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CAP6938-02
Plan, Activity, and Intent Recognition

Lecture 7:
Introduction to Graphical Models:

Part 2 (Exact Inference)

Instructor: Dr. Gita Sukthankar
Email: gitars@eecs.ucf.edu
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Reminder
• Homework:

– Tuesday: In-class demonstration of system
• Calendar:

– Sept 25: in-class demo and presentation (no 
writeup)

– Oct 4: Exam 1
– Oct 11: System evaluation writeup
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Question

• What is inference?
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Graphical Model Definitions

• Representation: compactly representing 
joint probability distributions

• Inference: determine hidden states of a 
system given noisy observations

• Learning: how to estimate parameters and 
structure of the model

• Decision theory: how to convert belief into 
action
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Inference (state estimation)
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Inference

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Earthquake Burglary

AlarmRadio

Call

P(E=t|C=t)=0.1
P(B=t|C=t) = 0.7

C=t



SP2-8

Inference
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Inference
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Inference
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CPDs for HMMs

Y1 Y3

X1 X2 X3

Y2

Transition matrix

Observation matrix

Initial state distribution

B

Aπ

Parameter tying 

1 2 3

A=state transition matrix
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Question

• Why do we need multiple types of graph 
structures?
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Other HMM Variants

CoupledFactorial
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• Posterior probabilities of Query given Evidence
– Marginalize out Nuisance variables
– Sum-product

• Most Probable Explanation (MPE)/ Viterbi
– max-product

• “Marginal Maximum A Posteriori (MAP)”
– max-sum-product

Inference tasks
Nuisance variable=hidden node that we don’t care about but that we don’t
know the value for
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Outline

• Exact inference
– Brute force enumeration
– Variable elimination algorithm
– Loopy graphs
– Forwards-backwards algorithm
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Brute force enumeration
• We can compute

in O(KN) time, where K=|Xi|

• By using BN, we can represent joint in O(N) space

B E

A

J M
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Enumeration tree

Russell & Norvig (E and A are nuisance variables)
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Enumeration tree contains 
repeated sub-expressions
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Outline

• Exact inference
– Brute force enumeration
– Variable elimination algorithm
– Loopy graphs
– Forwards-backwards algorithm
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Variable/bucket elimination

• Push sums inside products (generalized 
distributive law)

• Carry out summations right to left, storing 
intermediate results (factors) to avoid 
recomputation (dynamic programming)

Kschischang01,Dechter96
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VarElim: basic operations

• Pointwise product

• Summing out
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Variable elimination
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Variable elimination

Russell & Norvig
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Outline

• Exact inference
– Brute force enumeration
– Variable elimination algorithm
– Loopy graph
– Forwards-backwards algorithm



SP2-25

VarElim on loopy graphs
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Let us work right-to-left, eliminating variables, and adding arcs to ensure
that any two terms that co-occur in a factor are connected in the graph
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Complexity of VarElim

• Time/space for single query = O(N Kw+1) for N 
nodes of K states, where w=w(G, π) = width  
of graph induced by elimination order π

• w* = argminπ w(G,π) = treewidth of G
• Thm: finding an order to minimize treewidth is 

NP-complete
• Does there exist a more efficient exact 

inference algorithm?

Yannakakis81
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Summary so far

• Brute force enumeration O(KN) time,
O(N KC) space (where C=max clique size)

• VarElim O(N Kw+1) time/space
– w = w(G,π) = induced treewidth

• Exact inference is #P-complete
– Motivates need for approximate inference
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Treewidth

PCWP CO
HRBP

HREKGHRSAT

ERRCAUTERHRHISTORY

CATECHOL

SAO2 EXPCO2

ARTCO2

VENTALV

VENTLUNG VENITUBE

DISCONNECT

MINVOLSET

VENTMACHKINKEDTUBEINTUBATIONPULMEMBOLUS

PAP SHUNT

MINOVL

PVSAT

PRESS

INSUFFANESTHTPR

LVFAILURE

ERRBLOWOUTPUTSTROEVOLUMELVEDVOLUME

HYPOVOLEMIA

CVP

BP

Low treewidth High tree width

Chains

Trees (no loops)

N=nxn grid

Loopy graphs

W* = 1

W* = #parents

W* = O(n) = O(p N)

W* = NP-hard to find

Arnborg85
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Graph triangulation
• A graph is triangulated (chordal, perfect) if it has no 

chordless cycles of length > 3.
• To triangulate a graph, for each node Xi in order π, 

ensure all neighbors of Xi form a clique by adding fill-in 
edges; then remove Xi
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Golumbic80
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Finding an elimination order
• The size of the induced clique depends on the 

elimination order.
• Since this is NP-hard to optimize, it is common 

to apply greedy search techniques: Kjaerulff90

• At each iteration, eliminate the node that would 
result in the smallest
– Num. fill-in edges [min-fill]
– Resulting clique weight [min-weight] (Weight of clique 

= product of number of states per node in clique)
• There are some approximation algorithms Amir01
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Outline

• Exact inference
– Brute force enumeration
– Variable elimination algorithm
– Loopy graph
– Forwards-backwards algorithm
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What’s wrong with VarElim
• Often we want to query all hidden nodes.
• VarElim takes O(N2 Kw+1) time to compute 

P(Xi|xe) for all (hidden) nodes i.
• There exist message passing algorithms that 

can do this in O(N Kw+1) time.
• Later, we will use these to do approximate 

inference in O(N K2) time, indep of w.

Y1 Y3

X1 X2 X3

Y2
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Repeated variable elimination 
leads to redundant calculations

Y1 Y3

X1 X2 X3

Y2

O(N2 K2) time to compute all N marginals
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Forwards-backwards algorithm

Y1:t-1 Yt+1:N

Xt Xt
Xt+1

Yt

Forwards prediction Local evidence Backwards prediction

(Use dynamic programming to compute these)

Rabiner89,etc



SP2-35

Forwards algorithm (filtering)

Y1:t-1

Xt Xt

Yt
Use the Markov
assumptions
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Backwards algorithm

Yt+2:N

Xt Xt
Xt+1

Yt+1

Xt+2



SP2-37

Forwards-backwards algorithm

• Forwards

• Backwards

• Combine

α24

X24X1 X12…
α1

…
α12

β24β12β1

Backwards messages independent of forwards messages

O(N K2) time to compute all N marginals, not O(N2 K2)



SP2-38
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