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CAP6938-02 \

Plan, Activity, and Intent
Recognition

Review of Material

Instructor: Dr. Gita Sukthankar
Email: gitars@eecs.ucf.edu
Schedule: T & Th 1:30-2:45pm
Location: CL1 212

Office Hours (HEC 232):
T 3-4:30pm, Th 10-11:30am /




Exam Format

= Exam Oct 4t closed-book, can bring 1 page of
notes

= QOct 11t: 2 page writeup of your project results
(informal in-class presentation)
= QOct 18t™: Project Phase 2

»= Chance to start a new project or refine your old one

= 1 page writeup and informal class presentation
describing changes you want to make in your project

CAP6938: Dr. Gita Sukthankar



Definitely on Exam

= Specific questions on:
= Bayes networks

= Hidden Markov Models

» Representation
= Forward algorithm

» General research questions on the 5 papers
(Kautz, Tambe, Pynadath, Kaminka, Starner)
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Not on Exam

» Logic proofs or e-graphs

= SOAR

* |Inference using stochastic grammars
= Variable elimination for loopy graphs
= Details of Baum-Welch algorithm

= Vision based tracking

CAP6938: Dr. Gita Sukthankar



What makes PAIR hard?

* High computational cost

= Plan library requirements:
» Libraries can be incomplete or inaccurate
= Difficult to author (making learning attractive)
* Individual differences
= Mistakes/irrational behavior

= Domain-specific characteristics make
generalization across domains difficult
= Specific to activity recognition:
» |dentifying transitions between behavior

= Data association
= Obtaining reliable tracking data (vision)
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Application Areas

= Robocup (not on the exam)
= Quality of Life (not on the exam)

= Adversarial reasoning for games and battlefield
analysis (Tambe)

= Gesture recognition (Starner)
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Symbolic (Consistency-based)

= Based on the idea that plan recognition is a
consistency-checking process.

= A model matches the set of observations if the
observed actions don’t violate any of the
constraints specified in the plan library.

= Example techniques (first 2 weeks of reading)
» Event hierarchy circumscription (Kautz)
= Event tracking/model tracing (Tambe)
» Fast/complete symbolic plan recognition (Kaminka)

= Qutput: return complete set of models that pass
consistency checking
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Probabilistic (Likelihood-based)

= Based on the idea of selecting the plan that has a high
probability based on the observed evidence

= Belief is usually calculated using some variant on
Bayesian belief update (but Dempster-Shafer evidential
reasoning has also been used)

* Includes both directed/undirected graphical model based
procedures

= Examples: dynamic Bayes networks (DBNs), hidden
Markov/semi-Markov models (HMMs),

= Qutput: model with the maximum likelihood at the
current time step given the set of previous observations
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Decision-theoretic (Utility-based)

= Based on the idea that the agent is rational and
acts to maximize a known utility function.

= Plan recognition process occurs by calculating
utility of all plans in current situation.

= Game-theory is applicable for adversarial
reasoning when the agent is simultaneously
trying to maximize their utility while minimizing
their opponents.

= Qutput: a rank-ordering of models by utility

» Note: this method is well-suited for prioritizing
or pruning the search process and is often used
In combination with one of the previous methods
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Event Hierarchy Circumscription

Event hierarchy

General axioms
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H. Kautz, A Formal Theory of Plan Recognition and its Implementation,
In Reasoning about Plans
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Kautz’'s Model

= First order predicate calculus

= Event hierarchy (logical encoding of a semantic
network)
» Event predicates
= Abstaction axioms
= Decomposition axioms

= General axioms: hardest to use for inference

* Includes temporal constraints between the steps

= Equality constraints between the agents executing steps or
objects involved in steps

= Preconditions

= Special event predicates. £nd, AnyEvent (top-
level abstraction)
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Kautz’'s Assumptions

= Exhaustiveness: Known ways of specializing an
event type are the only ways of specializing it

» Disjointedness: Types are disjoint, unless one
abstracts the other, or they abstract a common
type

= Component/Use: Seeing an event implies the
disjunction of the plans which include it as a
component

= Minimum Cardinality Assumption: Assume
parsimony: the minimum number of plans to
explain the observations
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RESC Algorithm (Tambe)

= Simple insight: model what you would do if you
were In the opponent’s position

= What are problems with this?

= High overhead: must program an agent capable of
solving the problem

= Modeling the opponent’s world state can be difficult
(what is the opponent’s sensor model?)

= Maintaining multiple hypotheses is even more
expensive
= What are the strengths?
= Allows designer to leverage extra domain knowledge
= Does not require enumerating chains of possible
events
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Ambiguity in Event Tracking

= Ambiguity: the bane of plan recognition!

= Potential solutions:

= Maintain multiple operator hierarchies (continue considering all
valid hypotheses)

= Delay until more evidence presents itself

= Tambe solution: attempt to resolve ambiguity and
commit to a single interpretation
= Passive ambiguity resolution (game-theoretic)
= Active resolution: modify agent’s actions to resolve ambiguity
= Detect incorrect interpretation through match failure
»= Recovery mechanisms (assumption injection, backtracking)
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Stochastic Grammars

» Refer to the shorter version of the Pynadath
paper

» Understand how to represent plan recognition as
a grammar parsing problem

= Difference between plan recognition using
context-free and context-sensitive grammars

» Understand Pynadath’s representation of the
driving domain
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Speedups for Plan Recognition

= Smart data structures (Kaminka)

» Use of dynamic programming (forwards-
backwards algorithm, variable elimination)

= Be able to suggest new speedups

» Understand the purpose of the ones proposed in
the Kaminka paper

» Speeding observation matching (tagged feature tree)
* Improving efficiency of current state query
* Hypotheses graph data structure
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Rules of Probability

Produet Rule
PX Y= PX | YIPCY)—P(Y1 XIPLX)
Margmalization
P(Y )= E Pl x.)
i=1
X binary: P(Y)=PUF,x)+ P(¥,5)

& 1997 hck Breece, Mioosoft Corporation atd Daphew Eoller, Stand ord Unerercity. A1 rights e serwre d.
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Bayes Rule
P(H.E)=P(H |E)P(E)=P(E |H)P(H)

P(e|h)P(h)

Ple)=——— =
P(e,h)+ P(e.h)

i P(e|h)P(h)
P(e| h)P(h)+ P(e| h)P(h)
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What is a Bayes (belief) net?

Compact representation of joint probability
distributions via conditional independence

. Family of Alarm (T N
Qualitative part: £ _B\P(A [ EB)
Directed acyclic graph (DAG) e b[0.9 0.1
= Nodes - random vars. € blo.2 0.8

- - e bl0.9 0.1
Edges - direct influence ~ Zlo.01 0.99),

Together:
Define a unique distribution
In a factored form

Quantitative part:

Set of conditional
probability distributions
kB A Gl ENEIP(EIP(A| BEYP(R | EYP(C | A) 19

Figure from N. Friedman



Conditional probability distributions

(CPDS

« Each node specifies a
distribution over its values given
Its parents values P(X; | Xpai)

e Full table needs 2°-1=31

E | B P(A|E,B)
parameters, BN needs 10 TS IR
e|Dl02 |08
e|bl09 |01
f’(l?,l?,fq,}{,cjz e |D]o.01]|0099
31
= P(B) P(E|B) P(A|B, B) P(R|A, B, E) P(C|R, A, B, E)
1 2 4 8 Y
= P(lB) P(lE) P(Alf, EZf(glEZP(§|AZ

Pearl, 1988



Kinds of iI'IthI"EI'IEE Tor DENs

filtering [ PE(t) | y(1:0)
T

prediction _t BX(t+H) | y(1:1)
Rt

fixed-lag — PX(t-L) | y(1:t)]

smoothing T..L.u

: T
e tﬁ?ﬁﬂ ;_ POL(E) | y(1-T))
(offline)
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CPDs for HMMs | 8-6-0
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P(X1.7,Y1.7) = P(X1)P(Y1]X1) || P(X¢|Xe—1)P(Yi| Xy)

t=2
Transition matrix P(Xt — j‘Xt—l 7,) A(Z,])
Observation matrix P(Y;j e ]‘Xt — 7,) B(Z,])
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Nuisance variable=hidden node that we don’t care about but that we don’t

know the value for
Inference tasks

« Posterior probabilities of Query given Evidence
— Marginalize out Nuisance variables

— Sum-product
Z:Cn P(XQ7 Ln, CBe>

qu Zajn P(:ECP Lny, £Ue)

 Most Probable Explanation (MPE)/ Viterbi

— max-product
x: = arg rr;%x P(zq4|ze) = arg rr}%x P(xq, xe)

P(XQ|XE = Te) =

q

e “Marginal Maximum A Posteriori (MAP)”
— max-sum-product

*

Lq

arg max P(zq|ze) = arg rT;jaxZP(a:q, T, Te)
q T,



Variable/bucket elimination..

= Push sums inside products (generalized
distributive law)

= Carry out summations right to left, storing
Intermediate results (factors) to avoid
recomputation (dynamic programming)

POlj,m) = a3 P(b)P(e)P(alb, e) P(jla) P(m]a)
— aP(b) Y. P(e) 3 P(alb, e) P(jla) P(m]a)
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Forwards algorithm (filtering)

a1 Qg
N N ) —
Qtlt—1
let
- Use the Markov
assumptions
def
ar(j) = P(Xi=jly1:t)

< Py Xt = J, yre=1) P(Xt = jly1:¢—1)
— P(yt|Xt—J>ZP(Xt|Xt 1, Y14=1)P(X¢_1|y1:4—1)

() S A a1

Qi X €4. * ATozt_l 2
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Gesture Recognition (Starner)

* Be able to describe how the recognition aspect
of the system works

= Don’t have to understand the visual tracking

= Don’t have to understand the use of Gaussian
orobability densities
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