CAP6938-02

Plan, Activity, and Intent Recognition

Lecture 7:
Introduction to Graphical Models:
Part 2 (Exact Inference)

Instructor: Dr. Gita Sukthankar
Email: gitars@eecs.ucf.edu

Reminder

- Homework:
- Tuesday: In-class demonstration of system
- Calendar:
- Sept 25: in-class demo and presentation (no writeup)
- Oct 4: Exam 1
- Oct 11: System evaluation writeup

Question

- What is inference?

Graphical Model Definitions

- Representation: compactly representing joint probability distributions
- Inference: determine hidden states of a system given noisy observations
- Learning: how to estimate parameters and structure of the model
- Decision theory: how to convert belief into action

Kinds of inference for DBNs

Inference (state estimation)

SP2-7

SP2-8
Inference

$$
P(B=t \mid C=t)=0.7
$$

Explaining away effect

CPD for HMM

Transition matrix $P\left(X_{t}=j \mid X_{t-1}=i\right)=A(i, j)$
Observation matrix

$$
P\left(Y_{t}=j \mid X_{t}=i\right)=B(i, j)
$$

Initial state distribution

$$
P\left(X_{1}=i\right)=\pi(i)
$$

Question

- Why do we need multiple types of graph structures?

Other HMM Variants

Figure 7: A factorial HMM with 3 hidden chains.

Figure 9: A coupled HMM with 3 chains.

Factorial
Coupled

Nuisance variable=hidden node that we don't care about but that we don't know the value for

Inference tasks

- Posterior probabilities of Query given Evidence
- Marginalize out Nuisance variables
- Sum-product
$P\left(X_{Q} \mid X_{E}=x_{e}\right)=\frac{\sum_{x_{n}} P\left(X_{Q}, x_{n}, x_{e}\right)}{\sum_{x_{q}} \sum_{x_{n}} P\left(x_{q}, x_{n}, x_{e}\right)}$
- Most Probable Explanation (MPE)/ Viterbi
- max-product

$$
x_{q}^{*}=\arg \max _{x_{q}} P\left(x_{q} \mid x_{e}\right)=\arg \max _{x_{q}} P\left(x_{q}, x_{e}\right)
$$

- "Marginal Maximum A Posteriori (MAP)"
- max-sum-product

$$
x_{q}^{*}=\arg \max _{x_{q}} P\left(x_{q} \mid x_{e}\right)=\arg \max _{x_{q}} \sum_{x_{n}} P\left(x_{q}, x_{n}, x_{e}\right)
$$

Outline

- Exact inference
- Brute force enumeration
- Variable elimination algorithm
- Loopy graphs
- Forwards-backwards algorithm

Brute force enumeration

- We can compute $P\left(X_{Q} \mid x_{e}\right)=\sum_{x_{n}} P\left(X_{Q}, x_{n}, x_{e}\right)$ in $\mathrm{O}\left(\mathrm{K}^{\mathrm{N}}\right)$ time, where $\mathrm{K}=\left|\mathrm{X}_{\mathrm{i}}\right|$

$$
\begin{aligned}
P(b \mid j, m) & =\frac{P(b, j, m)}{P(j, m)}=\frac{P(b, j, m)}{\sum_{b^{\prime}} P\left(b^{\prime}, j, m\right)} \\
& =\alpha P(b, j, m) \\
& =\alpha \sum_{e} \sum_{a} P(b, e, a, j, m)
\end{aligned}
$$

- By using BN, we can represent joint in $\mathrm{O}(\mathrm{N})$ space

$$
P(b \mid j, m)=\alpha \sum_{e} \sum_{a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a)
$$

Enumeration tree

Enumeration tree contains

 repeated sub-expressions

$$
P(b \mid j, m)=\alpha \sum_{e} \sum_{a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a)
$$

Outline

- Exact inference
- Brute force enumeration
- Variable elimination algorithm
- Loopy graphs
- Forwards-backwards algorithm

Variable/bucket elimination

- Push sums inside products (generalized distributive law)
- Carry out summations right to left, storing intermediate results (factors) to avoid recomputation (dynamic programming)

$$
\begin{aligned}
P(b \mid j, m) & =\alpha \sum_{e} \sum_{a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a) \\
& =\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)
\end{aligned}
$$

VarElim: basic operations

- Pointwise product
$f_{1}(a, b) \times f_{2}(b, c)=f_{12}(a, b, c)$
- Summing out

$$
\begin{aligned}
& \sum_{c} f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) \\
& =f_{1}(a, b) \sum_{c} f_{4}(b, c, d) \\
& =f_{1}(a, b) f_{5}(b, d)
\end{aligned}
$$

Variable elimination

$$
\begin{aligned}
P(b \mid j, m) & =\alpha \underbrace{P(b)}_{B} \sum_{e} \underbrace{P(e)}_{E} \sum_{a} \underbrace{P(a \mid b, e)}_{A} \underbrace{P(j \mid a)}_{J} \underbrace{P(m \mid a)}_{M} \\
& =\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) F_{M}(A) \\
& =\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) F_{J}(a) F_{M}(a) \\
& =\alpha P(b) \sum_{e} P(e) \sum_{a} F_{A}(a, b, e) F_{J}(a) F_{M}(a) \\
& =\alpha P(b) \sum_{e} P(e) F_{\bar{A} J M}(b, e) \text { sum out } \mathrm{A} \\
& =\alpha P(b) \sum_{e} F_{E}(e) F_{\bar{A} J M}(b, e) \\
& =\alpha P(b) F_{\overline{E A} J M}(b) \text { sum out } \mathrm{E}
\end{aligned}
$$

Variable elimination

```
function Elmmination-Ask( }X,\mathbf{e},bn)\mathrm{ returns a distribution over }
    inputs: }X\mathrm{ , the query variable
            e, evidence specified as on event
            bn, a belief network specifying joint distribution }\mathbf{P}(\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}
    factors }\leftarrow[]; vars \leftarrow-REverse(Vars[bn]
    for each var in vars do
        factors }\leftarrow[MAKE-FACTOR(var, e)|factors
        if var is a hidden variable then factors }\leftarrow\mathrm{ Sum-OUT(var, factors)
    return Normalize(Ponntwise-Product(factors))
```


Outline

- Exact inference
- Brute force enumeration
- Variable elimination algorithm
- Loopy graph
- Forwards-backwards algorithm

VarElim on loopy graphs

Let us work right-to-left, eliminating variables, and adding arcs to ensure that any two terms that co-occur in a factor are connected in the graph

$$
\begin{aligned}
P\left(x_{1} \mid x_{6}^{*}\right) & \propto P\left(x_{1}\right) \sum_{x_{2}} P\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} P\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} P\left(x_{4} \mid x_{2}\right) \sum_{x_{5}} P\left(x_{5} \mid x_{3}\right) \sum_{x_{6}^{*}} P\left(x_{6}^{*} \mid x_{2}, x_{5}\right) \\
& =P\left(x_{1}\right) \sum_{x_{2}} P\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} P\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} P\left(x_{4} \mid x_{2}\right) \sum_{x_{5}} \underbrace{P\left(x_{5} \mid x_{3}\right) f_{6}\left(x_{2}, x_{5}\right)}_{x_{2}, x_{3}, x_{5}} \\
& =P\left(x_{1}\right) \sum_{x_{2}} P\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} P\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} P\left(x_{4} \mid x_{2}\right) \sum_{x_{5}} f\left(x_{2}, x_{3}, x_{5}\right) \\
& =P\left(x_{1}\right) \sum_{x_{2}} P\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} P\left(x_{3} \mid x_{1}\right) m_{5}\left(x_{2}, x_{3}\right) \sum_{x_{4}} P\left(x_{4} \mid x_{2}\right)
\end{aligned}
$$

Complexity of VarElim

- Time/space for single query $=\mathrm{O}\left(\mathrm{N} \mathrm{K}^{\mathrm{w}+1}\right)$ for N nodes of K states, where $w=w(G, \pi)=$ width of graph induced by elimination order π
- $\mathrm{w}^{\star}=\operatorname{argmin}_{\pi} \mathrm{w}(\mathrm{G}, \pi)=$ treewidth of G
- Thm: finding an order to minimize treewidth is NP-complete
- Does there exist a more efficient exact inference algorithm?

Summary so far

- Brute force enumeration $\mathrm{O}\left(\mathrm{K}^{\mathrm{N}}\right)$ time, $\mathrm{O}\left(\mathrm{N} \mathrm{K}^{\mathrm{C}}\right)$ space (where $\mathrm{C}=$ max clique size)
- VarElim $\mathrm{O}\left(\mathrm{N} \mathrm{K}^{\mathrm{w}+1}\right)$ time/space
$-w=w(G, \pi)=$ induced treewidth
- Exact inference is \#P-complete
- Motivates need for approximate inference

Treewidth

High tree width

$$
\mathrm{W}^{\star}=\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{p} \mathrm{~N})
$$

Loopy graphs

$\mathrm{W}^{*}=$ NP-hard to find

Graph triangulation

- A graph is triangulated (chordal, perfect) if it has no chordless cycles of length > 3 .
- To triangulate a graph, for each node X_{i} in order π, ensure all neighbors of X_{i} form a clique by adding fill-in edges; then remove X_{i}

Finding an elimination order

- The size of the induced clique depends on the elimination order.
- Since this is NP-hard to optimize, it is common to apply greedy search techniques: keaentro
- At each iteration, eliminate the node that would result in the smallest
- Num. fill-in edges [min-fill]
- Resulting clique weight [min-weight] (Weight of clique = product of number of states per node in clique)
- There are some approximation algorithms amion

Outline

- Exact inference
- Brute force enumeration
- Variable elimination algorithm
- Loopy graph
- Forwards-backwards algorithm

What's wrong with VarElim

- Often we want to query all hidden nodes.
- VarElim takes $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{~K}^{\mathrm{w}+1}\right)$ time to compute $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{e}}\right)$ for all (hidden) nodes i .
- There exist message passing algorithms that can do this in $\mathrm{O}\left(\mathrm{N} \mathrm{K}^{\mathrm{w}+1}\right)$ time.
- Later, we will use these to do approximate inference in $\mathrm{O}\left(\mathrm{N} \mathrm{K}^{2}\right)$ time, indep of w.

SP2-32

Repeated variable elimination leads to redundant calculations

$$
\begin{aligned}
P\left(x_{1} \mid y_{1: 3}\right) & \propto f\left(x_{1}\right) \sum_{x_{2}} f\left(x_{1}, x_{2}\right) \sum_{x_{3}} f\left(x_{2}, x_{3}\right) \\
P\left(x_{2} \mid y_{1: 3}\right) & \propto \sum_{x_{1}} f\left(x_{1}\right) f\left(x_{1}, x_{2}\right) \sum_{x_{3}} f\left(x_{2}, x_{3}\right) \\
P\left(x_{3} \mid y_{1: 3}\right) & \propto \sum_{x_{1}} f\left(x_{1}\right) \sum_{x_{2}} f\left(x_{1}, x_{2}\right) f\left(x_{2}, x_{3}\right)
\end{aligned}
$$

$\mathrm{O}\left(\mathrm{N}^{2} \mathrm{~K}^{2}\right)$ time to compute all N marginals

Forwards-backwards algorithm

$$
P\left(X_{t}=j \mid y_{1: N}\right)
$$

$$
\propto P\left(X_{t}, y_{1: t-1}, y_{t}, y_{t+1: N}\right.
$$

$$
\propto P\left(y_{t+1: N} \mid X_{t}, y_{t}, y_{1: t=1}\right) P\left(y_{t} \mid X_{t}, y_{1: t-1}\right) P\left(X_{t} \mid y_{1: t-1}\right)
$$

$$
\propto P\left(X_{t} \mid y_{1: t-1}\right) P\left(y_{t} \mid X_{t}\right) P\left(y_{t+1: N} \mid X_{t}\right)
$$

$$
\stackrel{\text { def }}{=}
$$

$$
\alpha_{t \mid t-1}(j) e_{t}(j) \beta_{t}(j) \quad \text { (Use dynamic programming to compute these) }
$$

Forwards prediction Local evidence Backwards prediction

Forwards algorithm (filtering)

Backwards algorithm

$$
\beta_{t}(i)
$$

$$
\begin{aligned}
& \stackrel{\text { def }}{=} P\left(y_{t+1: N} \mid X_{t}=i\right) \\
& =\sum_{j} P\left(y_{t+1}, y_{t+2: N}, X_{t+1}=j \mid X_{t}=i\right) \\
& =\sum_{j} P\left(y_{t+2: N} \mid X_{t+1}, X_{t}, y_{t+1}\right) P\left(y_{t+1} \mid X_{t+1}, X_{t}\right) P\left(X_{t+1} \mid X_{t}\right) \\
& =\sum_{j} \beta_{t+1}(j) e_{t+1}(j) A(i, j) \\
& \quad \beta_{t} \propto A\left(e_{t+1} \propto * \beta_{t+1}\right)
\end{aligned}
$$

Forwards-backwards algorithm

- Forwards

$$
\alpha_{t} \propto\left(A^{T} \alpha_{t-1}\right) \cdot * e_{t}
$$

- Backwards

$$
\beta_{t} \propto A\left(\beta_{t+1} \cdot * e_{t+1}\right)
$$

Backwards messages independent of forwards messages

- Combine

$$
P\left(X_{t}=i \mid y_{1: T}\right) \propto \alpha_{t}(i) \beta_{t}(i)
$$

$\mathrm{O}\left(\mathrm{N}^{2}\right)$ time to compute all N marginals, not $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{~K}^{2}\right)$

References

- K. Murphy, Exact inference in graphical models, AAAI tutorial 2004

