
Dynamic Adaptation of 3D Selection Techniques
for Suitability Across Diverse Scenarios

Jeffrey Cashion*
University of Central Florida

Joseph J. LaViola, Jr.‡
University of Central Florida

[1] [2] [3] [4] [5] [6]

ABSTRACT
We performed a user study that measured the effectiveness of our
new 3D selection technique, Scope, which dynamically adapts to
the environment by altering its activation area and visual
appearance with relation to cursor velocity. Users tested our new
technique against existing techniques Raycast, Bendcast, and
Hook across a variety of different 3D scenarios which featured
three different levels of object density and three different levels of
object velocity. Our two dependent variables were completion
time and total attempts per scenario. Users also completed a post-
questionnaire which yielded qualitative insights on their
experience. Our study shows that Bendcast, Scope, and Hook all
performed similarly across all scenarios, yet were all significantly
faster and less error-prone than Raycast. Despite this similar
performance, users strongly favored Scope over the other three
techniques, and over the second most preferred technique nearly
two to one.

Keywords: Interaction techniques, 3D object selection, dense and
dynamic environments.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques;

1 INTRODUCTION

The rapid increase in graphical processing power has made 3D
graphics much more accessible to common devices. Scenes can be
much richer and more detailed, with a higher number of objects
and richer detail. With 3D visuals being the primary output of
such software, one of the primary inputs is user selection. In video
games, a user may select something as simple as a menu option,
or something as complex as a small moving object hidden in
foliage. Scientific applications such as medical simulators or bio-
molecular visualization also rely heavily on precise and accurate
selection. In any case, it is important that the selection techniques
utilized best match the expected environment and its conditions.
With such importance placed on selection, it is no surprise that
much work has been done to reduce selection time, reduce errors,
and increase overall usability [6] [3]. Comprehensive research has
been done on categorizing and grouping techniques by common
features and characteristics [1]. A primary characteristic of a
technique is whether it operates statically or dynamically. Our
work focuses on further exploring the area of dynamic selection
techniques. Our goal was to develop a technique that would adapt
to user input and dynamically change how it operated. We
explored the existing field of techniques and identified a few that
had features which could be worked with.

Figure 1: Scope, slow user input (left), fast user input (right)

2 RELATED WORK

The primary two techniques that form the baseline of 3D selection
are Raycast and SpotLight [1]. Raycast features a single ray that is
projected into the scene, while SpotLight projects a cone-like
shape into the 3D world instead of a single ray. For DynaSpot [4],
the cursor acts as a circle that varies in diameter; as small as a
point when the cursor is motionless, and a large circle when the
cursor is moving quickly. Bendcast is a technique that bends to
the target nearest to the center of the closed static cursor [2]. The
Hook technique was designed to operate by using a scoring
system over time [6], in much the same way that IntenSelect
operates [5]. The primary difference is that Hook computes the
distance from the cursor to each object, and derives a score based
on that measurement. Expand is an example of a selection
technique that features some dynamic characteristics [2]. The
technique uses a two-step process that arranges selected objects
into a virtual grid, giving the user a better opportunity to select.

3 SCOPE: OUR NEW SELECTION TECHNIQUE

Scope was created by implementing our own variation of several
existing methods and combining them into a selection technique
that is capable of operating effectively in different scenarios. To
achieve this, we utilized ideas from different selection techniques
and tried to make them all work well together. Ultimately, we
chose to implement the speed-dependent behavior from DynaSpot
for its ability to vary between a point-cursor and an area-cursor.
We also chose to implement the distance-based scoring algorithm
similar to Hook, since it provided a proven method of identifying
targets that are most likely desired by the user. We then branched
out and made some modifications and introduced some new ideas.

3.1 Speed-Dependent Behavior

There are conditions where Raycast operates better than Spotlight,
and visa-versa. Additionally, targeting an object is generally more
difficult when the object is moving [2]. The speed-dependent
behavior of DynaSpot was shown to give it an 18% performance
advantage over Raycast. Due to this, we built off of that idea and

*jcashion@knights.ucf.edu
‡jjl@eecs.ucf.edu

implemented a version that had a few key differences. DynaSpot
permitted their spot size to decrease to just 1, thus becoming
Raycast. In our own testing, we observed that maintaining an area
of more substantial size was beneficial. Our function for
computing the diameter of the cursor (in pixels) is

SPOTSIZE = Clamp(CURSORVELOCITY × α, SMIN, SMAX)

where α adjusts the sensitivity to the user input, and SMIN and
SMAX are the minimum and maximum sizes that the spot can be,
respectively. We performed manual testing to determine suitable
minimum and maximum sizes.

To control our spot growth functions, we leveraged existing
input filtering which is used to smooth the user input. To compute
the cursor velocity at any moment, we sampled the cursor position
and stored it for the past 0.8 seconds. From this, the distance and
time was measured between the points to evaluate what the
average velocity was over that range. This benefited us by
providing a natural ramping delay in the size of our spot.

3.2 Nearest-Object Determination

Our approach for computing the nearest object is direct. At all
times, Scope is aware of which targets are located inside of the
cursor. From this set, the distance is measured and stored for
reference. For each frame, the previous 0.5 seconds of distance
data is used for each object, and from that, the average distance is
computed. The object with the lowest average distance is declared
the winner, and gets highlighted to indicate its victory.

4 SUMMATIVE EVALUATION

We conducted a user study with 27 participants, 22 male and 5
female, who were between 18 and 29 years of age. Participants
were solicited from the University of Central Florida. Each
participant took approximately 30 minutes to complete the study,
and was compensated $10 for their time. This time included the
completion of both a pre- and post-questionnaire. Our test
configuration included an Intel Core-i7 laptop with 16GB of
RAM, a GeForce GTX 560M, and a 55” 1080p display. We
utilized a Sony Move controller, and Unity 4.2 software.

4.1 Experimental Design and Procedure

We utilized a 4 x 3 x 3 within-subjects factorial design, with the 4
selection techniques, 3 scene densities (low, medium, high), and
object velocity (still, moderate, fast) as independent variables. The
four selection techniques tested were Raycast, Bendcast, Scope,
and Hook. The dependent variables were completion time and
total number of attempts. For each scenario, the user was asked to
select the indicated object. The total time measured for each
scenario included all attempts. The timer would start when the
user was permitted to begin the selection task, and would end
upon selection of the correct object. Each participant was
informed that they would be performing a series of selection
tasks. Their goal in each task was to select a specific object,
which was marked green. The order of the tasks was randomized
for each participant, and each participant was given sixty seconds
to practice the selection techniques at first.

4.2 Experiment Results and Discussion

Each participant completed 5 runs of the experiment, with each
run containing 36 scenarios. To analyze the quantitative data, we
performed a repeated measures ANOVA on both completion time
and number of errors made overall and for each scenario.

We found significant differences between the techniques for

average total time per technique (F3,27 = 76.2, p < 0.001). With
individual t-tests, Raycast was significantly slower than Hook (t26
= 9.665, p < 0.0083), Scope (t26 = 9.412, p < 0.01), and Bendcast
(t26 = 8.796, p < 0.0125). Significant differences were found in
average errors per technique (F3,27 = 269.1, p < 0.001), and further
t-tests were performed. Raycast had more errors than Hook (t26 =
18.189, p < 0.0083), Bendcast (t26 = 16.657, p < 0.01), and Scope
(t26 = 16.543, p < 0.0125). Scope had more errors than Hook (t26 =
3.737, p < 0.01667), and Bendcast had more errors than Hook (t26
= 2.876, p < 0.025). A Chi-squared test on the participant
rankings for preferred technique revealed that Scope was most
preferred ((N=27) = 9, p < 0.05).

The design of Hook utilized a crosshair type cursor, which was
very similar to the one used for Raycast. Because of this, we
suspect that users were likely to be cautious when selecting, since
they would have had a difficult time determining if they were
using Raycast or Hook at the moment. We were pleased to see
that users did strongly favor our new technique, Scope, over the
competition. It is interesting to consider both the similarity in
performance and the stark difference in user preference. The users
acknowledged that they considered the usability, speed, and
accuracy to be roughly the same as Bendcast and Hook, and the
quantitative data showed that they did in fact perform
approximately as well as each other.

5 FUTURE WORK AND CONCLUSION

Our attempt at creating a dynamic selection technique showed that
there is potential in designing new techniques that will also
improve performance. The primary areas that we would like to
focus our efforts include best-target determination, visual
interaction, and scoring algorithms. We believe that with
continued efforts, we will develop a more thorough understanding
of these considerations, which will ultimately lead to the design of
more advanced techniques.

ACKNOWLEDGEMENTS

This work is supported in part by NSF CAREER award IIS-
0845921 and NSF awards IIS-0856045 and CCF-1012056.

REFERENCES
[1] F. Argelaguet and C. Andujar, "A survey of 3D object

selection techniques for virtual environments," Computers &
Graphics, vol. 37, no. 3, pp. 121-136, 2013.

[2] J. Cashion, C. Wingrave and J. J. LaViola, "Dense and
Dynamic 3D Selection for Game-Based Virtual
Environments," Visualization and Computer Graphics, IEEE
Transactions on, vol. 18, no. 4, pp. 634-642, 2012.

[3] J. Cashion, C. Wingrave and J. J. LaViola, "Optimal 3D
Selection Technique Assignment Using Real-Time Contextual
Analysis," 3D User Interfaces (3DUI), 2013 IEEE Symposium
on, pp. 107-110, 2013.

[4] O. Chapuis, J. Labrune and E. Pietriga, "DynaSpot: Speed-
Dependent Area Cursor," Proceedings of the 27th
international conference on Human factors in computing
systems (CHI '09), pp. 1391-1400, 2009.

[5] G. De Haan, M. Koutek and F. Post, "IntenSelect: Using
Dynamic Object Rating for Assisting 3D Object Selection,"
Eurographics Workshop on Virtual Environments, pp. 201-
209, 2005.

[6] M. Ortega, "Hook: Heuristics for Selecting 3D Moving
Objects in Dense Target Environments," 3D User Interfaces
(3DUI), 2013 IEEE Symposium on, pp. 119-122, 2013.

