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ABSTRACT
We present AnalyticalInk, a novel math learning environment
prototype that uses a semantic graph as the knowledge rep-
resentation of algebraic and geometric word problems. The
system solves math problems by reasoning upon the semantic
graph and automatically generates conceptual and procedural
scaffoldings in sequence. We further introduces a step-wise
tutoring framework, which can check students’ input steps
and provide the adaptive scaffolding feedback. Based on the
knowledge representation, AnalyticalInk highlights keywords
that allow users to further drag them onto the workspace to
gather insight into the problem’s initial conditions. The sys-
tem simulates a pen-and-paper environment to let users input
both in algebraic and geometric workspaces. We conducted
an usability evaluation to measure the effectiveness of Ana-
lyticalInk. We found that keyword highlighting and dragging
is useful and effective toward math problem solving. Answer
checking in the tutoring component is useful. In general, our
prototype shows the promise in helping users to understand
geometrical concepts and master algebraic procedures under
the problem solving.
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INTRODUCTION
Mathematical word problem solving is a complex task which
requires users to abstract the symbolic knowledge representa-
tion to formulate the math concept, manipulate and transform
symbolic knowledge, and infer unknown knowledge [30]. As
the quantitative representation of such problems changes, the
solving task becomes more difficult, which affects users’ rea-
soning process [16, 21].
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Figure 1: An example scenario where a user wants to solve the given math
word problem on the dual geometric-algebraic workspace. In AnalyticalInk,
the user drags the highlight words from the problem statement onto the below
workspace to gain insight of problem’s initial condition. Further, the user can
sketch solving steps and query the system to check their correctness. As the
current step is recognized a wrong, the system provides scaffoldings in visual
widgets to guide the user’s problem solving.

In this paper, we present AnalyticalInk, a novel math interac-
tive learning environment prototype, which helps users to un-
derstand geometric concepts and solve geometry-and-algebra
math problems. We illustrate a semantic graph knowledge
representation to capture the key information of natural lan-
guage based math word problems. The system relies on this
representation to automatically solve the math problem and
generates a scaffolding trace, which derives from known facts
toward the unknown problem question as a sequence of scaf-
folding steps. We further demonstrates a step-wise tutor-
ing framework upon the auto-generated scaffolding trace of
a math problem. Such tutoring framework can check users’
input steps and further provide adaptive scaffolding to help
guiding a user through solving the problem.

The user interface of AnalyticalInk simulates the semantic
word highlighting and dragging learning technique [8]. It
lets users have a sense of the key information of a given
problem and further allows them to drag information onto
workspaces to either acquire the initial condition of a prob-
lem or reinforce geometric concept understanding. Interac-
tive words directly map to annotated semantic words, which
are defined by using the problem representation semantic. In
addition, AnalyticalInk applies the theory of iterative devel-
opment between the conceptual understanding and the pro-
cedural skill pruning from the math cognitive research [28].



The user interface provides both an algebraic canvas and a
geometric canvas to let users determine the connection be-
tween geometric concepts and related algebraic procedures
when solving geometry-and-algebra related problems. Lastly,
AnalyticalInk supports sketch based user interactions, which
have been shown to improve conceptual understanding, prob-
lem understanding and inferential reasoning during problem-
solving [10, 25]. Figure 1 shows AnalyticalInk’s user inter-
face. There are four contributions in this paper:

• A novel semantic graph based representation of geometry-
and-algebra math problems is presented. We propose an
automated reasoning process upon this knowledge repre-
sentation to solve math word problems and generate scaf-
folding traces.

• A step-wise tutoring framework, which verifies users’ in-
put steps and further provides step-based adaptive scaffold-
ing to guide user solving a problem.

• The novel learning environment AnalyticalInk, which em-
beds learning techniques to promote the math learning.
The user interface of AnalyticalInk uses the sketch based
natural input to let users reason during math problem-
solving.

• The usability evaluation of AnalyticalInk is shown. The
tutoring framework is evaluated and discussed. A compar-
ative evaluation of the keyword highlighting and dragging
learning technique is described.

RELATED WORK
Our work is closely related to three research areas: Compu-
tational Semantics of Natural Language, Intelligent Tutoring
System (ITS), Learning based Interactive User Interface.

Computational Semantics and Reasoning
Our work considers the formal language representation of
natural language descriptions. Specifically, both frame se-
mantics and abstract meaning representation (AMR) are re-
lated to this work and have been explored in the natural lan-
guage processing community. Frame semantics is a linguistic
theory that interprets the meaning of words based on their se-
mantic frames [9]. Abstract meaning representation converts
a sentence to a directed, acyclic graph (DAG) containing a set
of nodes and edges [6]. The nodes correspond to concepts and
edges as semantic relations. Our intermediate knowledge pre-
sentation of geometry-and-algebra math problem is directly
inspired by the AMR problem semantic.

Previous works have been developing statistical methods to
parse math word problems as template based equations and
further employing a solver to obtain the solution [23, 31, 35].
Instead of template-based methods, our work presents an in-
termediate semantic to capture relations of math concepts.
However, this work does not consider the semantic parsing
or the word alignment problem. Instead, we directly annotate
given geometry-and-algebra math problems with our defined
problem semantic. Using the annotated problem semantic,
we focus on simulating how students plan to solve a problem
as a constraint searching process upon the semantic graph.
Due to the human learning purpose, we also consider the se-
quential scaffoldings generation instead of retrieving a single

problem answer during the above search process. Gulwani
et.al. used the program synthesis to automatically solving
the ruler/compass based geometry construction problem [13].
Our automatic solving and scaffolding generation is based
on the search upon the semantic graph, which is similar to
the program synthesis methodology. However, as geometric
math problems are different, our goal is to generate scaffold-
ing traces, which covers both geometrical concepts and alge-
braic procedures.

Intelligent Tutoring System
Intelligent Tutoring System (ITS) research attempts to design
and integrate instructional scaffolding methodologies into the
system to promote a deeper level of learning [19]. The core
of ITS is a cognitive tutor, which applies production rules to
build up the domain dependent expert system [3]. Model-
tracing tutor is built upon the cognitive tutor, which provides
the flag feedback, the buggy feedback and a chain of scaf-
foldings [15, 26]. The state-of-the-art algebra cognitive tutor
includes procedural scaffolding to derive algebraic expression
or equations [18]. In AnalyticalInk, besides procedural scaf-
foldings that derive math expressions and equations, the auto-
generated scaffolding trace also includes conceptual scaffold-
ings to guide geometric concept matching, geometric relation
detection and concept reification processes. AnalyticalInk can
be categorized as a step-based tutoring system [32], which re-
quires users to enter multiple steps to accomplish the problem
solving process.

In addition, student modeling is another component of ITS to
evaluate students’ knowledge master level. Knowledge trac-
ing is the state-of-the-art probabilistic graphical model to pre-
dict learning mastery per skill [7]. In this work, we do not
consider how well users comprehend the certain knowledge
component. Instead, we only check the correctness of user
input steps and give the adaptive scaffolding feedback based
on the matching result.

Learning based Math User Interface
Educational psychology research showed the evidence that
highlighting keyword is one effective learning technique to-
ward the natural language understanding [8]. Hefferman and
Koedinger considered the problem acquisition from natural
language narratives toward math expressions as a symboliza-
tion process [14]. They built a cognitive model in order to
provide scaffoldings to guide this process. Instead of build-
ing a cognitive model, AnalyticalInk implements the keyword
highlighting learning technique and further provides the drag-
ging operation upon colored semantic keywords. Mathemat-
ical cognitive science research revealed that developing the
conceptual understanding and the procedural skill follows an
iterative process. They proved it by conducting the experi-
ment using the decimal fraction domain knowledge. We ap-
plied this finding to guide the design of AnalyticalInk, which
emphasizes the iterative view of geometric concepts and al-
gebraic procedural skills development.

Sketch is a powerful means of interpersonal communication.
Forbus et.al. illustrated the importance of sketching to sup-
port the conceptual knowledge, visual understanding, and
language [10]. In addition, Oviatt et.al. described the term in-
ferential reasoning from the interaction perspective to design



effective computational cognitive tools [25]. AnalyticalInk
follows the sketch-based cognitive models to simulate pen-
and-paper environment upon the user interface of interactive
learning system. Previously, several pen-based math proto-
types systems have been described, such as MathPad2 [24]
,Hands-On Math [33] and geometry theorem proving [17],
Anthony et.al. demonstrated the effectiveness by integrating
pen-based natural input with an intelligent tutoring system for
algebra equation solving [5].

PROBLEM REPRESENTATION
When learning geometry concepts, students often encounter
following types of math problems:

Problem1: Find the midpoint of the line segment joining
A(−2, 2) and B(4, 6)?

Problem2: There exists two points A(2, 4) and B(5, v), the
distance between A and B is 5. What is the value of v?

Problem3: There are two points A(2, y) and B(−1, 4). The
y-coordinate of point A is −1. What is the distance between
these two points?

Problem4: Given an equation 2y+2x−y+2x+4 = 0, graph
this equation’s corresponding shape? If it is a line, what is the
slope of this line?

Problem5: A line passes through points (2, 3) and (4, v), the
slope of this line is 5. What is the value of v? What is the
y-intercept of the line?

Problem6: Line A passes through (−1, 2) and (5, 8). Line
B is parallel to line A, and also crosses point (1, 0), what is
the general form of line B?

Problem7: Line A passes through two points (4, 3) and
(2, v). The line is perpendicular to line B in which the slope
of line B is 1/2. what is the value of v?

These natural language narrative math problems all cover
geometric concepts. When reasoning such concepts, alge-
braic procedural derivations are required to infer the same
concept, or from one toward the other. The geometric con-
cept understanding and the algebraic procedural derivation
are performed in an iterative manner so as to solve such prob-
lems [28]. The geometric concept can be subdivided into
three types of knowledge: knowledge entity (such as a point
or a line), knowledge attribute (such as the y-coordinate of a
point, or the slope of a line) and knowledge relation (such as
two lines are parallel, one point is on the line).

The pattern of question and answer, in the above math prob-
lems, is deriving from several given concept instances toward
unknown concept instances. This attributes to the planning
of math problem solving [30]. For instance, Problem1 in-
troduces two points and a line, and lets users derive the mid-
point entity through the internal relation between these points.
Problem6 shows two lines and three points; the point-and-line
relation and the line-and-line relation are implicitly specified
in the problem narrative. Users need to derive one line’s gen-
eral form from the given entities. In addition, Problem1, 3, 4
and 6 require users to build and reason knowledge relations
both in the forward manner. However, Problem2, 5 and 7 let
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There are two points A(2,y) and B(-1,4). The y-coordinate of 
point A is -1. What is the distance between these two points?

(a) Problem 3’s semantic DAG representation.

Line A passes through two points (4,3) and (2,v). The line is 
perpendicular to line B in which the slope of line B is 1/2. 
What is the value of v?
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(b) Problem 7’s semantic DAG representation.
Figure 2: Two math problems’ semantic graph representations.

users to build relations in the forward manner, but reason for
unknown geometric concepts in the backward manner.

Syntax: We formulate the syntax of geometric concept
knowledge as follows. All concept knowledge can be illus-
trated as the combination of a label, following by a colon
and knowledge instance in the end. The label and colon
is optional which depends on the problem description. For
the knowledge entity, we currently model three entities: the
point, the line and the circle. A point concept is represented
in 2-dimensional Cartesian coordinates. The knowledge at-
tribute is represented as the equation where the left side of
it is a literal and the right side of the equation is a numeric
value or an expression. The knowledge relation is repre-
sented as a function where the name of it is the relation
and its arguments are knowledge entities. For the problem
question, its syntax is an equation where the left side of it
is a label or identity and the right side is a question mark.
For instance, Problem3 contains two point knowledge enti-
ties as A(2, y), B(−1, 4), a knowledge attribute y = −1,
its question can be represented as d =?. Similarly, Prob-
lem7 contains two point entities (4, 3), (2, v), two line enti-
ties A : line,B : line, a knowledge attribute B : m = 1/2,
three knowledge relations pass−through(A, (4, 3)), pass−
through(A, (2, v)), perpendicular(A,B), its question can
be represented as v =?.

Semantic Representation of Math Problems
In the semantic level, each math problem can be represented
as a directed acyclic graph (DAG) using the syntax of ge-
ometric concepts. Figure 2 demonstrates two math word
problems’ corresponding DAG semantic representations. The
graph contains a set of nodes and edges. The nodes are
divided into three categories, including concepts, attributes,



and semantic relations. A concept (represented using an el-
lipse) corresponds to a semantic entity, such as a point or line.
Multiple attributes (dashed ellipse) can be associated with a
concept. For example, a point may have two attributes: x-
coordinate and y-coordinate. A line may have multiple at-
tributes including slope, y-intercept, pass-through-point, and
corresponding equation. A semantic relation (shaded ellipse)
captures relationship between two concepts. For example,
Problem7 shows that line B is perpendicular to line A (‘per-
pendicular’); Problem3 displays distance between point A
and B (‘distance’). A semantic relation may be associated
with one or multiple attributes. A query term corresponds to
an attribute with unknown value.

SYSTEM OVERVIEW
We illustrate the process to generate the semantic DAG per
math problem, and describe the scaffolding trace synthesis
during the semantic DAG generation. Based on the gener-
ated scaffolding trace, we present our model-tracing tutor.
We show a hybrid match-and-verify framework upon the tu-
tor, which can solve multiple solution paths’ verification and
further provide the adaptive scaffolding. Last, we show the
sketch-based user interface of AnalyticalInk, which incorpo-
rates learning techniques: semantic word highlight/dragging
and dual geometry-and-algebra problem solving.

Automatic Reasoning and Scaffolding Generation
Instead of semantic parsing geometry-and-algebra math prob-
lems, we annotate math word problems according to the syn-
tax of geometric concepts. Each natural language math prob-
lem is expressed as a sequence of the annotated geometric
concept. This annotation process simulates how students
prime initial conditions of a math problem. Based on an-
notated syntax geometric concepts, we present our problem-
solving plan approach to derive from known concepts toward
unknown concepts. Figure 3 shows the higher level descrip-
tion to use the semantic DAG to simulate the problem solving
plan process.

The scaffolding generation is executed in all four steps of
problem-solving plan method. In detail, a scaffolding step or
a trace step is synthesized by performing a pre-defined rule
to derive a geometric concept from one state to another. Af-
ter executing a sequence of rules, a scaffolding trace will be
generated. In the scaffolding trace, there are two different
types of generated scaffolding steps: the geometric concept
scaffolding and the algebraic procedural scaffolding. We give
further explanations of these two types and their relations in
the following subsections.

Syntax Pattern Match
The goal of step 1 is to parse annotated geometric con-
cepts as knowledge instances. Based on the geometry con-
cept syntax, we use the parsing expression grammar (PEG)
to parse geometric entities, attributes and relations [11]. In
the syntax level, variations of geometric concept format ex-
ist. For example, the syntax level of a line concept con-
tains the line general form, the line point-slope form or the
line slope-intercept form. In addition, algebraic manipula-
tions should be performed to transform an algebraic expres-
sion as a geometric concept. For example, the annotation

Input: Let S be a sequence of annotated syntax concepts.

Output: Let G be the semantic DAG representation.

Initiate G.
For every input s in S:
Step 1: geometric concept m  = Syntax Pattern Match(s)

where m can be geometric entities, attributes or relations.

Step 2: semantic relations R = Constraint-Checking (G, m)

For every relation r in R:

Step 3: Update-Graph(G, r)

Step 4: Graph Bottom-up Reification(G)

Figure 3: A semantic DAG based constraint search method to simulate the
human problem-solving plan process.

2y + 2x − y + 2x + 4 = 0 in Problem4 needs to be sim-
plified using algebraic rule-derivations toward a recognizable
line concept format 4x + y + 4 = 0. To uniform the syntax
of geometric concept, we build an algebraic rule-based expert
system behind the PEG. Such expert system incorporates pro-
duction rules with the arithmetic expression calculation and
the algebraic expression manipulation.

In step 1, if the annotation matches the grammar without any
rule-derivation, no scaffolding will be generated. However,
if rules have been triggered to uniform the annotation as the
geometric concept syntax format, both the geometric concept
scaffolding and a sequence of algebraic procedural scaffold-
ings will be synthesized. The geometric scaffolding guides
users to manipulate the algebraic expression so as to trans-
form syntax annotations. Algebraic procedural scaffoldings
are production rule derivations to explain this geometric scaf-
folding. Each procedural scaffolding or trace step records
both geometric concept’s formats before and after the rule
derivation with the production rule itself. For example, trans-
forming 2y + 2x− y + 2x+ 4 = 0 as a line concept format
4x + y + 4 = 0 generates a sequence of procedural scaf-
foldings. These algebraic procedural scaffoldings apply rules
such as the algebraic associative rule, the identity rule and
arithmetic calculations in a recursive manner. The geomet-
ric conceptual scaffolding internally contains the procedural
scaffolding trace. This geometric conceptual scaffolding is
attached onto the recognized geometric concept knowledge.

In certain circumstances, the annotation contains the ambigu-
ity to transform as a semantic knowledge. For instance, the
input x = 1 can be either recognized as a line entity or an at-
tribute. To discriminate it, the context information is required
to further check if the literal x already exists. As such conflict
happens case by case and depends on the context of existing
input, we currently apply the case-based reasoning approach
to perform the conflict resolving process [22].

Relation Constraint Checking and Graph Update
The goal of step 2 is to determine if any relation exists be-
tween any concepts of DAG and the current semantic con-
cept m. Such relation searching process can be attributed to



a constraint-solving problem (CSP) [29]. Algorithm 1 shows
the search procedure upon the semantic DAG.

Data: Current geometric concept m.
Data: Current semantic DAG G.
Result: Detected semantic relations
Part1: unary-relation constraint Search:
for node gi in G do

if Relation Check(gi, m) then
Generate unary-relation.

end
end
Part2: binary-relation constraint Search:
for node gi in G do

for node gj in G do
if Relation Check(gi, gj , m) then

Generate binary-relation.
end

end
end

Algorithm 1: Constraint Checking on DAG.

Relation Check function determines the existence of rela-
tion. We use the case-base reasoning approach to detect rela-
tions [22]. Semantic concept types, concept label information
all guide the relation detection. When relations are found be-
tween current semantic concept m and any concepts on the
semantic graph, certain geometric relation procedures will be
executed either in a forward or backward reasoning manner.
This leads to two types of geometric concept generation: the
geometric concept instance generation upon existing DAG
nodes or the new geometric concept node generation. The
generated instance in the first type will be cached in the ex-
isting geometric concept DAG node. Step 3 of the method
updates the graph by adding the current geometric concept m
and its relation with others geometric concepts on the seman-
tic DAG. If step 2 generates a new geometric concept node,
the method in Figure 3 will be recursively called so as to add
this geometric concept onto the semantic DAG.

For instance, in the Problem3, after the annotated inputs
A(2, y) and B(−1, 4) have been added onto the semantic
DAG, we recognize the annotated input y = −1 as a geo-
metric attribute in the step 1 of the method. In the step 2,
as the label constraint between y = −1 and A(2, y) is sat-
isfied, the unary relation between these two geometric con-
cepts is found. The relation procedure to substitute a geo-
metric attribute into a geometric concept is executed. This
will generate a geometric concept instance A(2,−1), which
is cached onto the existing geometric concept node A(2, y).
Step 3 adds the current concept y = −1 onto the DAG and
build the relation with A(2, y). Similarly, for the next anno-
tated input d =?, after recognizing it as a query of geometric
distance attribute, we find the binary relation between d =?
and A(2, y), B(−1, 4). The binary distance relation proce-
dure is applied, which brings all instances of A and B into
the distance function to calculate distance attribute instances.
Since there is only one instance A and B respectively, the sin-
gle distance attribute instance d = 5 is generated by substitut-
ing the point’s X and Y variables into the distance function

and further compute the result. The generated d = 5 distance
instance is attached onto the geometric query node d =?.

In addition to the above forward reasoning scenario, the back-
ward reasoning scenario exists, such as Problem7. After
parsing annotated inputs (4, 3), (2, v), A : line,B : line,
pass − through(A, (4, 3)), pass − through(A, (2, v)) and
B : m = 1/2 onto the semantic DAG, recognizing the anno-
tation perpendicular(A,B) as the geometric relation, Step
2 of the method detects the binary relation between it and
other two geometric concepts: line A and line B. When the
geometric perpendicular relation procedure is executed, we
translate the perpendicular(A,B) as the perpendicular util-
ity function m ∗m1 = −1, where m = 1/2 has been spec-
ified as the line B’s slope in another DAG node. The back-
ward reasoning is performed by substituting m’s value into
the perpendicular utility function, and the new geometric at-
tribute m1 = −2 is synthesized. Step 3 further adds this new
geometric attribute onto the graph, and triggers the recursive
call to the method to detect its relation with other existing
nodes on the semantic DAG. As m1 = −2 represents the line
A’s slope, its binary relation with (4,3) and (2,v) is detected
recursively and a new geometric attribute v = 7 is generated.

In step 2, when a geometric relation procedure is executed,
the geometric relation scaffolding will be generated accord-
ing to the pre-defined instruction templates. For instance,
when the distance relation is detected and the distance rela-
tion procedure is triggered in the Problem3, a sequence of
geometric relation scaffoldings or a scaffolding trace can be
generated, such as “substitute a given point into the distance
function.”, “derive the distance attribute value by manipulat-
ing the distance function.”. Similar as step 1, the geometric
scaffolding may contain algebraic procedural scaffoldings to
achieve the goal of geometric scaffolding. In the above dis-
tance derivation scaffolding, the algebraic expression manip-
ulation and simplification procedures is required as a linear
sequence of algebraic rule derivations.

DAG bottom-up Reification
Step 4 attemps to perform the variable substitution (or reifi-
cation) using existing relations, and further to propagate this
substitution to other concepts through relations. Algorithm 2
shows this bottom-up reification procedure. For instance,
in Problem3, reifying the attribute y = −1 into the geo-
metric point A(2, y) generates a new cached point instance
A(2,−1), which depends on A(2, y). Under some circum-
stances, the existing DAG can become a cyclic graph. For
instance, in Problem7, after the geometrical attribute v = 7 is
generated in the step 2, a unary relation is detected between
it and the geometric concept (2, v). The reification procedure
is executed by substituting the value of v into the geometric
concept (2, v). The cyclic graph is formed after this relation
is added onto this semantic DAG. In order to prevent the infi-
nite constraint propagation, the halt checking process should
be conducted so that the propagation can be terminated when
the geometric concept node has been visited. Executing the
reification procedure will produce the geometric reification
scaffolding. For instance, the scaffolding trace of Problem7
contains one geometric scaffolding “Reify the equations in-
ternal variable by substituting a given fact.”.

Scaffolding Trace Propogation on DAG



Data: Current graph node gi.
foreach Graph edge ei in gi’s out edges do

Graph node gj ← ei.target
if HaltChecking(gj) then

break;
end
if Reify(gj , gi) then

Propagate the reification recursively.
end

end
Algorithm 2: Reification propogation on the directed graph.

In the automated reasoning (shown in method 3), four steps
can generate different types of geometrical scaffoldings, in
which each one might contain an algebraic scaffolding trace
or a sequence of algebraic scaffolding step. Geometrical scaf-
folding is attached onto the instance of geometric concept
node. When a geometric concept instance is generated, ge-
ometrical scaffoldings from other related geometric concepts
should be propagated onto this concept instance first. Then
the current geometric scaffolding is added onto it. For in-
stance, in Problem7, the scaffolding trace from m1 = −2
will be added onto the new generated node v = 7. Further
geometric relation scaffoldings to derive from m1 = −2 to
v = 7 will be appended after previous scaffoldings onto the
v = 7. After the reasoning method is completely executed,
each geometric concept node may contain a geometric scaf-
folding trace.

A Step-Wise Tutoring Framework
The generated scaffolding trace is used to construct our
model-tracing tutor behind the AnalyticalInk. As the scaf-
folding trace is a linear sequence of geometric scaffoldings,
where each of them could contain a linear sequence of alge-
braic scaffoldings, the scaffolding trace can be seen as a two
dimension linear structure. Figure 4 shows this two dimen-
sion scaffolding trace structure in a directed graph manner.
The outer graph node maps to the geometric concept state
and the outer graph edge encodes each geometric scaffolding
step to transform one geometric concept from one state to an-
other. A graph node can link to a sequence of inner graph
nodes, where each inner node represents the geometric con-
cept’s state after applying the algebraic procedural scaffold-
ing. The inner graph edge encodes the algebraic procedural
scaffolding. After executing inner algebraic procedures, the
inner node directs back to the same outer node. Each directed
graph of scaffolding trace maps to a math problem’s solving
plan. The model-tracing tutor in the AnalyticalInk is com-
posed by directed graphs of math problems.

Match-and-Verify User Input Step
Figure 5 shows the method to verify a user’s input steps. Af-
ter parsing the raw user input as a geometric concept m, step
2 attempts to match m with a graph node among the directed
graph of scaffolding trace. If the user input does not match
any nodes on the scaffolding trace graph, we further evaluate
it by adding it on the problems semantic DAG (step 3). This
will trigger the automated reasoning method to check its re-
lations with other geometric concepts on the semantic DAG.
After processing it, if the auto-reasoning procedure deduces

Start State Outer State 1 Outer State 2

Inner
State 1.1

Inner
State 1.2

Inner
State 1.3

Inner
State 2.1

Inner
State 2.2

Structure of a scaffolding trace

Strategy1 Strategy2 Strategy3

Figure 4: The direct graph structure of a scaffolding trace.

Input: Let G be the semantic DAG representation of a math problem.

Input: Let s be the user’s current input step.

Input: Let G’ be the scaffolding trace graph of the current problem.

Output: Let v as the boolean value to determine the correctness of s.

Initial: v := false

Step 1: geometric concept m  = Syntax Pattern Match(s)

where m can be geometric entities, attributes or relations.

Step 2: v = Match State on Scaffolding Trace Graph(G’, m) 
If v : = true  return v
Step 3:  <v,t> = Match Concepts on Semantic DAG(G, m)

If v := false return v
Step 4: Update Trace(G’, t)

return true

where t is a scaffolding trace to transform m to another state

Figure 5: The hybrid match-and-verify approach to check the user answer.

the user input as a geometric concept with the auxiliary scaf-
folding trace, we can compare geometric concept states with
every state from our automated scaffolding trace. If any two
states matched from these two scaffolding traces, it implies
that the current user input can direct to the same goal as the
automated scaffolding traces derivation, but with a different
tracing path. Under this circumstance, the system will up-
date the directed graph of scaffolding trace to insert this new
scaffolding trace as different branches (step 4).

Adaptive Scaffolding Selection
According to user inputs, selecting adaptive scaffolding is
critical in ITSs [20]. Using scaffolding trace directed graph,
we keep a user flag to record the user’s current solving status.
If the user input is verified as a correct step, the user flag will
be directed to the corresponding matched graph node. If the
current input is verified as a wrong step, it implies that the
system did not match any graph node state. Under this cir-
cumstance, the system will utilize the user flag to trace back
as the latest correct status of a graph node that the user has
been explored. The scaffolding selection is achieved by look-
ing ahead onto the outer edge of current graph node.

AnalyticalInk: Interactive Math Learning Environment
Based on the model-tracing tutor, AnalyticalInk learning sys-
tem keeps track and guide students problem solving by ana-
lyzing their interactive inputs. The user interface of system



Figure 6: An user scenario where the participant was solving Problem2 us-
ing AnalyticalInk. The participant dragged A(2, 4) onto the geometric side
and B(5, v) onto the algebraic side. The participant draw a line onto the
geometric side and sketched d = 5 onto the algebraic side. She queried
the system and was given the flag feedback. The participant further dragged
the distance concept word and the system showed her the “distance” concept
explanation. The participant continued to solve the problem.

mainly contains three regions (shown both in Figure 1 and
Figure 6). The top region presents the math problem. Below
it, there are two working regions: algebraic and geometric
work spaces. Scaffoldings are shown as visual widgets onto
the system.

Keyword Highlighting and Dragging Interaction
Highlighting keywords of a math problem has been shown
to be an effective learning technique in the knowledge acqui-
sition phase [8]. Based on our semantic problem representa-
tion, we implement this learning technique and further extend
it to allow users drag certain semantic words from the top
problem region onto the bottom workspace to get the initial
condition or the concept definition from the given problem.

From syntax annotations of a math problem, we further anno-
tate each syntax word to align it to the corresponding phrase
in the problem. For instance, in the Figure 6, syntax annota-
tions of the problem can be: A(2, 4), B(5, v), d = 5, v =?.
A(2, 4) and B(5, v) syntax words directly map to the cor-
responding phrase in the problem. As d = 5 is extracted
from several problem phrases relations, we annotate it onto
the phrase “5” of the problem. We mark the v =? to align
with the phrase “v” in the end of problem narratives. Aligned
phrases will be color highlighted in the math problem. In ad-
dition, these highlight words can be dragged from problem
region to either algebraic or geometric region, which depends
on the type of geometric concept. In the Figure 6, A(2, 4) is
dragged onto the geometric side. As B(5, v) is not a concrete
point from the initial condition, so it can be dragged only onto
the algebraic side. As the type of the syntax word d = 5
is a geometric attribute, this phrase can be dragged onto the
algebraic workspace only. Dragging the query phrase from
the math problem will visualize geometric conceptual scaf-
foldings to give students guidance toward the current math
problem solving. In Figure 1, dragging the phrase “What”
triggers the system to show up all geometric conceptual scaf-
foldings in the problem solving strategy visualization box. In
addition, during the problem acquisition phase, concept glos-

sary explanation is another learning technique to support help
seeking [1]. In AnalyticalInk, besides syntax word highlight-
ing and dragging, we also annotate certain geometric concept
words to be highlighted and draggable. In Figures 6, when
dragging the phrase “distance”, the system shows the extra
explanation of concept distance in the visual widget. These
concept explanations are manually annotated into the system.

Geometric Concept and Algebraic Procedural Understanding
AnalyticalInk lets users input the geometric shape concepts,
such as a point, a line or a line segment in the geometric
workspace, and input algebraic expressions in the algebraic
workspace. The system can deduce from a geometric shape
to its corresponding algebraic format or vice versa. As quan-
tities in the math problem can have different natural narra-
tives, geometric concept understanding and algebraic proce-
dural derivation need to be iteratively proceeded in order to
solve such math problems [28]. For instance, in Figure 6,
students need to acquire the geometric point concept, and the
distance concept’s formula. By deriving the distance formula
algebraically, students can finally get the distance geometric
concept understanding in the geometric side. Conversely, in
Figure 1, students need to acquire the geometric concepts,
such as the point, the line slope, lines’ perpendicular. Stu-
dents need to use the slope and the perpendicular’s algebraic
formula to derive the geometric concept procedurally.

Sketch Input and Gesture Query
Sketch-based cognitive model has been proved to foster the
perceptual and conceptual knowledge understanding [10].
Sketching has also shown its effectiveness to facilitate rea-
soning during math problem solving [25]. AnalyticalInk em-
bodies the sketch as its input mode to simulate how students
use the pen-and-paper to conduct math problem solving. The
system lets users write math expressions, equations on the al-
gebraic canvas, draw geometric shapes and labels on the geo-
metric canvas. The system provides the real-time handwriting
recognition feedback as the recognized math typeset offset,
which is shown below the hand-drawn strokes. The hand-
written math equation recognition is based on StarPad [34].
The geometric shape detection is built by recognizing low-
level sketch primitives [27]. Students can further manipulate
beautified shapes by touch.

In addition to the sketch input, the system supports the infer-
ential reasoning by letting the user write a question mark as
the reasoning tool. AnalyticalInk uses the template-matching
approach to recognize the handwritten question mark [4].
When the handwritten question mark is recognized, if the
written region is near any geometric shapes or algebraic ex-
pressions, the system will trigger the match-and-verify pro-
cedure. Otherwise, the system will directly show a next-step
scaffolding toward the user. By verifying users’ input, An-
alyticalInk provides the flag feedback to indicate the current
step’s correctness (shown in Figure 1). If the current step is
wrong, two scaffolding visualization widgets will be shown
on the user interface. The problem solving strategy visual
widget on the top of the algebraic canvas presents the linear
sequence of geometric concept scaffoldings. One step is high-
lighted among this sequence to represent the current student
problem solving status. The other scaffolding widget shows



Figure 7: An example shows the algebraic procedural scaffolding deriva-
tions. The top didactic scaffolding in the visual widget and the middle math
typeset forms one step algebraic procedural scaffolding. Clicking the down
arrow on top of the scaffolding visual widget generates another visual wid-
get below to give the next step meta-cognition scaffolding before showing
the step’s didactic scaffolding, which is similar to the one in the top widget.

the algebraic procedural scaffolding within the current geo-
metric concept scaffolding. Before showing a didactic scaf-
folding step, the system first shows the corresponding meta-
scaffolding or meta-cognition hint to inspire students’ self-
motived reasoning. Figure 7 displays a meta-cognition hint:
“Consider Transitive law on equation”. Students can retrieve
additional procedural scaffoldings by clicking the down ar-
row image on the widget.

EVALUATION
AnalyticalInk currently models 15 geometric concepts, which
are commonly described in the coordinate geometry section
of the geometry course, such as point, line, x-axis, origin,
midpoint, line slope, circle, circle radius, length, perpendicu-
lar, intersection. Our geometric concept syntax can annotate
geometrical mathematical problems. We have used it to an-
notate 30 problems (Problem1-7 are samples of them). Our
current work did not formally evaluate the correctness of rea-
soning and the scaffolding generation. Instead, two human
tutors were recruited to proofread the generated scaffolding
trace per problem manually. Both tutors separately showed
that the generated scaffolding traces of 30 annotated prob-
lems are the correct solutions.

To evaluate the effectiveness of the tutoring framework, learn-
ing techniques of AnalyticalInk, we performed a human-
centered usability evaluation of the current interactive learn-
ing prototype system. We performed a with-in subjects study
with the keyword highlighting and dragging (with or without)
as the independent variable. Both conditions provides the tu-
toring scaffolding, the dual-canvas problem solving and the
natural sketch input. The dependent variables were several
aspects of the user events we recorded (see Table 1). This
evaluation did not consider the learning effect of the system.
R1 considers total user inputs, where R2 and R3 track users’
inputs onto the geometric and algebraic canvas. R4 is calcu-
lated as the number of times the user makes a question-mark
gesture to asks for a hint without input steps. R5 is calculated
as the number of times the system writes the same gesture
near to user input so as to evaluate it. R6 is calculated as

R1: The number of steps the user inputs.
R2: The number of steps the user inputs on the algebraic side.
R3: The number of steps the user inputs on the geometric side.
R4: The number of times the user makes a query.
R5: The number of times the system evaluates user inputs.
R6: The number of times the system shows the meta scaffolding.
R7: The number of times the system shows the scaffolding.
R8: The number of times the user rectifies an input step.

Table 1: The log file of user event record per problem.

the number of times the system evaluates the user input as
wrong. Thus, R5 contains the count of R6. R7 is calculated
by counting the number of times the user clicks the down ar-
row image to retrieve the scaffolding from visual widget. R8
is a counter that records two consecutive queries where the
previous query check the user’s step as a wrong step, and the
current query verifies the user input as a correct step.

We hypothesize that the tutoring framework can help students
to check their steps and give appropriate scaffolding feedback
in demand. The keyword highlighting and dragging learning
technique facilitate their problem understanding. We assume
AnalyticalInk have the potential to guide students’ geometry
concept understanding and algebraic procedural skills.

Tasks and Experiment Procedure
We recruited 10 participants (with 9 of age 18 and one of
age 17) who were currently taking a college algebra class.
The experiment was conducted on a Microsoft Surface 3 Pro.
Participants were asked to use the stylus and touch during the
experiment. The study asked participants to use AnalyticalInk
to solve two sets of 10 math word problems (one set with key-
word highlighting-dragging and one without). The difficulty
level of the problems in the two sets was same. We achieved
this by changing numerical values but keeping the problem
statement same. The order of conditions was balanced across
participants based on the latin-square design.

Since each participant had to solve two sets of similar prob-
lems, we asked participants to complete the study in two ses-
sions on consecutive days where each session takes about 70
to 80 minutes to finish. Because of the similarity of prob-
lems between two sets, participants might apply the lessons
learned in the first session toward the second session, which
should be minimized. Though putting one-day delay cannot
completely reduce such side effect, it is acceptable for our
usability evaluation goal. The problem-solving sessions were
video-recorded.

In the first session, participants filled a pre-questionnaire,
which collected information about their age, if they have
taken the algebra course and their comfort level to solve math
problem. They were then introduced to AnalyticalInk by let-
ting them use it to solve a sample problem under the guidance
of a moderator. The moderator gave instructions on how to
use the system, answered participants’ queries. Participants
then began solving a set of ten problems (with or without key-
word highlighting and dragging depending upon the balanced
order). The second session was the same as the first session
with no pre-questionnaire. During problem-solving sessions,
we asked participants talk-aloud to express what they are cur-
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Figure 8: The average mean of each record in the user event log file.

rently doing and what they plan to do for the next action. This
allowed the moderator to help participants in case they forget
how to use the system to perform certain actions. During the
problem solving, participants can explore the learning sys-
tem to solve each problem. They can perform the keyword
dragging, sketch out knowledge input either in the algebraic
or the geometric canvas, query the system, and explore the
scaffolding trace. When participants tried to verify a writ-
ten solving step, as the system analyzed recognized expres-
sions instead of participants’ written form, participants were
instructed to make sure that the recognized typeset expres-
sion matches their written form. After completing the two
sessions, participants were asked to fill out a questionnaire
that required them to rate AnalyticalInk on a variety of met-
rics (shown in Table 2).

Result
From user log files and their questionnaire feedback, we
found the evidence that the answer checking of the tutoring
framework is useful to guide students’ math problem solving.
Students prefer to use the keyword highlighting and dragging
learning technique. In general, the system is useful to help
students to learn geometric concepts and to improve algebraic
procedural derivations.

Figure 8 shows the quantitative result from log files under
two conditions (with or without the keyword highlighting
and dragging learning technique). In both conditions, stu-
dents either checked their input steps (R5) or asked for a
next-step hint based on the last correct step (R4). Students
made the error-rectification once in average for each prob-
lem solving (R8). In other words, the answer checking in
the tutoring framework is effective to help students to cor-
rect their own wrong inputs. The users asked for next-step
hints (R4) significantly more times without the keyword high-
lighting and dragging compared to when the technique was
present (t9 = −2.727, p < 0.05). The number of times
the user input evaluation (R5) took place was significantly
higher when the keyword highlighting and dragging was ab-
sent (t9 = −2.933, p < 0.05). The number of times the
user rectified their input (R8) was significantly less with this
learning technique (t9 = −2.4, p < 0.05).

Figure 9 shows the user’s qualitative feedback on metrics.
Students believed that step verification is useful (Q5). How-
ever, students reported that the current geometric concept
scaffolding (Q6) and algebraic procedural scaffolding (Q7) is

Keyword Highlighting and Dragging
Q1 To what extent did the keyword highlighting and dragging consoli-

date your math concept understanding?

Q2 To what extent did the keyword highlighting and dragging accelerate
your math problem-solving?

Q3 How hard did you have to work (mentally and physically) to accom-
plish your level of performance?

Q4 To what extent did you feel frustrated using this learning technique?

Tutoring Answer Check and Scaffolding
Q5 How useful was it to verify your solving step?

Q6 How useful and effective was the current geometry concept scaffold-
ing to help your problem solving?

Q7 How useful and effective was the current algebraic procedural scaf-
folding to help your problem solving?

Overall User Experience
Q8 How useful and effective was it to let you interact with both the geo-

metric and the algebraic sides?

Q9 How useful and effective was the pen-and-gesture input-and-query
flow for the math problem-solving?

Q10 To what extent did you think the current system should let you freely
input, edit and query the knowledge?

Q11 How engaged did you feel to use AnalyticalInk?

Q12 How useful and effective was it to use AnalyticalInk?

Q13 How easy was it to use AnalyticalInk for the first time?

Q14 How easy was it to use AnalyticalInk after you get familiar with it?

Q15 How satisfied did you feel with this math tutoring system?

Q16 Regarding the keyword highlighting and dragging learning tech-
nique, which interaction method would you prefer?

Table 2: Post-Questionnaire. Except for Q16, participants responded to
questions on a 7 point likert scale. (1 equals strongly disagree and 7 equals
strongly agree).

not that useful as verifying input steps. The user feedback in-
dicated that the keyword highlighting and dragging had a low
cognitive load to perform it (Q3-Q4). This learning technique
helped them to improve geometric concept understanding and
accelerated their math problem solving (Q1-Q2). Nine out of
ten participants preferred to use this learning technique dur-
ing their problem solving (Q16). The participant, who pre-
ferred to show original math problem without this learning
technique, remembered most of geometric concepts and did
not face issues during problem solving. Students agreed that
providing both algebraic-and-geometric workspaces is effec-
tive for their problem solving (Q8). The log file summary
also indicated that students used both algebraic and geomet-
ric workspaces to solve math problems (average count of R1,
R2 and R3). Students believed that the sketch-based input
was effective for math problem solving (Q9). Overall, stu-
dents gave the positive feedback (Q11-Q12) on the effective-
ness and usefulness of AnalyticalInk. In general, they were
satisfied with the current prototype system (Q15).

DISCUSSION AND FUTURE WORK
The current AnalyticalInk can handle a limited set of anno-
tated geometry math problems. As part of this paper, we did
not systematically evaluate the annotation syntax of geomet-
ric concepts and corresponding semantic. Future work should
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evaluate its variability to handle large-scale math geometry
word problems.

Step-wise Tutoring Framework: For the answer checking of
the tutoring framework, though participants gave the positive
feedback, we observed that the system sometimes did make
the false positive matching-and-verification errors. Variations
of written formats are attribute to such error. For instance,
one participant sketches “x+2+4+1=x+2+5=x+7”, which was
recognized as a wrong step. However it was correct if the
expression can be divided as two algebraic equations. Fu-
ture work should handle more written formats. Participants
informed they were unsatisfied with the current geometric
concept and algebraic procedural scaffoldings. We summa-
rized three reasons based on our observation and user feed-
back. First, current scaffolding narratives follow the rigorous
rule-based description to derive geometric concepts. But par-
ticipants commented out that verbalized example-based nar-
ratives should also be present so as to explain applied rules
intuitively. Second, current geometric concept scaffoldings
are insufficient for students who do not master the concept.
The current geometric concept scaffolding covers the simple
description to describe the process to transform to the corre-
sponding algebraic procedurals. Rich geometric concept level
pedagogical scaffoldings are required before showing the al-
gebraic procedural scaffolding. Third, the adaptive scaffold-
ing selection is not accurate. When the system recognizes
the current user step as a wrong step, the system shows the
scaffolding based on the last correct step. However, the cur-
rent user step might slip several rule-based steps, in which
the user might only made one rule deduction error. Under
such circumstance, the current system cannot skip these cor-
rectly applied rule steps and show the error deduction scaf-
folding accurately. Future work should refine the scaffolding
narrative and augment pedagogical concept-based scaffold-
ings. Annotated error-based scaffolding should be built into
our model-tracing tutor. Based on such improvements, the
adaptive scaffolding evaluation should be conducted to mea-
sure efforts and outcomes of the system toward learning [12].

Keyword highlighting and dragging: The log file quantitative
data implied that students asked for less hints and checked
less input steps with this learning technique (R4 and R5). R8
showed that students rectified wrong steps few times with this

technique. Our observation indicated that with this learning
technique, students spent more time to understand the initial
condition of a math problem. By highlighting keywords of
a problem, students increased their engagement and substan-
tially built the solving scheme or a plan. Dragging such se-
mantic words onto the workspace reinforced their planning.
By dragging geometric concept words, they can retrieve and
memorize explanations to facilitate the later problem solv-
ing. We believed this learning technique increased students’
certainty to input correct steps, which indirectly reduced the
times to query the system(R4), verify steps (R5).

User experience of the system: Though participants rated
sketch-and-gesture flow to be effective to facilitate their prob-
lem solving. However, they reported that the system still has
constraints to let them freely input, edit and query the knowl-
edge (Q10). From our observation, participants faced sketch
recognition errors during problem solving and recognition er-
rors hindered the solving process. We gave participants pre-
instructions to minimize making the recognition errors before
the study. For a written step, if the participant did not want
to query it, she can ignore the recognition error if it exists,
and further derived the next step. However, if the participant
wanted to query a step, the recognition result for the current
step must be matched with her written intention. When learn-
ing to use the system, participants reported that it was not
easy to use the system for the first time (Q13). Such percep-
tion existed even they got familiar with the system (Q14). By
observing their actions during the study, though the cognitive
load of sketching are low, sketch recognition errors affected
their reasoning. It makes participants feel that the system is
not easy to use even when they get familiar with it. Further
sketch recognition improvement should be investigated.

CONCLUSION
In this paper, we present AnalyticalInk, an interactive math
learning environment to facilitate geometry math problem
solving. The graph representation of geometry math prob-
lems was illustrated. Based on it, we showed the automated
reasoning method to solve these problems and generate in-
structional scaffoldings. When tutoring students to solve
such problems, we described a hybrid match-and-verification
framework to verify users’ solving steps. The user in-
terface of AnalyticalInk highlights keywords of a problem,
and further supports the keyword dragging to the geometry-
and-algebra workspaces. The system lets students use both
geometry-and-algebra workspaces to understand geometrical
concepts and derive algebraic procedures in an iterative man-
ner. We conducted a usability evaluation of the system. Our
results showed that the user step verification was useful. The
keyword highlighting and dragging learning technique helped
users to understand a problem and plan to solve it. The sketch
input and gesture query supported the natural input and rea-
soning during the math problem solving. Overall, users were
satisfied with the current AnalyticalInk.
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