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Plan, Activity, and Intent
Recognition

Lecture 6:
Introduction to Graphical Models (Part 1)

Instructor: Dr. Gita Sukthankar
Email: gitars@eecs.ucf.edu
Schedule: T & Th 1:30-2:45pm
Location: CL1 212

Office Hours (HEC 232):
\ T 3-4:30pm, Th 10-11:30am /




Reminder

= Homework:
= Start project implementation
* Hand in 1-2 page specification of how your
Implementation is going to work (Sept 13)

» Be as detailed as possible about the input and output
of the system

* Timeline:
» This week: specification
= Sept 20: demo your system (no writeup)
= Sept 27: present evaluation of your system
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Graphical Model Definitions

Representation: compactly representing joint
probabllity distributions

Inference: determine hidden states of a system
given noisy observations

Learning: how to estimate parameters and
structure of the model

Decision theory: how to convert belief into
action



Outline (today)

Part 1: Representation
* Fundamentals
= Bayes nets
= D-separation
= Dynamic Bayes nets
* Hidden Markov models
= Commonly used variations



Future Topics

Part 2: Exact inference in DBNs; learning
parameters from data

Part 3: Approximate inference in DBNs

Part 4: Undirected graphical models (Markov
Random Fields)

Part 5: Determining model structure from data
(emerging research area)

Part 6: Decision-making models (MDP, POMDP)




Applications

= TOO humerous to name....

= Bayes nets:
= User interfaces
= Medical diagnosis
= Fault diagnosis

= Dynamic Bayes nets:
= Speech recognition (hidden Markov models)

= Command line interfaces
*= Motion tracking and prediction



Bayes Net Toolbox

Available at sourceforge:
http://bnt.sourceforge.net

Developed by Kevin Murphy

Open-source collection of Matlab functions for
Inference and learning of (directed) graphical
models

Over 100,000 hits and about 30,000 downloads
since May 2000

About 43,000 lines of code (of which 8,000 are
comments)



Probabilities

Probability distribution P(X|<&)
Y18 a random varnable
Discrete
Continuous

& 18 background state of information

& 1997 hck Breece, Mioosoft Corporation atd Daphew Eoller, Stand ord Unerercity. A1 rights e serwre d.



Discrete Random Variables

Fumuite set of possible outcomes

Xelx x4 . x

M _1'.

P(x)>0

SV (2) =1

F=d

X binary: P(x)+ P(x)=1

& 1997 hck Breece, Mioosoft Corporation atd Daphew Eoller, Stand ord Unerercity. A1 rights e serwre d.



Continuous Random Variable

Probability distribution (density function)
over contimious values
X <lo10] Plx)=0

100
[ P(x)dx =1 P(x)
(]

ﬁi‘?&'&a
P(S5=<x<T7)= }P(.ﬂr)n’r ‘5}_‘
3

& 1997 hck Breece, Mioosoft Corporation atd Daphew Eoller, Stand ord Unerercity. A1 rights e serwre d.




More Probabilities

Conditional
P(x|y)= P(X =¥|Y = y)

Probability that X=x given we know that =y

JTomt
P(x.v)=P(X =xAY =)

Probability that both Y=y and Y=y

& 1997 hck Breece, Mioosoft Corporation atd Daphew Eoller, Stand ord Unerercity. A1 rights e serwre d.
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Rules of Probability

Produet Rule
PX Y= PX | YIPCY)—P(Y1 XIPLX)
Margmalization
P(Y )= E Pl x.)
i=1
X binary: P(Y)=PUF,x)+ P(¥,5)

& 1997 hck Breece, Mioosoft Corporation atd Daphew Eoller, Stand ord Unerercity. A1 rights e serwre d.
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Bayes Rule
P(H.E)=P(H |E)P(E)=P(E |H)P(H)

P(e|h)P(h)

Ple)=——— =
P(e,h)+ P(e.h)

i P(e|h)P(h)
P(e| h)P(h)+ P(e| h)P(h)

& 1997 hck Breece, Mioosoft Corporation atd Daphew Eoller, Stand ord Unerercity. A1 rights e serwre d.
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Bayesian Networks

S e {no. light, he avy} Eﬁn&iﬁg — > '};jfc;r;gg;;f

P(S=no) 0.80| C < {none benign malignant
P(S=light) |0.15
P(S=heavy) [0.05

Smokine=\no |licht |heavy
P(C=none) 1096 |[0.88 |[0.60
P(C=benien) 10.03 |0.08 [0.25
P(C=malig) |0.01 [0.04 |0.15

& 1997 hck Breece, Mioosoft Corporation atd Daphew Eoller, Stand ord Unerercity. A1 rights e serwre d. -5




Marginalization

SU C= |none |benign |malig | total
1o 0.768 0.024] 0.008 80
light 0.132] 0.012| 0.006 15 - P(Smoke)
heavy 0.035 0.010; 0.005 05

total| 0.935 0.046f 0019 ®

p A
o
P{Cancer)

& 1997 hck Breece, Mioosoft Corporation atd Daphew Eoller, Stand ord Unerercity. A1 rights e serwre d. 17



Independence

Age and Gender are
independent.

PiA Gl = P(GiPyA)

PA|lG) =PA A1G
PiGl4) = PIG) G1A

PA.G) = P(G|A) P(A) = P(G)P(A)
PiA,G) = P(A\G) P(G) = P(A)P(G)

& 1997 hck Breece, Mioosoft Corporation atd Daphew Eoller, Stand ord Unerercity. A1 rights e serwre d. 0



Independence In directed graphs

= A path between A and B is blocked if there Is a
node C such that:

= The path has converging arrows at C and none of C
or its descendants are given.

* The path does not have converging arrows at C and C
IS given.
= |f all paths between them are blocked, then A

and B are independent. This kind of separation
IS called d-separation.
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Conditional Independence

C'ancer 1s mdependent
of Age and Gender
given Smoking.

PiClA.G S =PC|S) ClAG|S
& 1997 hck Breece, Mioosoft Corporation atd Daphew Eoller, Stand ord Unerercity. A1 rights e serwre d.
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General Product (Chain) Rule
for Bayesian Networks

P 8 | THek [ Pa)
i=1

Pa =parents(X)

& 1997 hck Breece, Mioosoft Corporation atd Daphew Eoller, Stand ord Unerercity. A1 rights e serwre d.
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Why are Bayes nets useful?

- Graph structure supports:
- Modular representation of knowledge
- Local, distributed algorithms for inference and learning
- Intuitive (possibly causal) interpretation

- Factored representation may have exponentially
fewer parameters than full joint P(X,,...,X,) =>

- lower sample complexity (less data for learning)

- lower time complexity (less time for inference)

21



What Is a Bayes (belief) net?

Compact representation of joint probability
distributions via conditional independence

Family of Alarm

Qualitative part:

Directed acyclic graph
(DAG)

* Nodes - random vars.
* Edges - direct influence

Together:
Define a unique distribution
In a factored form

Quantitative part:

Set of conditional
probability distributions
P(B,E,AC,R)=P(BP(EP(A|B.EYPR|EP(C | A 22

Figure from N. Friedman



Conditional probability distributions

(CPDS

« Each node specifies a
distribution over its values given
Its parents values P(X; | Xpai)

e Full table needs 2°-1=31

E | B P(A|E,B)
parameters, BN needs 10 TS IR
e|Dl02 |08
e|bl09 |01
f’(l?,l?,fq,}{,cjz e |D]o.01]|0099
31
= P(B) P(E|B) P(A|B, B) P(R|A, B, E) P(C|R, A, B, E)
1 2 4 8 Y
= P(lB) P(lE) P(Alf, EZf(glEZP(§|AZ

Pearl, 1988



Inference

Posterior probabilities
— Probability of any event given any evidence

Most likely explanation  Explaining away effect
— Scenario that explains evidence II Il

Rational decision making

— Maximize expected utility
— Value of Information

Effect of intervention
— Causal analysis

Figure from N. Friedman



A real Bayes net: Alarm

Domain: Monitoring Intensive-Care Patients
e 37 variables

Figure from N. Friedman



Dealing with time

e |n many systems, data arrives sequentially

 Dynamic Bayes nets (DBNSs) can be used to
model such time-series (sequence) data

» Special cases of DBNs include

— State-space models
— Hidden Markov models (HMMs)
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DENs are a kKind of graphical model

¢ In a graphical model, nodes represent random varnables, and
(lack of) arcs represents conditional independencies.
e Directed graphical models = Bayes nets = belief nets.

¢ DENs are Bayes nets for dynamic processes.

e Informally, an arc from X; to X; means X; “causes’ X,.
(Graph must be acyclic!)



Kinds of iI'IthI"EI'IEE Tor DENs

filtermz [ PO | w(1:))
T

prediction _t BX(t+H) | y(1:1)
Rt

fixed-lag — PX(t-L) | y(1:t)]

smoothing T..L.u

: i T
e ﬂ:gljh?al T_ PCX(f) | y(1:T))
(offline)



Example BN: Hidden Markov
Model (HMM)

Hidden states
eg. words

Observations
eg. sounds

O—0-G
© 00

P(X1.7,Y1.1) = P(X1)P(Y1|X1)
P(X2|X1)P(Y2|X2) ...



CPDs for HMMs

.........................
Ny
y

365

a11 a12 ai3s
O aoo aon3
0 0 a33

. A=state transition matrix

Parameter tyeing

T
P(X1.p, Y1.7) = P(X1)P(Y1|X1) [ P(Xe|X—1)P(Yi| X¢)
t=2
Transition matrix P(Xt — j‘Xt—l — 7,) — A(Z,])
Observation matrix P(Y;j p— ]‘Xt — 7,) — B(Z,])

Initial state distribution P(X]_ — ’L)

(i)




HMM state transition diagram

e Nodes represent states.

e There is an arrow from i to j iff A(4,j) = 0.

0.9



HMM represented as a DEN

==~
» ® ® ®

e« [his graph encodes the assumptions

tL Yu|Xe and Xy 1 Xy 4| X (Markov)

¢ Shaded nodes are observed, unshaded are hidden.

¢ Structure and parameters repeat over time.



DENs vs HMMs

An HMM represents the state of the world using a single
discrete random vanable, X; € {1,... ,K}.

A DEN represents the state of the world using a set of ran-
dom wariables, _Ji';:l},_ __,_JE'!.':‘D} (factored/ distributed

representation).

A DEN represents FP(X;X;_q) In a compact way using a
parameternzed graph.

A DEN may have exponentially fewer parameters than its

corresponding HM M.

Inference in a DEN may be exponentially faster than in the
corresponding HM M.



State-space model (SSM)/
Linear Dynamical System (LDS)

4®—® “True” state

Q 65 65 Noisy observations

p(Xi|Xi—1) = N(Xp; AXy_1,Q)

p(Y:|Xy) = N(Yy, BXt, R) .



The 3 main tasks for HMMs

o Computing likelihood: P(yq1.:) = Y P(X: = 1, y71-¢)
e Viterbi decoding (most likely explanation): aramaxzy., P(z1-¢ly1-¢)
e Learning: @y = arg maxg P(yy-7|8), where 8 = (A, B, 7).

— Learning can be done with Baum-Welch (EM).
— Learning uses inference as a subroutine.

— Inference (forwards-backwards) takes O(TK?) time, where
KI5 the number of states and T is sequence length.



Other Types of HMMs

@
Auto-regressive HMM Trigram models

Hidden Semi-Markov Models
Coupled HMMs
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