
CSTutor: A Pen-Based Tutor for Data Structure
Visualization

Sarah Buchanan
University of Central Florida
4000 Central Florida Blvd.

Orlando, Fl 32816
sarahb@cs.ucf.edu

Brandon Ochs
University of Central Florida
4000 Central Florida Blvd.

Orlando, Fl 32816
brandonochs@knights.ucf.edu

Joseph J. LaViola Jr.
University of Central Florida
4000 Central Florida Blvd.

Orlando, Fl 32816
jjl@eecs.ucf.edu

ABSTRACT
We present CSTutor, a sketch-based interface designed to
help students understand data structures. It currently sup-
ports Linked Lists, Binary Search Trees, AVL Trees, and
Heaps, and creates an environment in which a user’s sketched
diagram and code are combined seamlessly. In each of the
data structure modes, the user can naturally sketch a data
structure on the canvas just as they would on the white
board. CSTutor analyzes the user’s diagrams in real time,
and automatically generates code in a separate code view
to reflect any changes the user has made. Additionally, the
code can also be edited and any new code changes animate
the data structure drawn on the canvas. The connection
between the data structure drawn on the canvas and the
code implementation is intended to bridge the gap between
the conceptual diagram of a data structure and the actual
implementation. We also present the results of a perceived
usefulness survey. The results of the study indicate that the
majority of students would find CSTutor helpful for learning
data structures.

Categories and Subject Descriptors
K.3.1 [Computers and Education]: Computer-assisted
instruction (CAI)

General Terms
Algorithms, Human Factors, Experimentation

Keywords
Sketch-based input, data structures, visualization, anima-
tion

1. INTRODUCTION
Instructors in Computer Science generally present new

data structures using Powerpoint presentations or drawings
on a whiteboard combined with pseudo-code. Usually an in-
structor will have to draw several instances of a diagram to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’12, February 29–March 3, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1098-7/12/02 ...$10.00.

Figure 1: A screenshot of the sketching area in
Linked List mode after nodes 29 and 3 are added.

explain an operation. This can be troublesome for multiple
reasons. First, students may not understand which piece of
pseudo-code pertains to which change in the diagram. Sec-
ond, it is often time consuming and difficult for instructors
to draw each instance of the diagram. We designed CSTu-
tor (see Figure 1) with the goal of bridging the gap between
the conceptual diagram of a data structure and the actual
implementation.

In addition to diagrams, algorithm visualization tools are
used by students and instructors as a supplemental learning
aid. However, studies have shown that algorithm visualiza-
tion alone does not improve a student’s level of learning; it
is the level of student engagement with the algorithm vi-
sualization that is effective [5]. In addition, many existing
systems are not practical for use in the classroom or by stu-
dents because creating the data structures and animations is
too time consuming. These systems are not flexible enough
to support creating and editing examples on the fly.

To facilitate a more unified approach to learning and to
address the issues above, we developed CSTutor, a novel,
pen-based application for data structure visualization that
combines sketching, animating and coding of data struc-
tures. The intended users of CSTutor are students in a
beginning data structures and algorithms class (CS1 at the
University of Central Florida). The system lets the user
sketch elements of a data structure and perform operations
on them through the recognition of handwritten symbols
and gestures. Once a gesture is recognized the operation on

the data structure is animated while simultaneously adding
automatically generated code to the code view. In addition,
the code can be edited and any new code changes animate
the drawing in real time. In other words, if the user sketches
changes to the diagram, the code will dynamically change,
and if the user edits the code, the diagram will animate and
update itself. The data structures represented in CSTutor
(Linked List, Doubly Linked List, Binary Search Tree, Heap,
and AVL Tree) were chosen specifically because they are the
most basic data structures taught in introductory computer
science classes.

In order to gauge the usefulness of CSTutor in aiding CS1
students before incorporating this tool into the curriculum,
we conducted a perceived usefulness survey. The tool was
demonstrated to 88 students at the end of their CS1 class as
a way to review the data structures before the final exam.
A video demonstrating how CSTutor can be used to teach
data structures can be found here: http://youtu.be/uEja_
cxrGCg.

2. RELATED WORK
Many data structure visualization and animation tools

have been developed over the past 30 years, without gain-
ing much success in the classroom. Of these tools, Tango
and XTango were some of the earliest algorithm animation
systems that became popular in the early 1990’s. XTango
was similar in nature to what CSTutor accomplishes in that
it attempts to aid computer science students in understand-
ing algorithms through animation [12]. The difference with
CSTutor, however, is that we created an environment where
users can quickly and easily create their own data struc-
tures by sketching them. Additionally, CSTutor lets users
create custom functions to manipulate the data structure
and watch how their code interacts with it.

Two of the most widely used software visualization tools
in use today are JGrasp and Jeliot, which focus heavily on
debugging code rather than understanding the concepts of
data structures. JGrasp is a comprehensive IDE that gener-
ates visualizations as needed from the user’s actual program
during routine development [2]. It differs from our system
in that it focuses on creating visualizations from the user’s
code, while we create code from a sketch-based diagram and
modify the diagram with edits made to the code. Jeliot [8] is
similar to JGrasp, however it focuses on beginning concepts
such as expression evaluation and assignment of variables,
whereas our system focuses on core data structures such as
trees and linked lists.

JHAVEPOP [4] is another teaching tool which focuses so-
ley on linked lists by presenting specific linked list problems
to solve, and then graphically displaying their results. The
focus of this program is very similar to CSTutor, however we
wanted to take this idea further by creating a system that
can be used to teach users about multiple data structures
with an interactive pen-based interface.

In addition, JAWAA and TRAKLA are algorithm ani-
mation tools that have had positive results in the class-
room. JAWAA is a web-based algorithm animation script-
ing language that allows students to print animation com-
mands from their own programs [1]. In contrast to CSTutor,
JAWAA requires the students to have knowledge of what
they want the animation to do, whereas CSTutor creates
the animations behind the scenes and does not require the
user to enter any special print commands. With TRAKLA

Figure 2: The code area in Linked List mode after
nodes 29 and 3 are added to the list.

students can solve algorithm problems with a drag and drop
interface and then are provided automatic assessment [7].
CSTutor differs from TRAKLA since it has an interactive
pen-based interface as well as a source code component.

There have been several pen-based tools developed for
learning and entering information in the computer science
domain. SketchUML and Tahuti are sketch-based tools for
UML class diagrams [6, 10]. GraphPad is a web-based soft-
ware system that lets the instructor and students interact
electronically during class on Tablet PCs. Students can also
submit solutions to graph problems and receive feedback
[9]. CSTutor is different from GraphPad in that Graph-
Pad does not incorporate the code implementation of the
data structure and does not use animation, whereas CSTu-
tor does both. The system presented in [14] is a pen-based
flowchart recognition system that recognizes flowchart com-
ponents and generates runnable C code. This is similar to
CSTutor in that it recognizes ink and then generates code,
however it is not applicable to data structures and does not
reflect changes to the code in any way in the sketched di-
agram. To the best of our knowledge, CSTutor is the first
pen-based application that incorporates animation and cod-
ing, designed for aiding Computer Science students in un-
derstanding data structures.

3. CSTUTOR USER INTERFACE
CSTutor has two main views that users are able to switch

between. The default view is a canvas (see Figure 1) which
has been designed to look and feel like pen and paper that
provides feedback in an unobtrusive way. The buttons on
the screen are minimalistic, and all of the commands are
given through gestures where possible. Running alongside
this is the code view area, which gives the user a scaffold
since any sketched data structure generates corresponding
code, giving students a head start in writing various data
structure operations. The code view behaves just like a typ-
ical IDE by highlighting keywords and providing compile
and debug information. However what sets CSTutor apart
from a typical compiler is that any updates to the code will
actually impact the data structure in the canvas, and the
user can step through the animation to see how their code
impacts the data structure.

http://youtu.be/uEja_cxrGCg
http://youtu.be/uEja_cxrGCg

The sketching area for CSTutor is built on Microsoft’s
InkCanvas, and uses both gesture and character recognition.
Gestures are detected by using the iStraw algorithm [13] for
cusp detection in combination with heuristics defining each
gesture. We found this to be a significant improvement over
Microsoft’s built in gesture recognizer, which was not only
inaccurate at times but also limited us to use a pre-defined
gesture set which was not appropriate for our application.
We aim to model the gestures after what is normally done on
pen and paper. For instance, circling a value when sketching
a Binary Search Tree node is what is normally done on pen
and paper, thus the completion of the circle gesture is what
alerts the system that a new node has been added to the
tree.

3.1 Sketching Area
The user is able to choose between the different data struc-

tures, which allows us to limit the available gestures to only
what operations are available for the current data structure.
In order to keep the UI as natural as possible, a combination
of several basic gestures are used for each interaction mode.
Linked Lists and Doubly Linked Lists use a combination of
rectangle, line, and scribble erase gestures. For the trees
(Binary Search Tree, Heap and AVL Tree) a combination of
circle, arrow, tap, and scribble erase gestures are used. All
of the gestural operations that we have chosen are based on
how a professor would teach these concepts using a diagram,
and the content comes from a variety of course lectures and
textbooks [11].

Additional pointers to nodes are represented as blue rect-
angles on the canvas. The head pointer remains static for
each different data structure to emphasize that it is neces-
sary to have a pointer to the beginning. The temp pointer
box is also always there as a temporary pointer to any new
nodes, or nodes that are being modified. The user can use
a line gesture to connect any of these pointers to different
nodes. For example, changing which node the head points
to is useful for inserting a node to the front of a linked list,
and changing which node the temp pointer is pointed to can
be useful for deleting a node in these data structures. In ad-
dition, any pointers the user creates in their code appear on
the canvas as blue rectangles with the corresponding vari-
able names.

3.2 Code Area
Any sketch created in the canvas always creates a section

of code in order to show the connection between the dia-
gram and any code changes. When a sketch is completed,
the corresponding code is simultaneously added to the main
method in the code area (see Figure 2) and is also shown
in an information box in the user’s sketch area (see Fig-
ure 1). The auto-generated code is meant to demonstrate
how memory works, and is not the modular code you would
see in a program. Users can edit the auto-generated code,
add their own functions and operations, compile and run
the code, and step through the resulting changes to the di-
agram. Compiler output is also displayed in the user’s code
area, and any warning or error messages are shown.

The Show Me button is important for animating the user’s
compiled code and is used to iterate through the animations
step by step. Each step in the animation has the poten-
tial to create new nodes, delete existing nodes, or move the
connections of any of the nodes or pointers.

Figure 3: The steps required to delete a node from
a Doubly Linked List: (1) Assign temp to the node
to be deleted, (2) bypass the node to be deleted, (3)
free the node pointed to by temp.

3.3 Interaction Modes

3.3.1 Linked List and Doubly Linked List
The sketching area is designed to allow the user to do the

same operations on the data structure through sketching as
they can through code. They can create nodes, connect and
disconnect nodes, assign/un-assign pointers to nodes, delete
nodes and pointers, and update the data and next values.
For example, a linked list node is created by writing the value
of the node and then boxing that region in with a rectangle.
When the rectangle gesture is completed, the surrounded
strokes are sent to an online recognizer that analyzes the
user’s handwriting to determine the numerical value. After
the node is drawn it is translated and scaled to make room
for subsequent sketches. Then, a small box is drawn within
the node to represent the allocated memory for a pointer
to the next node. A null pointer stroke is also added to
this memory field for nodes where the next link is null (see
Figure 1). Sketching a node on the canvas also affects the
code in the code window, and generates code that does the
following: (1) allocates a node in memory, (2) assigns a value
to that node, and (3) sets the node’s next value to null.

For operations such as delete, instead of the user simply
scratching out a node we enforce that the user goes through
each step they would have to implement in code using ges-
tures in the canvas (see Figure 3). For example, the temp
pointer first needs to be assigned to the node being deleted
by drawing a line to the node from the temp pointer box.
Secondly, the neighboring nodes need to be linked to each
other to bypass the deleted node. Finally, the node pointed
to by temp can be freed by using a scratch out gesture on
the temp node and the node is deleted from memory. These
steps would create the following code:

temp = head->next;

head->next = head->next->next;

head->next->next->prev = head;

free(temp);

We designed the Linked List and Doubly Linked List in-
teraction modes to require that the lists be connected, or at
least that all nodes are accessible by a pointer, to demon-
strate memory leaks to the user. For example, if a user
creates their first node without connecting it to the temp
or head pointer, any future nodes will not be added and the
user is shown a warning message. Additionally, in the delete
example above, if the user bypasses the node they wish to
delete without first assigning temp to that node, then temp
is automatically assigned to that node. This rule is pre-
sented in [11], and says that access must be preserved to all
nodes that will be needed later in the solution of a problem.

3.3.2 Binary Search Trees
Tree nodes are created by writing the value of the node

and then circling that number, which sends the surrounded
strokes to an online recognizer, just as with the Linked List
mode. After the node is drawn it is dynamically arranged
on the canvas and lines are drawn to each child node if the
children are not null (see Figure 4). Similar to the Linked
List mode, sketching a new node with a value of 5 creates
the following code:

temp =

(struct node*)malloc(sizeof(struct node));

temp->data = 5;

temp->left = NULL;

temp->right = NULL;

head = insert(head, temp);

Note that since inserting into the tree requires more than a
single line of code, we have abstracted the insert code into
its own function and we hide it from the user’s code window.
We chose to hide the implementation of insert from the user
so that they can code their own insert function and visualize
it on the canvas.

We initially supported having a newly created node moved
to the correct position in the tree automatically. However,
we want to ensure that students know how to insert a node
according to the binary search tree property, so we make
sure the user sketches the node in the proper area of the
tree. If the node is added to the correct position, it is colored
green. Otherwise, if the node is in an incorrect position the
strokes are colored red and the user cannot make additional
operations on the tree until the offending node is scribbled
out (see Figure 4).

In addition to inserting new nodes in the tree, the user can
delete a node by scratching out the node. Since insertion and
deletion are the main operations made to a binary search
tree, gestural operations (e.g., circle for creating nodes and
scribble erase for deleting nodes) are provided for them and
any other operations on the tree must be implemented in
the user’s code.

3.3.3 Heaps
The heap data structure we support is a minimum binary

heap, since this data structure is taught in entry level Com-
puter Science courses. The heap is displayed in the same
manner as the Binary Search Tree, with an additional array

Figure 4: The sketching area in Binary Search Tree
mode. Node 5 was added to the correct location and
is colored green, whereas node 100 was added to the
incorrect location and it is colored red.

Figure 5: The sketching area in heap mode. Node
16 has just been added to the heap, and the up ar-
row gesture has been performed to swap 16 with its
parent node. Beneath the heap the current state of
the array is shown.

underneath that is updated after each operation. Although
a binary heap is usually visualized as a tree, it is generally
implemented using an array [11], thus it is necessary to show
the heap and array at the same time (see Figure 5).

The main operations performed on a heap are inserting
new nodes and removing the minimum element. Since there
are many steps for the insert and remove minimum opera-
tions, we have abstracted both into their own functions, just
like the insert operation in Binary Search Tree mode.

Similar to the Binary Search Tree mode, if the node is
added to the correct spot (the next open leaf node), the
node is colored green, otherwise it is red. If the node that is
inserted is less than its parent, then a percolate up function
is recursively called, so that the node can continue to swap
locations with its parent until it is in its correct location in
the tree. Originally, the swap operations were animated im-
mediately, so the node would be swapped up the tree without
any user input. However, since many exams ask the student
to show each step in an insert heap operation, we make the
user draw an up arrow gesture for each necessary swap up,
and a down arrow gesture for each swap down (see Figure
5).

The second operation supported in heap mode is to re-
move the minimum node, which is done with a scribble erase
gesture on the root of the tree. Once this node is removed,
it must be replaced with the last leaf node in the tree. Since

we want to ensure that the user knows which node to select
as a replacement, we require a tap gesture next to the re-
placement node. If the wrong node is selected it is colored
red, and the program will wait until the correct node is se-
lected before finally animating the swap. Once the root is
replaced, it must be swapped with its children until the root
becomes the minimum element in the tree if it is not already.
After each operation on the heap, the array underneath the
tree is updated to reflect the current state of the heap data
structure as it exists in memory.

3.3.4 AVL Trees
Many students often struggle with understanding the con-

ceptual operations on AVL trees as well as their implemen-
tation. One common approach to teaching AVL trees is to
teach the conceptual operations on an AVL tree diagram
before delving into the code implementation. Some exam-
ples of conceptual operations that are taught are identifying
the balance factor, determining if a rotation is needed, de-
termining what kind of rotation is needed, and finally what
the tree should look like after it has been rotated. In a
classroom setting all of these operations are initially pre-
sented without the code and are still difficult to understand.
Once the code is presented many students become even more
confused with the recursive implementation. CSTutor adds
guidance to help with understanding conceptual operations
and delving into the code.

When a user is sketching an AVL tree in CSTutor and a
rotation is needed, the user cannot continue sketching until
the rotation is completed. A single rotation is completed
with an arrow gesture in the required direction, and once
the correct gesture is done the tree animates to reflect the
changes of the rotation. Since a double rotation is simply
a call to two consecutive single rotations, we enforce that
the user makes two arrow gestures for a double rotation and
the user can visualize each single rotation separately to see
specifically what the code is doing. We designed CSTutor to
force students to actively rotate the tree with arrow gestures,
instead of allowing users to passively observe the AVL tree
animations to promote active learning.

4. INITIAL ASSESSMENT
Before incorporating CSTutor into the curriculum for a

semester long user study, we demonstrated its capabilities to
a CS1 class. CSTutor was presented to 88 students prior to
the final exam. Approximately 30 minutes were dedicated to
showing review problems for each of the following data struc-
tures: Linked Lists, Binary Search Trees, Minimum Heaps,
and AVL Trees, followed by 5 minutes for questions and 10
minutes to complete the questionnaire. The students’ feed-
back was based off of this review which covered two examples
of how to use each data structure, focusing on both diagram
and code changes. Students were also shown how their code
changes could be animated and traced through step by step
in the sketching view. The review was conducted using an
HP tc4400 Tablet PC connected to a projector. After the
review session we asked the students to assess the perceived
usefulness [3] of CSTutor, and to think about how it could
have impacted their ability to learn the course material. The
questionnaire consisted of 10 statements on a Likert scale
with options: (1) Strongly Disagree, through (7) Strongly
Agree.

The results of the survey are shown in Figure 6 and indi-

Table 1: The CSTutor Perceived Usefulness ques-
tions given to students.

Student Assessment Questions
Q1 CSTutor would have helped me with the material

in CS1.
Q2 CSTutor would help me understand how each step

in a program is working.
Q3 CSTutor would enable me to complete my home-

work assignments more quickly.
Q4 Animating what I’m coding would help me under-

stand data structures better.
Q5 Auto-generating code while sketching a diagram

would help me understand the relationship be-
tween the diagram and the code.

Q6 CSTutor would help me find errors in a program.
Q7 CSTutor would help me understand the imple-

mentation of Linked Lists better.
Q8 CSTutor would help me understand the imple-

mentation of Binary Search Trees better.
Q9 CSTutor would help me understand the imple-

mentation of Heaps better.
Q10 CSTutor would help me understand the imple-

mentation of AVL Trees better.

Figure 6: The average results of the Likert scale
questions shown with the confidence intervals.

cate that students found that CSTutor would be generally
useful in learning data structures. Questions 7 through 10
show that students felt CSTutor would be useful for the vari-
ety of data structures presented, but did not prefer one over
another. Question 6 had the lowest average, indicating that
students did not feel as strongly about CSTutor helping to
find bugs compared to its other features.

We also asked two open response questions: (1) “Do you
feel that using CSTutor would be useful in better under-
standing how some data structures (i.e. Linked Lists, Binary
Search Trees, Heaps, and AVL Trees) are implemented? If
so, how? If not, why not”, and (2) “What changes would
you like to see made to CSTutor to make it better?”

The answers to the open response questions were also pos-
itive. Most students (61 students) commented that visualiz-
ing operations on the data structures would help them. For
example, some students said that: “Seeing the code visually
with the animation makes connecting a concept to code a
lot easier”, “I think it would be very useful for AVL trees,
because rotations are hard to visualize”, “As a visual learner,

it is helpful for me to literally see what a function is doing.
I feel it helps show why you need to do some things, like
allocating memory, or making a temp pointer”, and “Yes,
being able to see the data structure in a visual, interactive
way makes coming up with the actual code easier.”

Four students had negative open response comments about
CSTutor. For example, students commented “I don’t really
think this would be very useful. This would turn students
into being lazy”, “Sometimes you might not know what the
software is doing”, and“No, it mirrors the way it was taught.
Therefore, it cannot help to better understand the subject.”

Another four students felt that they understood the ma-
terial enough without the tool, but that it might help other
students who are visual learners. For example, one student
commented “I feel it would help with generating code, but
I don’t find the material in CS1 too difficult. Would defi-
nitely help with intro to linked lists for someone with little
knowledge of how pointers work.” Ten students had neutral
responses, and the remaining nine students left the open
response blank.

There were also many useful suggestions in the second
free response question. Some examples include, adding ad-
ditional data types, giving more feedback for compiler or
run-time errors, and more feedback if the user does some-
thing wrong.

5. FUTURE WORK
In the future we would like to make CSTutor more robust

to user errors and provide more pedagogical feedback. Al-
though users can visualize many logical mistakes by watch-
ing the animations of their functions, errors that cause the
program to crash (such as infinite loops and referencing null
pointers) are hard to determine without tracing through the
code. We would like to allow the capability to more intel-
ligently alert the user of these types of errors, instead of
simply showing the compiler output. We would also like to
give the user the option of using different programming lan-
guages, so that CSTutor can be used outside of CS1 at UCF.
In addition, the current automatically generated code needs
to be refined so that it demonstrates how memory works
as well as proper programming abstraction. Ultimately we
would like to incorporate all additional data structures and
algorithms seen in CS1 and CS2. In the near future we are
going to conduct a semester long user study in a CS1 class
examining the effects of using CSTutor on students’ under-
standing and learning of data structures.

6. CONCLUSION
We have presented CSTutor, a pen-based tool for dynamic

visualization of data structures. CSTutor provides support
for Linked Lists, Doubly Linked Lists, Binary Search Trees,
AVL Trees and Heaps and visualizes their operations directly
on the canvas. Users can input each data structure and op-
eration using pen-based techniques and CSTutor recognizes
the user’s handwriting using character recognition. In ad-
dition, the user can input functions on the data structure
in code and visualize their functions that operate on their
sketches. We also conducted an informal user study, where
we found the data structures and animations were well liked
by the participants indicating formal semester long evalua-
tions are required.

7. ACKNOWLEDGEMENTS
This work is supported in part by NSF CAREER award

IIS-0845921 and NSF awards IIS-0856045 and CCF-1012056.

8. REFERENCES
[1] A. Akingbade, T. Finley, D. Jackson, P. Patel, and

S. H. Rodger. Jawaa: easy web-based animation from
cs 0 to advanced cs courses. SIGCSE Bull.,
35:162–166, January 2003.

[2] J. H. Cross, II, T. D. Hendrix, J. Jain, and L. A.
Barowski. Dynamic object viewers for data structures.
In Proceedings of the 38th SIGCSE technical
symposium on Computer science education, SIGCSE
’07, pages 4–8, New York, NY, USA, 2007. ACM.

[3] F. D. Davis. Perceived usefulness, perceived ease of
use, and user acceptance of information technology.
MIS Quarterly, 13:319–340, September 1989.

[4] D. Furcy. Jhavepop: visualizing linked-list operations
in c++ and java. J. Comput. Small Coll., 25:32–41,
October 2009.

[5] S. Grissom, M. F. McNally, and T. Naps. Algorithm
visualization in cs education: comparing levels of
student engagement. In Proceedings of the 2003 ACM
symposium on Software visualization, SoftVis ’03,
pages 87–94, New York, NY, USA, 2003. ACM.

[6] T. Hammond and R. Davis. Tahuti: a geometrical
sketch recognition system for uml class diagrams. In
ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06,
New York, NY, USA, 2006. ACM.

[7] L. Malmi and A. Korhonen. Automatic feedback and
resubmissions as learning aid. In Advanced Learning
Technologies, 2004. Proceedings. IEEE International
Conference on, pages 186 – 190, aug.-1 sept. 2004.

[8] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari.
Visualizing programs with jeliot 3. In Proceedings of
the working conference on Advanced visual interfaces,
AVI ’04, pages 373–376, New York, NY, USA, 2004.
ACM.

[9] R. P. Pargas and S. Bryfczynski. Using ink to expose
students’ thought processes in cs2/cs7. SIGCSE Bull.,
41:168–172, March 2009.

[10] L. Qiu. Sketchuml: The design of a sketch-based tool
for uml class diagrams. In Proceedings of World
Conference on Educational Multimedia, Hypermedia
and Telecommunications, ED-MEDIA, 2007.

[11] T. A. Standish. Data Structures, Algorithms, and
Software Principles in C. Addison-Wesley, Reading,
Massachusetts, 1995.

[12] J. Stasko. Animating algorithms with xtango.
SIGACT News, 23:67–71, May 1992.

[13] Y. Xiong and J. J. LaViola, Jr. Revisiting shortstraw:
improving corner finding in sketch-based interfaces. In
Proceedings of the 6th Eurographics Symposium on
Sketch-Based Interfaces and Modeling, SBIM ’09,
pages 101–108, New York, NY, USA, 2009. ACM.

[14] Z. Yuan, H. Pan, and L. Zhang. A novel pen-based
flowchart recognition system for programming
teaching. In E. Leung, F. Wang, L. Miao, J. Zhao, and
J. He, editors, Advances in Blended Learning, volume
5328 of Lecture Notes in Computer Science, pages
55–64. Springer Berlin / Heidelberg, 2008.

	Introduction
	Related Work
	CSTutor User Interface
	Sketching Area
	Code Area
	Interaction Modes
	Linked List and Doubly Linked List
	Binary Search Trees
	Heaps
	AVL Trees

	Initial Assessment
	Future Work
	Conclusion
	Acknowledgements
	References

