
- If all paths between them are blocked, then A and B are independent. This kind of separation is called d-separation.

Conditional Independence

Smoking

Cancer is independent of Age and Gender given Smoking.

 $P(C|A,G,S) = P(C|S) \quad C \perp A, G \mid S$

© 1997 Jack Breese, Microsoft Corporation and Daphne Koller, Stanford University. All rights reserved.

General Product (Chain) Rule for Bayesian Networks

$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | Pa_i)$

 $Pa_i = parents(X_i)$

© 1997 Jack Breese, Microsoft Corporation and Daphne Koller, Stanford University. All rights reserved.

26

Why are Bayes nets useful?

- Graph structure supports:
 - Modular representation of knowledge
 - Local, distributed algorithms for inference and learning
 - Intuitive (possibly causal) interpretation
- Factored representation may have exponentially fewer parameters than full joint $P(X_1,...,X_n) =>$
 - lower sample complexity (less data for learning)
 - lower time complexity (less time for inference)

What is a Bayes (belief) net? Compact representation of joint probability

Pearl, 1988

Inference

- Posterior probabilities
 - Probability of any event given any evidence
- Most likely explanation Explaining away effect
 - Scenario that explains evidence
- Rational decision making
 - Maximize expected utility
 - Value of Information
- Effect of intervention
 Causal analysis

Ce Burglary Radio Alarm

Figure from N. Friedman

A real Bayes net: Alarm

Domain: Monitoring Intensive-Care Patients

• 37 variables MINVOLSET • 509 parameters KINKEDTUBE PULMEMBOLUS INTUBATION VENTMACH DISCONNECT ...instead of 2^{37} SHUNT VENTLUN VENITUB PRES MINOVL FIO2 VENTALV ANAPHYLAXIS **PVSAT** ARTCO2 EXPCO2 INSUFFANEST SAO2 TPR LVFAILURE **HYPOVOLEMIA** CATECHO LVEDVOLUME STROEVOLUME HISTORY ERRBLOWOUTPUT HR ERRCAUTER PCWP CO CVP HRFK HRBP 25

Figure from N. Friedman

Dealing with time

- In many systems, data arrives sequentially
- Dynamic Bayes nets (DBNs) can be used to model such time-series (sequence) data
- Special cases of DBNs include
 - State-space models
 - Hidden Markov models (HMMs)

DBNs are a kind of graphical model

- In a graphical model, nodes represent random variables, and (lack of) arcs represents conditional independencies.
- Directed graphical models = Bayes nets = belief nets.
- DBNs are Bayes nets for dynamic processes.
- Informally, an arc from X_i to X_j means X_i "causes" X_j. (Graph must be acyclic!)

Example BN: Hidden Markov Model (HMM)

$P(X_{1:T}, Y_{1:T}) = P(X_1)P(Y_1|X_1)$ $P(X_2|X_1)P(Y_2|X_2)\dots$

HMM state transition diagram

- Nodes represent states.
- There is an arrow from i to j iff A(i, j) > 0.

HMM represented as a DBN

- This graph encodes the assumptions
 - $Y_t \perp Y_{t'}|X_t$ and $X_{t+1} \perp X_{t-1}|X_t$ (Markov)
- Shaded nodes are observed, unshaded are hidden.
- Structure and parameters repeat over time.

DBNs vs HMMs

- An HMM represents the state of the world using a single discrete random variable, X_t ∈ {1,...,K}.
- A DBN represents the state of the world using a set of random variables, X⁽¹⁾_t,...,X^(D)_t (factored/ distributed representation).
- A DBN represents P(X_t|X_{t-1}) in a compact way using a parameterized graph.
- ⇒ A DBN may have exponentially fewer parameters than its corresponding HMM.
- ⇒ Inference in a DBN may be exponentially faster than in the corresponding HMM.

State-space model (SSM)/ Linear Dynamical System (LDS)

 $p(Y_t|X_t) = \mathcal{N}(Y_t; BX_t, R)$

34

The 3 main tasks for HMMs

- Computing likelihood: $P(y_{1:t}) = \sum_i P(X_t = i, y_{1:t})$
- Viterbi decoding (most likely explanation): arg max_{x1:t} P(x1:t|y1:t)
- Learning: $\hat{\theta}_{ML} = \arg \max_{\theta} P(y_{1:T}|\theta)$, where $\theta = (A, B, \pi)$.
 - Learning can be done with Baum-Welch (EM).
 - Learning uses inference as a subroutine.
 - Inference (forwards-backwards) takes $O(TK^2)$ time, where K is the number of states and T is sequence length.

Other Types of HMMs

Auto-regressive HMM

@`@`@`@

Trigram models

Hidden Semi-Markov Models

Coupled HMMs

References

- J. Breese and D. Koller, Bayesian Networks and Decision-Theoretic Reasoning for Artificial Intelligence
- K. Murphy, Tutorial on DBNs
- K. Murphy, Graphical Models and BNT