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Abstract. We present MathPaper, a system for fluid pen-based entry
and editing of mathematics with support for interactive computation.
MathPaper provides a paper-like environment in which multiple math-
ematical expressions and even algorithms can be entered anywhere on
the page. Mathematical expressions can also be modified using simple
deletion and dragging gestures with real-time recognition and computa-
tion feedback. In addition, we support extended notations and gestures
for controlling computational assistance, simplifying input, and entering
algorithms, making MathPaper a user-friendly system for mathematical
sketching and computation.

1 Introduction

Despite the tremendous computational power that is available on a typical desk-
top, it is interesting that students and professionals frequently resort to pencil
and paper to do their homework or solve problems. Several factors conspire to-
ward this phenomenon, such as the time it takes to start up an application and
the limited display surface of a computer screen. However, we believe that the
dominant reason for this reluctance to utilize desktop mathematics applications
is the nature of pencil and paper itself, which affords fluid, direct specification of
2D mathematical notations and supporting diagrammatic structures in arbitrary
juxtapositions.

From this motivation, we have developed MathPaper, a virtual equivalent
to pencil and paper, that is enhanced to provide integrated computational sup-
port for mathematics. Ideally this should be at least as convenient as writing
on paper but enhanced to recognize mathematical structures including multiple
expressions, matrices, and even algorithms. Additionally, given the complexity
of general mathematics recognition, including inherent notational ambiguities,
we believe that interactive recognition feedback must be provided to ensure a
fluid workflow. Previous systems [1, 2] that require explicit interaction to display
recognition feedback after an expression has been entered necessarily introduce
a heavyweight cognitive step — users must shift from thinking about their prob-
lem at hand to examining the subtle symbolic and spatial aspects of an input
expression to see if it matches their intentions. Instead, when provided with in-
teractive recognition feedback, we believe users can amortize the inspection of
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recognition feedback over the course of their input. Changing to this lighter-
weight process may make the essential nature of pencil-and-paper as a fluid,
non-disruptive medium attainable.

Recognizing mathematical expressions non-disruptively, however, is only the
first step in creating MathPaper. Additionally, we need extensions to stan-
dard mathematical notation to support computational assistance. Believing that
mathematical notations are rich, familiar, and expressive, we attempted to intro-
duce mathematical assistance in the form of enhanced mathematical notations.
Thus, instead of treating computation as an external method to apply to a hand-
written expression, we treat computation as an integral part of math notation.
For example, drawing a ⇒ to the right of any expression computes a numerical
approximation of that expression. Although eventually some kind of computa-
tionally extended notation might be accepted as a standard that everyone would
learn in school, we, in the meantime, need to provide additional support both
for learning notational extensions and for accessing functionality that is more
conveniently accessible through other user interface mechanisms.

In the next section of this paper, we discuss work related to the MathPaper
prototype followed by a discussion of the fundamental interactions it supports.
We then discuss how mathematics is specified and recognized in the MathPaper
system and present some details on its support for computation. Finally, we
present a brief discussion on an informal user evaluation along with future work
and conclusions.

2 Related work

Sketch-based interfaces have been explored for facilitating conceptual designs in
various fields, including 2D diagrams [3] by Gross et al., mechanical design [4, 5]
by Alvarado and Kara, musical score creation [6] by Forsberg et al., 3D scenes [7]
by Zeleznik et al., and freeform models [8] by Igarashi et al. In contrast, MathPa-
per provides a sketch-based interface for mathematical expression input, editing
and computation.

For mathematical computation, sketch-based interfaces have also been devel-
oped by quite a few people and companies. Chan and Yeung developed a simple
pen-based calculator PenCalc [9], and Thimbleby and Thimbleby also devel-
oped a calculator with a gesture-based interface supporting animation for sim-
ple math calculations [10]. MathBrush [11] recognizes mathematics and drives
a symbolic algebra system with it. MathJournalTMby xThink, Inc. can solve
equations, perform symbolic computation, make graphs, and automatically seg-
ment multiple expressions, while Microsoft MathTM [1] supports both numeric
and symbolic computation of a single expression. LaViola’s MathPad2 system
[2] used a pen-based interface to let users create dynamic illustrations for explor-
ing mathematical and physical concepts by combining handwritten mathemat-
ics and free-form drawings. Comparing with those sketch-based interfaces for
mathematics, MathPaper provides a real-time, write-anywhere, fluid interface
for mathematical computations. Expression recognition is automatic, with au-
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tomatic segmentation for multiple expressions. Ink stroke deletion and dragging
are supported with gestures, and matrices, including non-well-formed matrices,
are supported together with algorithm sketches.

3 Fundamental interactions

The fundamental interactions provided by MathPaper are for entering and edit-
ing mathematical expressions, issuing commands, and demonstrating the gestu-
ral user interface. With these interactions, our design philosophy was to ensure a
high degree of real-time interactivity and feedback both at the recognition level
and at the computation level (as in spreadsheets where changing different values
automatically affect the results of various formulae).

3.1 Ink input and editing by handwriting

Mathematical expressions are entered by writing virtual “ink”, just as with pa-
per. As Fig. 1 shows, multiple expressions are supported, and except for the cases
where orders of expressions are important for computation, dependent expres-
sions can be entered anywhere on the page, just like on paper. The right arrow
is an extended notation for expression computation, detailed in Section 4.1.

Fig. 1. Arrangements of dependent expressions. The expressions on the left are the
same as on the right, yet arranged differently.

Editing of entered ink strokes can be done by circling and then dragging
them or by scribbling over them to delete them; recognition of both gestures
is discussed in Section 5.3. In addition, the horizontal bar of a square root or
fraction can be extended by just drawing another horizontal line in the same
direction with one end near the end of the line to be extended.

3.2 Commands

Since we provide more commands in our system than we can provide easy gestu-
ral or notational shortcuts for, we make use of widgets attached to each written
expression to provide additional functionality. However, adding a normal wid-
get would take up screen space, preventing the user from entering ink in that
location. To conform to our write anywhere aesthetic, we avoid this problem by
using a technique inspired by hover widgets [12]. We draw a green square under
the ink on the display; hovering the pen tip over the square without touching
the screen causes a cluster of buttons to appear to the upper-right (see Fig. 2). If
the pen moves directly towards the buttons, they can be pressed and interacted
with as usual to display menus, perform functions, etc. If the pen moves in any
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other direction first, the buttons are removed. Thus, the user may draw strokes
at any location on the screen and still have access to local widgets. If the user
happens to move accidentally over the buttons, it is a simple matter to move
back off again, although, in practice, this rarely occurs.

Fig. 2. Embedded widgets associated with specific expression locations.

A small green square is provided at the top left of each expression to sup-
port various expression level commands such as graphing and simplification. For
matrices, a green square is also placed at the top right with matrix-specific oper-
ations such as computation of eigenvectors, singular value decompositions, and
norms. (The green boxes in figures other than Fig. 2 have been deliberately set
to have the same color as the background to reduce distraction in this paper).

Demonstrations of extended notations and gestures We attempt to make
some of the extended notations and gestures we provide (see Section 4.1) discov-
erable by demonstrating to the user what the gesture would have been to perform
a command the user has selected. For instance, if the user selects Delete from
the menu, the system draws a scribble as an animation over the ink before dele-
tion. Currently this happens for the Delete, Simplify, Numerically Approximate,
and Graph commands. In the case of the notations for Simplify and Numerically
Approximate, the ink for the notation is left on the screen as if the user had
written it, since these are intended to be persistent marks.

3.3 Interaction for switching between drawing and math modes

In addition to mathematical expressions, MathPaper also supports drawing of
freeform shapes and/or annotations without recognition or interpretation. Mode
switching between math mode and drawing mode can be done either by choosing
a command or by flicking a diagonal line followed by drawing a circle on the line.
Ink in the freeform drawing mode is colored in blue. Annotations can also be
later recognized as mathematical expressions; this is done by lassoing the ink
strokes in the drawing mode followed by drawing a line entering the circle as
shown in Fig. 3.
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Fig. 3. Recognition of an annotation as math by lassoing the ink followed by an inter-
secting or crossing line stroke as shown on the left. The recognized strokes are shown
on the right.

4 Specifying Mathematics

Our system currently supports entry of a solid range of basic math: a number of
basic math symbols (including Greek letters and others such as∞, R, etc.), basic
math relations (<, ≤, 6=, ≈, ⊃, ⊥, etc.), basic math operators (+, −, ·, /, ∧, etc.),
fractions written vertically (a

b ), integrals, summations, roots, trigonometric and
similar (log, ln, etc.) functions, and matrices. The recognized expressions can be
exported as LATEX code, MathML, and vector images of the typeset display.

Mathematics already uses duplicate notation for multiple purposes. For ex-
ample, a textbook one author has uses ux and uy for the partial derivatives of
a function u with respect to x and y, while other authors use that notation to
represent the x and y coordinates of u. Perhaps the most common example is
the use of each of i and j to represent either

√
−1 or an ordinary variable. Since,

as a result, a mathematics recognition system already has to make choices when
interpreting notation, it may as well consider recognizing other additions to stan-
dard notation to control further processing of the expressions, to take advantage
of the pen’s strengths to simplify entry, and for various other purposes.

4.1 Extended mathematical notations

The notational extensions discussed here extend users’ control of their input,
summarized in Table 1.

MathPaper supports interactive computation and graphing, both with arrow
notations. A double right arrow at the end of an expression tells the system
to compute a numerical approximation, while a single right arrow results in an
exact symbolic evaluation, as shown on the left of Fig. 4. Since the only use we
make of double arrows is for this numerical approximation function, an “arrow”
referred to later in this paper is a single arrow unless otherwise specified.

Arrows are not only used for computation and graphing, but also for input
brevity of matrices with patterns as shown on the right of Fig. 4. If a matrix has
a certain pattern, input of the matrix can be simplified by extending a diagonal
arrow for specifying the pattern. The arrow starts from the element on the first
column and the first row, and points to the element on the last column and the
last row. As shown on the right of Fig. 4, the dimensions of the matrix can be
specified in the bounding box of the arrow, and the row index and column index
variables can also be specified along with the dimensions. The number of rows
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Table 1. Extended Notations

Functions Notations Descriptions

Computation →,⇒ Evaluates expressions

Graphing ←→↑↓↗↘↖↙ Graphs an expression

Brevity ↘ in matrices Facilitates input of matrices with patterns

Space | − ¬ Adds more horizontal or
Management vertical spaces in matrices

← for function definition and return
∀ a shortcut for for
∈ for argument type specification and loops

Algorithmic ∼ for omitted data. Order is enforced.
Notations = for assignment and equality

// for comments; can cover multiple lines
//T () produces a table of trace results
↗↘−→ sets a trace point if in function definition

Fig. 4. Examples of extended notations.

and the row index variable are below the arrow, and the number of columns and
the column variable are above the arrow. If elements above the main diagonal
are a constant value, that value can be entered above and to the right of the
arrow bounding box. Similarly, if elements below the main diagonal are constant,
that value can be entered below and to the left of the arrow bounding box. This
arrow extension allows for quick input of large matrices with certain patterns.

MathPaper also supports gestures for managing spaces between matrix ele-
ments. A vertical line that is at least twice the average height of the element
bounding boxes moves the strokes on the right of the vertical line to the right
a certain distance to allow insertions in the matrix. Similarly, a horizontal line
that covers at least two matrix elements moves the strokes below by a certain
distance. Since the long horizontal line can only add vertical space to more than
one matrix element, we also use a ¬ gesture for adding more vertical space to
any stroke below the horizontal part of the ¬. If any stroke is moved to the right,
and the matrix has a closing parenthesis, the closing parenthesis is moved to the
right accordingly. If a stroke intersects the space adding gesture, it is moved only
if its center is to the right or below the gesture. For a multiple stroke symbol,
movement of any stroke also moves all the other strokes of the symbol. These
space adding gestures provide a faster way to move strokes than lassoing and
dragging them if only horizontal or vertical space is needed.
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Besides the above, MathPaper also supports extended notations for algo-
rithm sketching [13] as listed in Table 1. Algorithm Sketching in MathPaper
supports sketched algorithmic pseudocode with online computation capabilities.
It supports flow of control constructs such as for loop, if, and else, and also
supports a trace table for showing values of variables at any running point. A
left arrow following function name with parameters specifies a function defini-
tion, while a heading left arrow returns function call results. For input simplicity,
notations are extended for pen-based input. For example, ∀ is used for for, ∼ is
used for ellipsis (· · ·). Mathematical notation ∈ is also supported for specifying
argument types and ranges of iteration variables in for loops. The trace table is
specified by the table head //T (), with trace variables listed in the parentheses.
Right and diagonal arrows are extended for specifying the trace point in the al-
gorithm, with the arrow starting from the trace point, and pointing to the trace
table head. Comments can be added following //, and the extended notation
// can cover multiple lines, rather than only one line as used for keyboard and
mouse input.

By extending notations, pen-based input can be simplified, and interactions
can be more fluidly supported. All extended notations have specific meanings
depending on context.

4.2 Allograph mapping

MathPaper explicitly represents allographs, or different ways of writing the same
symbol, with different user-specifiable interpretations for different allographs
even when they are of the same symbol. As in our previous work [14], this
means that, for instance, a script i could be mapped to the variable i while a
straight-line i could be simultaneously mapped to

√
−1.

5 Recognizing mathematics

Fig. 5 shows the major steps involved in the math recognition used in MathPaper.
After recognition of an input symbol, affected ranges (each range represents one
grouping of symbols that the system believes is a single complete expression)
are re-parsed automatically. Symbols in one range are sorted and a baseline
tree is constructed for the range. After a semantics parse step, an expression is
generated for one affected range. More details about the recognition process are
given in [13].

Ink Gesture?

Y

N

UI

Symbol
Recognizer

Syms
Range
Sub-

division

Parse 1
Ranges

Parse 2
Trees of Lines Exprs

Fig. 5. Dataflow of mathematical expression recognition from ink strokes(from [13]).
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5.1 Interactive feedback

MathPaper re-recognizes and re-parses after each update, including stroke entry
or deletion, as well as dynamically in real-time during interactive movement. If
a new stroke is added, it is recognized, and all the symbols in the affected range
are sorted and parsed again with the immediate feedback as the typeset output.
If more than one range is affected, for example by deleting a stroke which splits
one range into two new ranges, or by adding a stroke which merges multiple
ranges, all affected ranges are re-sorted and re-parsed.

Extended typeset conventions The recognition results are generally dis-
played as 2D typeset expressions under the input strokes for each range, al-
though there are alternate styles available [14]. Our typeset display algorithm
has evolved to be very close to implementing the basic TEX display algorithm [15]
with some additional knowledge about conventions that TEX relies on the user
to follow. This feedback is only displayed under the expression the cursor was
last over, to avoid confusion and clutter. One change we have made is to use a
different typeface to distinguish the variable representing

√
−1 and the base of

the natural logarithm each from the corresponding ordinary variables with the
same symbols (i.e., i vs i and e vs e, respectively).

Fig. 6. Typeset convention extensions.

In addition, we have explored extensions to indicate syntax errors by high-
lighting the relevant part of the output typeset with a red squiggle underneath
it, as in Microsoft Word’s indication of spelling mistakes. In the case of roots and
vertical fractions we have found it more visually comprehensible to indicate a
missing value by two bold question marks as shown in Fig. 6. In order to provide
this feedback, our parser parses even mathematically invalid expressions, adding
special nodes to the internal parse tree to indicate values that were assumed to
be missing.

5.2 Automatic range segmentation

MathPaper supports multiple expressions, each represented by a range, and
ranges are automatically segmented according to spaces between strokes, sizes
and identities of the symbols at the boundaries of neighboring ranges.

After a stroke is recognized as a symbol, an inflated bounding box is com-
puted for use in range identification. The amount to be inflated in each direction
is based on the size, shape, and identity of the symbol. Special cases such as
comma (,) and +/ =>< etc. are prevented from becoming isolated ranges even
if they have small bounding boxes and relatively large distances to ranges on
both sides.
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After computing the inflated rectangle r for range identification, all existing
ranges are examined against r using intersection tests. If an existing range’s
bounding box intersects r, the update belongs to the existing range. Otherwise,
the existing range’s bounding box is inflated. Let the inflated bounding box of
the existing range be R. If R does not intersect r, the update does not belong
to the existing range. If R intersects r, the bounding box of the nearest symbol
in the range is inflated and if the inflated bounding box intersects r, the update
hits the range. Otherwise the range is not hit by the update.

Hence, update is automatic not only when there is a single expression, but
also when there are multiple expressions. Range segmentation is automatic after
each update. After identifying all the hit ranges, symbols in them are re-sorted
and parsed for the updated expressions.

5.3 Gesture disambiguation

Gestures disambiguation is done in MathPaper by examining the contexts of the
gestures. A stroke is recognized as a deletion gesture only if it intersects other
strokes. As discussed above, lasso gestures are used to drag ink strokes around,
and a stroke is recognized as a lasso only if it contains at least one stroke. Also
for tapping as a gesture for the integral sign and summation sign upper limit and
lower limit widget [14], it can be recognized as a tapping gesture only if it is in
the bounding box of an integral or summation symbol. If a tapping is followed
by another stroke which will make a symbol i or j, or a tapping can make a
symbol i or j with a neighboring stroke, it is recognized as a symbol rather than
a tapping gesture even if the tapping is inside the bounding box of an integral
or summation symbol. Similarly, a single arrow can be used for symbolic com-
putation, graphing, algorithm definition, etc, and its semantic meaning depends
on its contexts. More detail on graphing gestures is found in Section 6.3.

6 Supporting computation

Symbolic computation in our system is supported through mathematics engine
plug-ins. Currently, only two are fully functional: one that uses Mathematica [16]
as a back-end to do the computations, and the other, which supports a limited
but still useful set of calculations, was developed in house.

6.1 Automatic update

One of MathPaper’s key features is its support of automatic updates for compu-
tations. If there is a change to an assignment expression, all computations are
updated automatically as shown in Fig. 7 for the two computations of a + b and
a2 + b2 after the update of c = T into c = π. Although the updated assignment
might not be in a computation as shown for the update of c = π in Fig. 7,
this assignment update might affect other assignments, hence all computations
need to be updated with any assignment update in order to have automatic
computation updates.
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Fig. 7. Automatic update of computations after ink c = T shown on the left is updated
to c = π shown on the right.

6.2 Display feedback and interaction with computation results

If a computation result is asked for by the user, MathPaper attempts to deter-
mine if the result is a number. If the system is sure that the result is a number
(whether exact or approximated), it displays the typeset feedback for the input
expression in green rather than blue (see Fig. 7).

MathPaper also supports interaction with computation results if the results
are numerical approximations. Numerical results are highlighted in green, and
hovering over the results displays a sliding bar below the highlighted area as
shown on the right of Fig. 2. The sliding bar is used to interactively change the
desired number of decimal places that numerical results should be rounded to.
An alternate option to the sliding bar is to use a horizontal stroke directly, or
just hover over the results to specify the decimal places to round off.

6.3 Graphing

In addition to computation, MathPaper also supports graphing of expressions
with an arrow gesture. If an arrow starts from within the bounding box of an
expression, and points to outside of the bounding box of any expression, it is a
graphing gesture. The graph will be plotted at the arrow head with the arrow ink
being deleted. If a graphing arrow goes through multiple expression bounding
boxes, all touched expressions will be plotted in one graph as shown in Fig. 8.
MathPaper uses arrows rather than curved lines as used in MathPad2 [2] for
graphing to avoid a parenthesis being mis-recognized as a graphing gesture. To
disambiguate a right arrow for symbolic evaluation from a graphing right arrow,
a graphing right arrow must intersect at least one stroke in the expression,
otherwise it will be interpreted as a computation gesture.

Fig. 8. Graphing of multiple expressions by one arrow.
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7 Discussion

We conducted an informal usability evaluation of MathPaper by providing the
prototype to seven teachers of mathematics and science at both the high school
and college levels. Along with the software, the teachers were also given an in-
struction manual and they were asked to experiment with MathPaper, focusing
on entry, simplification, and graphing of simple mathematical expressions com-
monly found at the Algebra I level.

The majority of the teachers found MathPaper’s interface fairly straightfor-
ward and easy to use and found the real-time recognition feedback useful in
assisting them with correcting recognition mistakes. In addition, they found the
real-time computation feedback, when modifying existing variables and expres-
sions, to be an important part of MathPaper’s functionality, since it let them
quickly examine the results of any changes they made. They also reported that
this feature is especially useful when teaching students how changes in different
parts of a mathematical expression affect a computational result. The majority
of the teachers found the graphing functionality to be somewhat lacking in terms
of the types of graphs it supports but found its gestural interface straightfor-
ward. In total, the teachers enjoyed using MathPaper but also felt that it needed
more mathematics computation functionality.

8 Future Work

MathPaper provides a fluid user interface for automatic recognition of multiple
mathematical expressions and for mathematical computations. Currently, the
user must explicitly switch modes between interpreted math and un-interpreted
drawing. It would be more fluid to not have this drawing mode by relying on
automatic detection of annotations or freeform drawing.

We have supported editing of ink strokes only, with no editing allowed for the
typeset displayed. However, some MathPaper users have tended to try to edit
the typeset directly. In the future, we would like to explore schemes for allowing
editing of the typeset without taking available screen space away from starting
new expressions.

Displaying of computation results has fixed locations and computation results
cannot be reassigned to new variables. Being able to drag the results and to
assign the results to new variables would be obviously quite helpful. Expression
evaluation is supported, yet solving an equation for a specific variable is also
important and should be supported in the future. Finally, a formal usability
study is being developed for MathPaper that will explore how MathPaper can
be accepted by users and how its UI can provide them with a more productive
and enjoyable experience.

9 Conclusion

We have presented MathPaper, a mathematical sketching system for interactive
computation. MathPaper supports automatic recognition of both mathematical
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expressions, including well-formed and non-well-formed matrices, and sketched
algorithmic pseudocode, and automatic segmentation of multiple expressions.
Expressions can be entered anywhere on the page, and ink strokes can be deleted,
dragged and modified for error correction and expression re-arrangement. Math-
ematical notations have been extended and unambiguous gestures have been
designed in MathPaper to support fluid interactions with mathematics.
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