
TACTUS: A Hardware and Software Testbed for
Research in Multi-Touch Interaction

Paul Varcholik, Joseph J. Laviola Jr., Denise Nicholson

Institute for Simulation & Training

University of Central Florida
Orlando, Florida

pvarchol@ist.ucf.edu, jjl@cs.ucf.edu, dnichols@ist.ucf.edu

Abstract. This paper presents the TACTUS Multi-Touch Research Testbed, a
hardware and software system for enabling research in multi-touch interaction.
A detailed discussion is provided on hardware construction, pitfalls, design
options, and software architecture to bridge the gaps in the existing literature
and inform the researcher on the practical requirements of a multi-touch
research testbed. This includes a comprehensive description of the vision-based
image processing pipeline, developed for the TACTUS software library, which
makes surface interactions available to multi-touch applications. Furthermore,
the paper explores the higher-level functionality and utility of the TACTUS
software library and how researchers can leverage the system to investigate
multi-touch interaction techniques.

Keywords: Multi-Touch, HCI, Touch Screen, Testbed, API

1 Introduction

The pending proliferation of multi-touch technology, which allows interaction with a
surface through multiple simultaneous points of contact and from multiple concurrent
users, has the potential to radically change Human-Computer Interaction. However,
unless the research community can answer fundamental questions about optimizing
interface designs, and provide empirically driven guidelines, the technology can
become just another I/O modality looking for a purpose. Unfortunately, there is
limited availability of hardware and software to support this research. Thus,
investigators must overcome a number of technical challenges to develop a multi-
touch platform before they can begin research in this area.

Through an extensive literature and state-of-the-art review, an analysis of the
requirements for a multi-touch research platform revealed two categories of
components: those essential for basic multi-touch research; and secondary
components necessary for extensive investigation and longer-term research projects.
These components, listed in Table 1, emphasize a low-cost, do-it-yourself approach.

A multi-touch platform is made up of two primary components: a physical
interaction surface, and a software system for collecting and interpreting points of
contact. The hardware and software systems each require significant investments of

2 Paul Varcholik, Joseph LaViola, Denise Nicholson

time and effort to construct. While advances in hardware and multi-touch software
infrastructure provide interesting research opportunities themselves, they are a barrier
to entry for researchers who want to focus on higher-level interface issues or the
development of novel applications.

This paper presents the TACTUS Multi-Touch Research Testbed, a hardware and
software system for enabling research in multi-touch interaction. A detailed
discussion is provided on hardware construction, pitfalls, design options, and software
architecture to bridge the gaps in the existing literature and inform the researcher on
the practical requirements of a multi-touch research testbed. This includes a
comprehensive description of the vision-based image processing pipeline developed
for the TACTUS software library, which makes surface interactions available to
multi-touch applications. Furthermore, the paper explores the higher-level
functionality and utility of the TACTUS software library and how researchers can
leverage the system to investigate multi-touch interaction techniques.

Table 1. Essential and Secondary Components for a multi-touch research platform
Essential Components Description

Multi-touch surface Constructed using commercial-off-the-shelf hardware and
requiring near zero pressure to detect an interaction point

Software Hit-Testing Ability to determine the presence and location of each point of
surface contact; supporting at least four users

Software Point Tracking Identifying a continuous point of contact and reporting its
velocity and duration

Secondary Components
Application Programming
Interface (API) A software system upon which multiple multi-touch applications

can be developed
Multi-Platform Support The ability to access multi-touch interaction data from different

computing environments (e.g. languages, OS’s, etc.)
Reconfiguration Modifying the software system without recompilation
Software Service Allowing multiple applications to access multi-touch interaction

data simultaneously, including over a computer network
Presentation-Layer
Independence

Isolating the multi-touch interaction data from the system to
graphically present such data, allowing any GUI to be employed
when developing multi-touch applications

Mouse Emulation Support for controlling traditional ‘Window, Icon, Menu,
Pointing Device’ interaction through a multi-touch surface

Tangible Interfaces The ability to detect and interact with physical devices placed on
or near the multi-touch surface

Customizable Gesture System Support for training arbitrary multi-touch gestures and mapping
them to software events

2 Related Work

In 2001, Deitz presented the Mitsubishi DiamondTouch [1], a front-projection,
multi-touch system that uses an array of antennas to transmit identifying signals that
are capacitively coupled through a user. The DiamondTouch is fairly expensive,

TACTUS: A Hardware and Software Testbed for Research in Multi-Touch Interaction 3

compared to a do-it-yourself approach, and users will occlude the front-projection
display as they interact with the system.

In 2005, Han presented work on constructing low-cost multi-touch surfaces using
Frustrated Total Internal Reflection [2]. Much of our hardware is a derivative of
Han’s work. However, while Han’s paper presented a starting point for building low-
cost multi-touch surfaces, it left out some of the details necessary to reliably construct
a multi-touch platform.

In 2004, Wilson introduced TouchLight [3] and in 2007 Microsoft announced the
Microsoft Surface [4] – an exciting development for bringing multi-touch technology
closer to the consumer market. While a preliminary release of Microsoft Surface
started in Spring 2008, there is still limited availability of this platform.

Both the DiamondTouch and the Microsoft Surface have commercial APIs for
developing applications for their products. However, use of these software packages
is largely dependent on the acquisition of their associated hardware. A few open-
source multi-touch libraries exist, including: Touchlib [5], reacTIVision [6], and
BBTouch [7]. These support various operating systems and programming
environments, and vary in feature set and ease-of-use.

Much more work exists on the development of multi-touch hardware technology
and associated software as in [8-10]. Our efforts build upon these achievements and
offer a low-cost, full-featured multi-touch research testbed.

3 Multi-Touch Hardware

Although there are a variety of multi-touch designs, we believe that Frustrated Total
Internal Reflection (FTIR) technology offers a robust and affordable hardware
solution. FTIR surfaces share a set of common components: 1) An optical waveguide
for conducting infrared (IR) light, 2) A supporting structure for holding the
waveguide, 3) An IR sensing camera, 4) A projector and diffuser, 5) An IR emission
source, 6) A computer. Our design is pictured in Figure 1. For the optical waveguide,
we’ve chosen a 32”x24”, ½” thick sheet of clear acrylic. The dimensions of the
surface match the 4:3 aspect ratio of most modern, short-throw projectors. The
supporting structure for the acrylic is a 37” high table and includes a 6” wide border
around the waveguide, for placing materials (or resting elbows) that will not interact
with the surface. The IR camera and projector are placed below the acrylic, and are
contained within the table. This design supports collaboration with up to four seated
or standing users. The IR camera is a Microsoft LifeCam VX-6000, a commercial-
off-the-shelf webcam that has been modified to allow IR light while filtering visible
light. The projector is a Mitsubishi XD500U-ST short-throw projector, capable of
producing a 60” diagonal from only 33” away. The diffuser is a sheet of Rosco Gray
7mm thick PVC, rear-projection material. For IR emission we chose a set of 32
Osram 485 LEDs. These are split into 4 chains (connected in parallel) of 8 LEDs
(connected in serial) running to a common 12V power supply. Lastly, we’ve chosen a
small-footprint MicroATX computer for operating the multi-touch surface software.

Several of these components are discussed in more detail below.

4 Paul Varcholik, Joseph LaViola, Denise Nicholson

Figure 1. Multi-Touch Hardware Design

Acrylic Waveguide & Infrared LEDs. Acrylic has optical properties conducive

to Total Internal Reflection [2]. It’s also quite durable, inexpensive, and can be
manufactured in a number of sizes. Thickness is a consideration at large dimension, as
pressure on the surface causes the acrylic to noticeably deflect. At 32”x24” we found
a ½” thick sheet of acrylic to be a nice compromise between rigidity and cost.

When placing the LEDs around the acrylic, the primary concerns are providing
enough light and fully distributing that light within the waveguide. We initially drilled
5mm wide depressions, into the acrylic edges, to house the LEDs. This works quite
well, and does not require polishing the acrylic edge to introduce light into the
waveguide. A drawback to this approach is that the LEDs are semi-permanently
affixed to the acrylic. Working with the acrylic (for example, to pour on a silicone
rubber compliant surface) often requires removing the LEDs. In our final design, we
chose to surround the acrylic with LEDs, equally spaced, and abutting the acrylic
edges. Again, we found that polishing the acrylic edges was not required. The choice
of 8 LEDs per side is more than sufficient for our surface size, given their 40-degree
viewing angle. In fact, we found quite reasonable results with only two adjacent edges
lit. To determine if enough light is being introduced into the waveguide, point the IR
camera at an edge opposite to the illumination. The camera should detect a solid bar
of IR – the light escaping the edge. If this bar of light is segmented, or significantly
varies in intensity, then the illumination is not being fully distributed throughout the
waveguide and additional LEDs are required.

Projector & Diffuser. Short throw projectors, capable of displaying large images

from very close distances, have become increasingly available in recent years. A short
throw is necessary for maintaining small table depth. If the multi-touch system has no
depth requirement (e.g. a wall-display) then a traditional projector can help reduce
cost. Strictly speaking, a traditional projector, with a system of mirrors for increasing
focal length, can be used in a depth-limited multi-touch surface. However, this adds
complexity to the hardware design.

The diffuser is the surface upon which the projected image will be displayed. Aside
from the choice of materials, a chief concern for the diffuser is its placement – either
above or below the waveguide. Placing the diffuser below the waveguide causes a
slight disparity (of the thickness of the waveguide) between the interaction surface
and the projected display. Furthermore, a pliable diffuser material, placed below the
waveguide, will sag, deforming the projected image if not otherwise supported.
Moreover, the diffuser may absorb some of the IR light passing through it. While this
is a benefit for reducing ambient IR light, the diffuser will also absorb some of the

TACTUS: A Hardware and Software Testbed for Research in Multi-Touch Interaction 5

light being reflected through FTIR when placed below the waveguide. For these
reasons, we suggest placing the diffuser above the waveguide. This approach also
protects the waveguide from scratches and oils from the users’ fingers. Unfortunately,
placing the diffuser above the waveguide negatively impacts the coupling between the
users’ fingers and the waveguide, decreasing the light reflected through FTIR. A
material, placed between the diffuser and the waveguide, is required to improve
coupling and thereby increase the amount of IR light directed to the camera while
decreasing the force necessary to reflect it.

Compliant Surface. A finger makes an imperfect connection with acrylic. Micro

air-gaps form between the user’s fingers and the waveguide and maintain the original
acrylic-to-air interface, thus supporting Total Internal Reflection. Moistening
fingertips or pressing firmly on the surface can improve coupling, but these are not
viable long-term solutions. A coupling material is required to permit low-force, high-
quality surface interaction.

After much trial-and-error, we settled on a 1mm thick layer of SORTA-Clear 40 –
a translucent silicone rubber – placed between the acrylic and the diffuser. SORTA-
Clear 40 is a liquid that, when mixed with its catalyst, will cure at room temperature
into a firm (40A Shore hardness) material that provides very good coupling with
limited hysteresis. However, mixing the rubber with its catalyst creates air bubbles,
which will cause considerable noise in the captured image. Placing the mixed rubber
into a vacuum chamber can help remove these bubbles, but there is limited time
before the material begins to cure, and the pouring and smoothing process will
reintroduce some air. Placing the entire surface into a vacuum, after the material has
been poured, may be the best option for removing bubbles – if a large enough vacuum
chamber is available. We found good results, in mitigating air bubbles, simply by
keeping the thickness of the rubber very small (e.g. <=1mm) and by pouring and
smoothing slowly and deliberately. Applying a small amount of heat, from a hair
dryer or heat gun, can help remove any stubborn bubbles before the rubber cures.

While pre-cured layers of rubber are available, we found them difficult to adhere to
the acrylic without introducing a large number of air pockets. Pouring the silicone
rubber directly onto the surface produced the best results.

4 Software Framework

The chief function of the TACTUS software library is to collect and interpret multi-
touch surface input. The core components of the library do not specify how this data
is used or displayed. Thus, the library is presentation-layer independent and graphical
user interface (GUI) systems such as Windows Presentation Foundation (WPF),
Windows Forms (WinForms), and Microsoft XNA can all be used to develop front-
end applications that utilize the multi-touch framework. To support various
presentation systems, the TACTUS software framework maintains two modes of data
communication: polling and events. Traditional WinForms applications use events to
communication object information; whereas polling is more common for simulations
or video games, where input devices are continuously queried.

6 Paul Varcholik, Joseph LaViola, Denise Nicholson

4.1 Image Processing

At the core of the software, is an image processing system that converts raw camera
data into points of interaction. The image processing system runs in its own software
thread, and captured frames are sent through the processing pipeline depicted in
Figure 2.

Figure 2. Image processing pipeline

Processing begins by capturing an image from a video source – a Microsoft

DirectShow compatible device. The camera’s device enumeration, frame rate, and
resolution are specified through the framework’s XML configuration file. The
RotateFlip step transforms the image vertically and horizontally, as specified in the
configuration file, orienting the image to match the projector.

During initialization, the software library captures a set of frames, while the
surface is quiescent, and combines them to form a background image. The
Background Filter step subtracts this background image from the active frame, thus
removing noise from the image. Noise originates from ambient infrared light, “hot-
spots” produced by the projector, oils and debris on the waveguide and compliant
surface, and from light unintentionally escaping the waveguide. The TACTUS
software library allows the user to recapture the background image at any time and
does not force the restart of the image processing system to compensate for a dynamic
lighting environment.

Most webcams capture images in color, typically at 24 bits per pixel (bpp). The
Grayscale action converts a color frame to grayscale (8bpp). This step can be
removed if the camera natively captures images in grayscale – the format required for
the subsequent Threshold filter, which further isolates pixel values to black or white
(fully on or fully off). Pixels below the configurable threshold value are treated as off
and pixels above as on. The resulting 1bpp black & white image is sent to the Blob
Detection process, which groups neighboring on pixels into blobs. Blobs are the
regions of the image that we consider for potential points of surface interaction. The
blob detector filters out blobs below a minimum width and height, as specified in the
configuration file.

Scaling adjusts the dimensions of the image to correspond to the resolution of the
image projected onto the multi-touch surface. The Calibration step then adjusts for
differences between the interaction surface, projector, and the camera that create
discrepancies between the points touched on the surface and the location of those
points in the camera frame. By sampling points at the four corners of the surface, we
can construct a transformation matrix and generate a lookup table with the corrected

TACTUS: A Hardware and Software Testbed for Research in Multi-Touch Interaction 7

location for every point of interaction. This table can be serialized, and the resulting
file specified in the XML configuration for automatic loading by the framework.

The final phase of the image processing pipeline is Point Tracking, which takes the
detected, scaled, and calibrated blobs and abstracts them into FtirPoint objects. An
FtirPoint object has attributes including: a globally unique identifier (GUID),
location, timestamp, bounding box, speed, direction, and duration. Each FtirPoint
represents a single point of interaction with the surface, and it is this data that is most
useful for multi-touch applications. With the location and bounds of an FtirPoint we
can perform hit testing – testing an area on the screen for an interaction point –
through simple rectangle intersection. The point tracking process also labels each
FtirPoint with a GUID that is maintained as long as the interaction point is present. To
track a point across frames, we again perform rectangle intersection between the
previous and current frame’s FtirPoints. Points that intersect are considered the same
point, and differences in location and time are used to calculate the point’s speed,
direction, and presence duration. Detected points that do not intersect with previous
points are assigned a new GUID. This process allows points to split and merge, and
enables gestural interaction with the surface. However, the performance of this
technique is tied to the quality of the camera and the compliant surface.

The purpose of the compliant surface is to improve coupling between the user’s
fingers and the waveguide. If that coupling is poor, the user’s fingers will “stutter”
across the surface, and will not continuously reflect IR to the camera. The gaps
between images would cause the point tracking system to re-label what would
otherwise be the same point. The framework provides a stutter-correction system that
tracks points within a time-window for label reuse. Tracked points that become absent
from a camera frame are transferred to a “pending disposal” collection for a user-
configurable time (250 millisecond default). Newly detected points are matched
against this collection, again through rectangle intersection, before they are assigned a
new GUID. In this fashion, the framework will reconstitute a point that becomes
briefly disconnected from the surface. Stutter mitigation, however, does not address a
camera with a slow frame rate. If the user’s fingers move across the surface faster
than the camera can track, the software library will label the points as disconnected.
Future work on the library will attempt to address this through point prediction.

Exiting the image processing pipeline is the set of currently detected FtirPoints.
Figure 3 shows a camera frame as it is passed through the image processing pipeline.
Specifically, the figure displays: the raw camera frame (a), the background filtered
image (b), the threshold image (c), and the fully processed FtirPoints displayed on the
multi-touch surface (d).

(a) (b) (c) (d)

Figure 3. A camera frame passed through the image processing pipeline: raw camera frame
(a), background filtered (b), threshold (c), processed points (d)

8 Paul Varcholik, Joseph LaViola, Denise Nicholson

4.2 Framework Features

While the image processing system forms the heart of the TACTUS software
framework, there are a number of additional features that can aid in the creation of
multi-touch applications including: multi-platform communication, 2D/3D graphics,
pen/writing-style interaction, and gesture recognition.

The TACTUS software library is built on two open-source libraries: the Bespoke
Open Sound Control Library (OSC) [11] and the Bespoke 3DUI XNA Framework
[12]. OSC is an open, lightweight, message-based protocol that enables, for example,
multi-touch data to be transmitted over a network. The Bespoke 3DUI XNA
Framework is a software library for enabling research in game development and 3D
user interaction (3DUI). The TACTUS software framework employs this library as a
presentation layer for multi-touch applications; allowing games and simulations to be
constructed with multi-touch input.

Another interesting feature of the TACTUS software system is its support of
pen/writing-style interaction. Pen-style computing refers to human-computer
interaction through the digital representation of ink or writing, typically input through
a computer stylus [13]. Ordinarily, pen-computing is single-touch – where input is
collected from only one location at a time. This is a degenerate case of multi-touch,
where we constrain the input and treat interaction points as digital ink. The TACTUS
software library collects ink data into Stroke objects which can be used for 2D
recognition. TACTUS provides a machine-learning system for training and
classifying stroke data based on work by Rubine [14].

5 Case Studies

The TACTUS software library has been utilized in the creation of many multi-touch
applications, and across a variety of domains. This section discusses four projects
built with the framework, pictured in Figure 4: SurfaceCommand (a), InkDemo (b),
Waterfall (c), and the TACTUS mouse emulator (d).

Figure 4. Multi-Touch applications: SurfaceCommand (a), InkDemo (b), Waterfall (c), and the

TACTUS mouse emulator (d)

SurfaceCommand is a multi-touch demonstration styled after real-time strategy
games. Built using the Bespoke 3DUI XNA Framework, with the TACTUS multi-
touch extensions, SurfaceCommand presents a 3D battlefield viewed through an
orthographic virtual camera. The user can pan around the battlefield by sliding two or
more fingers across the display and zoom into and out of the map with “pinch”

TACTUS: A Hardware and Software Testbed for Research in Multi-Touch Interaction 9

gestures – a motion whereby two interaction points are moving in roughly opposite
direction, either toward or away from each other. Spaceships within the battlefield can
be selected and moved about the map with single interaction points; and multiple
ships can be selected and deselected with mode buttons along the bottom of the
display. This simple application explores techniques that could be used within a real-
time strategy video game and was developed in just four days.

InkDemo, pictured in Figure 4b, demonstrates the pen-style interaction of the
TACTUS framework. Stroke data is collected when the user provides only a single
point of interaction. As the user slides a finger across the display, simple block-style
lines are generated to visualize the underlying stroke data. A set of strokes can be
labeled and committed to the TACTUS symbol recognition system. With a sufficient
number of training samples, the user can then classify an unlabeled set of strokes.

Our third application, Waterfall, is an example of multi-platform communication
and the rapid development capability of the TACTUS software system. The
application is a fluid-dynamics demonstration, where simulated water flows down an
inclined surface and can be perturbed by multi-touch surface interaction. Users
interact with the water to form “dams” with their hands and fingers. The simulation
was developed in C++ and rendered with the OGRE game development platform
[15]. The multi-touch input was serialized via Open Sound Control, as described in
section 4.2, and received by the simulation using an open-source C++ OSC
implementation. The integration effort took only three days from start-to-finish.

The last example demonstrates the TACTUS mouse emulator – an application that
allows the use of a multi-touch surface to control traditional, mouse-driven Windows
applications. The mouse emulator associates a set of gestures with common mouse
commands, as listed in Table 2.

Table 2. Mouse emulator gesture mappings
Function Gesture Description

Left Click Quick tap on the surface with one finger.
Left Click
(alternate)

While holding down a finger, tap another finger to the left side of the first.

Drag Perform a Left Click (alternate) but do not release the left side press. Drag
both fingers to the destination and release.

Right Click While holding down a finger, tap another finger to the right side of the first.
Double Click Tap two fingers at the same time.
Mouse Wheel
Scroll

While holding down a finger, drag another finger vertically and to the right
side of the first. Dragging up scrolls the mouse wheel up and vice versa.

Alt-Tab While not a mouse command, the Alt-Tab command is a useful Windows
feature that switches between applications. To perform an Alt-Tab, hold
down a finger and drag another finger horizontally above the first. Dragging
to the left moves backward through the list of active applications and
dragging to the right moves forward.

Figure 4d shows the emulator in use with the commercial video game Starcraft by

Blizzard Entertainment. This popular real-time strategy game is controlled through
the mouse and keyboard; but using the TACTUS mouse emulator, one can play
Starcraft through a multi-touch surface. Videos of these, and other TACTUS
demonstrations, can be found at http://www.bespokesoftware.org/.

10 Paul Varcholik, Joseph LaViola, Denise Nicholson

6 Conclusions

In summary, while multi-touch technology has generated considerable excitement
and offers the potential for powerful new interaction techniques, the researcher must
overcome a significant obstacle for entry into this field – obtaining a multi-touch
hardware and software research platform. Few commercial options exist, and there are
deficiencies in academic literature on constructing such a platform. This paper
describes the requirements of a multi-touch research system and presents TACTUS, a
hardware and software testbed that enables research in multi-touch interaction. The
testbed discussed offers insight into the construction of a robust, low-cost multi-touch
surface and the development of an extensible software system for the rapid creation of
multi-touch applications.

This work is supported in part by the National Science Foundation under award
number DRL0638977.

References

1. Dietz, P., Leigh, D.: DiamondTouch: A Multi-user Touch Technology. In: 14th ACM
Symposium on User Interface Software and Technology, pp. 219--226. ACM, New York
(2001)

2. Han, Y.J.: Low-cost Multi-touch Sensing through Frustrated Total Internal Reflection. In:
18th ACM Symposium on User Interface Software and Technology, pp. 115--118. ACM,
New York (2005)

3. Wilson, A.: TouchLight: An Imaging Touch Screen and Display for Gesture-based
Interaction. In: 6th International Conference on Multimodal Interfaces, pp. 69--76. ACM,
New York (2004)

4. Microsoft Surface, http://www.microsoft.com/surface/
5. TouchLib, http://nuigroup.com/touchlib/
6. Martin, K., Ross, B.: reacTIVision: A Computer-vision Framework for Table-Based

Tangible Interaction. In: 1st International Conference on Tangible and Embedded
Interaction, pp. 69--74. ACM, New York (2007)

7. BBTouch, http://code.google.com/p/opentouch/
8. Davidson, P. and J. Han: Synthesis and Control on Large Scale Multi-touch Sensing

Displays. In: The 2006 Conference on New Interfaces for Musical Expression, pp. 216--219.
IRCAM, Paris, (2006)

9. Kim, J., Park, J., Kim, H., Lee, C.: HCI(Human Computer Interaction) Using Multi-touch
Tabletop Display. In PacRim Conference on Communications, Computers and Signal
Processing, pp. 391--394. IEEE Press, New York (2007)

10. Tse, E., et al.: Enabling interaction with single user applications through speech and gestures
on a multi-user tabletop. In: Proceedings of the working conference on Advanced visual
interfaces, ACM (2006)

11. The Bespoke Open Sound Control Library, http://www.bespokesoftware.org/osc/
12. The Bespoke 3DUI XNA Framework, http://www.bespokesoftware.org/3dui/
13. Bowman, D., Kruijff, E., LaViola, J., and Poupyrev, I.: 3D User Interfaces: Theory and

 Practice, (2004): Addison Wesley
14. Rubine, D.: Specifying gestures by example. in International Conference on Computer

 Graphics and Interactive Techniques. (1991)
15. Torus Knot Software. OGRE - Open Source 3D Graphics Engine, http://www.ogre3d.org/

