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ABSTRACT 
We performed a user study that measured the effectiveness of our 
new 3D selection technique, Scope, which dynamically adapts to 
the environment by altering its activation area and visual 
appearance with relation to cursor velocity. Users tested our new 
technique against existing techniques Raycast, Bendcast, and 
Hook across a variety of different 3D scenarios which featured 
three different levels of object density and three different levels of 
object velocity. Our two dependent variables were completion 
time and total attempts per scenario. Users also completed a post-
questionnaire which yielded qualitative insights on their 
experience. Our study shows that Bendcast, Scope, and Hook all 
performed similarly across all scenarios, yet were all significantly 
faster and less error-prone than Raycast. Despite this similar 
performance, users strongly favored Scope over the other three 
techniques, and over the second most preferred technique nearly 
two to one.  
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1 INTRODUCTION 

The rapid increase in graphical processing power has made 3D 
graphics much more accessible to common devices. Scenes can be 
much richer and more detailed, with a higher number of objects 
and richer detail. With 3D visuals being the primary output of 
such software, one of the primary inputs is user selection. In video 
games, a user may select something as simple as a menu option, 
or something as complex as a small moving object hidden in 
foliage. Scientific applications such as medical simulators or bio-
molecular visualization also rely heavily on precise and accurate 
selection. In any case, it is important that the selection techniques 
utilized best match the expected environment and its conditions. 
With such importance placed on selection, it is no surprise that 
much work has been done to reduce selection time, reduce errors, 
and increase overall usability [6] [3]. Comprehensive research has 
been done on categorizing and grouping techniques by common 
features and characteristics [1]. A primary characteristic of a 
technique is whether it operates statically or dynamically. Our 
work focuses on further exploring the area of dynamic selection 
techniques. Our goal was to develop a technique that would adapt 
to user input and dynamically change how it operated. We 
explored the existing field of techniques and identified a few that 
had features which could be worked with. 

Figure 1: Scope, slow user input (left), fast user input (right) 

2 RELATED WORK 

The primary two techniques that form the baseline of 3D selection 
are Raycast and SpotLight [1]. Raycast features a single ray that is 
projected into the scene, while SpotLight projects a cone-like 
shape into the 3D world instead of a single ray. For DynaSpot [4], 
the cursor acts as a circle that varies in diameter; as small as a 
point when the cursor is motionless, and a large circle when the 
cursor is moving quickly. Bendcast is a technique that bends to 
the target nearest to the center of the closed static cursor [2]. The 
Hook technique was designed to operate by using a scoring 
system over time [6], in much the same way that IntenSelect 
operates [5]. The primary difference is that Hook computes the 
distance from the cursor to each object, and derives a score based 
on that measurement. Expand is an example of a selection 
technique that features some dynamic characteristics [2]. The 
technique uses a two-step process that arranges selected objects 
into a virtual grid, giving the user a better opportunity to select. 

3 SCOPE: OUR NEW SELECTION TECHNIQUE 

Scope was created by implementing our own variation of several 
existing methods and combining them into a selection technique 
that is capable of operating effectively in different scenarios. To 
achieve this, we utilized ideas from different selection techniques 
and tried to make them all work well together. Ultimately, we 
chose to implement the speed-dependent behavior from DynaSpot 
for its ability to vary between a point-cursor and an area-cursor. 
We also chose to implement the distance-based scoring algorithm 
similar to Hook, since it provided a proven method of identifying 
targets that are most likely desired by the user. We then branched 
out and made some modifications and introduced some new ideas. 

3.1 Speed-Dependent Behavior 

There are conditions where Raycast operates better than Spotlight, 
and visa-versa. Additionally, targeting an object is generally more 
difficult when the object is moving [2]. The speed-dependent 
behavior of DynaSpot was shown to give it an 18% performance 
advantage over Raycast. Due to this, we built off of that idea and 
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implemented a version that had a few key differences. DynaSpot 
permitted their spot size to decrease to just 1, thus becoming 
Raycast. In our own testing, we observed that maintaining an area 
of more substantial size was beneficial. Our function for 
computing the diameter of the cursor (in pixels) is 

SPOTSIZE = Clamp(CURSORVELOCITY × α, SMIN, SMAX) 

where α adjusts the sensitivity to the user input, and SMIN and 
SMAX are the minimum and maximum sizes that the spot can be, 
respectively. We performed manual testing to determine suitable 
minimum and maximum sizes.  

To control our spot growth functions, we leveraged existing 
input filtering which is used to smooth the user input. To compute 
the cursor velocity at any moment, we sampled the cursor position 
and stored it for the past 0.8 seconds. From this, the distance and 
time was measured between the points to evaluate what the 
average velocity was over that range. This benefited us by 
providing a natural ramping delay in the size of our spot. 

3.2 Nearest-Object Determination 

Our approach for computing the nearest object is direct. At all 
times, Scope is aware of which targets are located inside of the 
cursor. From this set, the distance is measured and stored for 
reference. For each frame, the previous 0.5 seconds of distance 
data is used for each object, and from that, the average distance is 
computed. The object with the lowest average distance is declared 
the winner, and gets highlighted to indicate its victory. 

4 SUMMATIVE EVALUATION 

We conducted a user study with 27 participants, 22 male and 5 
female, who were between 18 and 29 years of age. Participants 
were solicited from the University of Central Florida. Each 
participant took approximately 30 minutes to complete the study, 
and was compensated $10 for their time. This time included the 
completion of both a pre- and post-questionnaire. Our test 
configuration included an Intel Core-i7 laptop with 16GB of 
RAM, a GeForce GTX 560M, and a 55” 1080p display. We 
utilized a Sony Move controller, and Unity 4.2 software. 

4.1 Experimental Design and Procedure 

We utilized a 4 x 3 x 3 within-subjects factorial design, with the 4 
selection techniques, 3 scene densities (low, medium, high), and 
object velocity (still, moderate, fast) as independent variables. The 
four selection techniques tested were Raycast, Bendcast, Scope, 
and Hook. The dependent variables were completion time and 
total number of attempts. For each scenario, the user was asked to 
select the indicated object. The total time measured for each 
scenario included all attempts. The timer would start when the 
user was permitted to begin the selection task, and would end 
upon selection of the correct object. Each participant was 
informed that they would be performing a series of selection 
tasks. Their goal in each task was to select a specific object, 
which was marked green. The order of the tasks was randomized 
for each participant, and each participant was given sixty seconds 
to practice the selection techniques at first. 

4.2 Experiment Results and Discussion 

Each participant completed 5 runs of the experiment, with each 
run containing 36 scenarios. To analyze the quantitative data, we 
performed a repeated measures ANOVA on both completion time 
and number of errors made overall and for each scenario. 

We found significant differences between the techniques for 

average total time per technique (F3,27 = 76.2, p < 0.001). With 
individual t-tests, Raycast was significantly slower than Hook (t26 
= 9.665, p < 0.0083), Scope (t26 = 9.412, p < 0.01), and Bendcast 
(t26 = 8.796, p < 0.0125). Significant differences were found in 
average errors per technique (F3,27 = 269.1, p < 0.001), and further 
t-tests were performed. Raycast had more errors than Hook (t26 = 
18.189, p < 0.0083), Bendcast (t26 = 16.657, p < 0.01), and Scope 
(t26 = 16.543, p < 0.0125). Scope had more errors than Hook (t26 = 
3.737, p < 0.01667), and Bendcast had more errors than Hook (t26 
= 2.876, p < 0.025). A Chi-squared test on the participant 
rankings for preferred technique revealed that Scope was most 
preferred ( (N=27) = 9, p < 0.05). 

The design of Hook utilized a crosshair type cursor, which was 
very similar to the one used for Raycast. Because of this, we 
suspect that users were likely to be cautious when selecting, since 
they would have had a difficult time determining if they were 
using Raycast or Hook at the moment. We were pleased to see 
that users did strongly favor our new technique, Scope, over the 
competition. It is interesting to consider both the similarity in 
performance and the stark difference in user preference. The users 
acknowledged that they considered the usability, speed, and 
accuracy to be roughly the same as Bendcast and Hook, and the 
quantitative data showed that they did in fact perform 
approximately as well as each other. 

5 FUTURE WORK AND CONCLUSION 

Our attempt at creating a dynamic selection technique showed that 
there is potential in designing new techniques that will also 
improve performance. The primary areas that we would like to 
focus our efforts include best-target determination, visual 
interaction, and scoring algorithms. We believe that with 
continued efforts, we will develop a more thorough understanding 
of these considerations, which will ultimately lead to the design of 
more advanced techniques. 
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