
Automatic 3D Selection Technique Assignment
Using Real-time Scenario Analysis

Jeffrey A. Cashion* Chadwick Wingrave
+
 Joseph J. LaViola Jr.

ǂ

University of Central Florida University of Central Florida University of Central Florida

ABSTRACT
Selection in 3D virtual environments can vary wildly depending
on the context of the selection. Scene attributes such as object
velocity, scene density, and user’s cursor velocity can impact the
user’s ability to accurately select an object. Many 3D selection
techniques have been explored, and are usually optimal for a
specific set of conditions. As a result, software developers must
compromise by choosing a single technique that works well on
average, but is lacking in at least one scenario. We present a
preliminary study that explores the feasibility of new auto-
selection algorithms that automatically determines the most
appropriate selection technique in real-time, thus leveraging the
performance benefits of each technique. We evaluated the
techniques across three levels of scene density and three levels of
object velocity.

Keywords: Interaction techniques, 3D object selection, dense and
dynamic environments.

Index Terms: I.3.6 [Computer Graphics]: Methodology and

Techniques—Interaction Techniques;

1 INTRODUCTION

The level of detail portrayed in both 3D games and virtual

environments (VE) is constantly increasing. A user’s ability to

adequately perceive their surroundings is becoming ever more

important, and is something that developers should be focusing on

with great care. One of the primary tasks in any such

environment is 3D object selection. With regard to 3D selection,

much work has been done in developing new and efficient

techniques to tackle many different types of scenarios [1]. It is

generally the case that any single technique will perform well in

certain scenarios, but not in others. Currently, a single technique

must be put into place which is the best balance of performance

across all scenarios, leading to compromise where it is inefficient.
Our work focuses on addressing this problem of compromise

by exploring a method which would allow the utilization of
several selection techniques, each operating where it is best
suited. We are especially interested in dense and dynamic
environments, but our work applies to other environments as well.
Our two metrics of concern are accuracy and speed, which is how
we validate the correctness of our optimal selection technique
determination algorithms. Our approach involves the design of a
framework which allows many selection techniques to be
considered by a high-level analyzer which determines the optimal
technique at any given time.

Figure 1: Selection Arena

2 RELATED WORK

One of the fundamental components to 3D interaction is selection

[1]. It has been studied in great detail, and a large variety of

selection techniques have been designed [2] [3]. These techniques

vary in their implementation, but are all generally concerned with

decreasing selection time and improving accuracy. Fitts’ Law is

the underlying principle of how difficult selection is when the

target is static, and is used extensively to judge various selection

techniques [4]. Some have even attempted to computationally

define what a selection technique should be [6]. We explore this

area further by computationally analyzing 3d selection techniques.

3 AUTOMATIC TECHNIQUE ASSIGNMENT

We developed an algorithm that can be used to determine which

selection technique is best for any particular set of conditions.

Specifically, we created a flexible software framework that

utilizes a primary Analyzer which interacts with one or more

selection techniques to determine the optimal one, given any set

of conditions. The accuracy of the Analyzer hinges on the

accuracy of the independent algorithms within each technique. It

is intended to be flexible and scalable, and developer-friendly.

3.1 Framework

The Analyzer is responsible for polling all of the available

selection techniques and asking them what their suitability index

is, given the provided conditions. Once all results have come

back, the optimal technique is then chosen. To reduce rapid

technique changing, a delay was inserted to prevent the user

perceiving the current technique as toggling rapidly. For a

technique to be considered by the analyzer, it must first register

with it. This is done by calling the register method and passing in

a reference to itself, the selection technique. It is required that the

technique implement the “ISelectionTechnique” interface that we

developed, so that the analyzer can agnostically interact with it.

Whenever a selection attempt is made, the analyzer calls a

“doSelection” method in the currently optimal technique, which

then takes over control and does whatever it is designed to do.

* e-mail: jcashion@knights.ucf.edu
+ e-mail: cwingrav@eecs.ucf.edu

ǂ e-mail: jjl@eecs.ucf.edu

103

IEEE Virtual Reality 2013
16 - 20 March, Orlando, FL, USA
978-1-4673-4796-9/13/$31.00 ©2013 IEEE

3.2 Scene Analysis

When establishing an algorithm for determining the optimal

selection technique, one has to extract information from the scene.

Within the scene, there are many pieces of information that can be

utilized. For our research, we focused on three: the number of

objects inside of the cursor, the average velocity of objects within

the cursor, and the cursor velocity. Other factors that were not

chosen but could be incorporated include average distance to

objects inside cursor, average size of objects inside the cursor,

level of occlusion, and more. We made our decision based on

some analysis of which factors we felt would most significantly

affect the difficulty of selection.

3.3 Auto-Select Algorithms

We developed two algorithms, which we call Auto-Select A and

Auto-Select B. They were both assigned with choosing between

the Raycast and Expand 3D selection techniques [2]. Both

algorithms computed their suitability index based on cursor

velocity and the number of objects within the cursor. Algorithm B

was based on A, with the inclusion of average object velocity. The

reason for developing two algorithms was to determine if we

could observe a difference in performance. This would encourage

future work in other algorithms that may see even better results.

In addition, it might be the case that a particular selection

technique is more suitable to analyzing attributes which differ

from those that we chose.

3.4 User Feedback

The algorithm that performs the auto-selection is very important,

but another key component to the entire framework is how to

inform the user that such a change of technique is taking place.

The method that we implemented was the design of a custom

indicator icon, which was placed in the upper-right corner of the

cursor. Each selection technique had its own icon, and it gave a

hint as to how the technique would function.

Figure 2: Feedback Indicators: Raycast (L) and Expand (R)

4 SUMMATIVE EVALUATION

We ran 36 participants (29 male, 7 female), who’s ages ranged

from 18 to 29. These were all selected from the general student

body of the University of Central Florida. The entire experience

for each participant took approximately 20 minutes, which

included both a pre-questionnaire and post-questionnaire. Our

system setup featured a 50” HDTV, An Intel Core-i7 Laptop with

an Nvidia GeForce GTX 560M GPU, and a Sony PlayStation 3.

The PlayStation 3 was utilized for its Move.Me SDK [5].
Our participants were asked to perform selection tasks under

36 different scenarios that varied in number of objects and object
velocity. The user would select a single pre-determined object
which was colored differently to indicate its importance. The
scenario order was randomized, as well as the selection technique
assigned.

We used a 4 × 9 within-subjects factorial design where the

independent variables were selection technique (including auto-
selection algorithm variant) and scenario. The selection
techniques included Raycast, Expand, Auto-Select A, and Auto-
Select B. Scenarios included all nine variations of three different
levels of object velocity and three different levels of object
density, which is merely the number of objects in the scene. The
quantity of objects was 100, 200, or 300. The average object
velocity was 2, 4, or 6 meters per second.

5 EXPERIMENT RESULTS AND D ISCUSSION

Raycast performed worse than Expand in all nine cases, both
in terms of time and errors. Both of our Auto-Select algorithms
performed very similarly, with no statistical difference between
the two. From this, we made several observations. Being “in the
zone” is a factor that we believe plays a role in performance [7].
This is essentially a user focusing so much on what they are doing
that they are not cognizant of the feedback indicator, thus not
utilizing important information in performing a selection. Another
factor that negatively affects performance is the act of switching
techniques after the user has already started the mental process of
performing a selection. The quality of the feedback mechanism
also plays a large role in the user’s ability to understand which
technique is currently active. An interesting observation that we
made was how little of an impact the scene density had on total
selection time for both Raycast and Expand.

6 FUTURE WORK AND CONCLUSION

We have presented a novel technique for determining which

selection technique is optimal at any given moment. Our proposed

framework has been shown to be capable of handling the task of

considering several selection techniques without regard to how

they are written, as long as they implement the correct software

interface. The study we performed shows that there is definitely a

potential for more advanced auto-selection algorithms, which can

be custom tailored by the adopters. We have made a good initial

effort in analyzing this solution, and believe that with further

work and user studies, the techniques outlined could be improved.

ACKNOWLEDGEMENTS

This work is supported in part by NSF CAREER award IIS-

0845921 and NSF awards IIS-0856045 and CCF-1012056.

REFERENCES

[1] D. Bowman, E. Kruijff, J. LaViola and I. Poupyrev, 3D User

Interfaces: Theory and Practice, Addison-Wesley, 2004.

[2] J. Cashion, C. Wingrave and J. LaViola, "Dense and Dynamic 3D

Selection for Game-Based Virtual Environments," IEEE Transaction

on Visualization and Computer Graphics, vol. 18, no. 4, pp. 634-642,
2012.

[3] N.-T. Dang, "A Survey and Classification of 3D Pointing

Techniques," IEEE International Conference on Research, Innovation
and Vision for the Future, pp. 71-80, 2007.

[4] I. MacKenzie, "Fitts' law as a research and design tool in human-

computer interaction," Human Computer Interaction, vol. 7, pp. 91-
139, 1992.

[5] "Sony Move.Me SDK," 2012. [Online]. Available:

https://us.playstation.com/ps3/playstation-move/move-me/.

[6] A. Steed, "Towards a General Model for Selection in Virtual

Environments," IEEE Symposium on 3D User Interfaces (3DUI), pp.

103-110, 2006.

[7] C. Wingrave, D. Bowman and N. Ramakrishnan, "Towards

preferences in virtual environment interfaces," Proceedings of the

Eurographics Workshop on Virtual Environments, pp. 63-72, 2002.

104

