
Code Bubbles: A Practical Working-Set Programming Environment

Steven P. Reiss
Department of Computer Science

Brown University
Providence, RI 02912

spr@cs.brown.edu

Jared N. Bott
Department of EECS

University of Central Florida
Orlando, FL, 32816

jbott@cs.ucf.edu

Joseph J. LaViola Jr.
Department of EECS

University of Central Florida
Orlando, FL, 32816

jjl@eecs.ucf.edu

Abstract—Our original work on the Code Bubbles environ-
ment demonstrated that a working-set based framework for
software development showed promise. We have spent the past
several years extending the underlying concepts into a fully-
functional system. In our demonstration, we will show the
current Code Bubbles environment for Java, how it works,
how it can be used, and why we prefer it over more traditional
programming environments. We will also show how we have
extended the framework to enhance software development
tasks such as complex debugging, testing, and collaboration.
This paper describes the features we will demonstrate.

Keywords-integrated development environments; working
sets; debugging; collaborative tools

I. BACKGROUND

The Code Bubbles environment is an attempt to transform
the user interface of an integrated development environment
so that it more closely conforms to the way that pro-
grammers work. It features a working-set-oriented approach
where programmers can display all the information needed
for their current task on a single screen.

We first demonstrated the concepts behind Code Bubbles
two years ago and showed through user studies that the
underlying ideas had a strong potential [1], [2]. Current
development environments are file-oriented and somewhat
inefficient to use, requiring a significant amount of naviga-
tion and forcing programmers to maintain the current context
in their heads. Code Bubbles simplifies this by displaying
smaller, logical chunks of the program that are more relevant
to the task at hand, by letting the programmer organize and
display a large number of such “bubbles” simultaneously,
and by providing facilities for saving and restoring the
resultant contexts. Code bubbles makes the programmer
more efficient and provides a more intuitive approach to
software development.

We have been extending these concepts into a complete
and practical environment. The current environment sup-
ports all phases of large scale Java programming including
development, maintenance, exploration, debugging, testing,
and collaboration. Moreover, the environment is designed
to be able to run in the “cloud”, with most of the tools
running on a remote server and the front end running locally.
The environment is currently being used for real software

development projects including itself, and by students in
our courses. The environment is available for download
and is open source. http://www.cs.brown.edu/people/spr/
codebubbles/ provides more details; a video can be seen at
http://www.eecs.ucf.edu/isuelab/videos/codebubbles.mp4.

Our demonstration will show how Code Bubbles can and
is being used to make the programmer more efficient. This
paper describes the main aspects of the system including
advanced features such as debugging, testing, providing
context, and collaboration.

II. BASIC FUNCTIONALITY

Programmers normally use the Code Bubbles environment
by finding the set of methods, classes, fields, documentation,
notes, errors, bug reports, etc. that are required for their
current task and laying them out on the screen as shown
in Figure 1. Each of these elements of a working set is
displayed in its own bubble. Bubbles are organized on the
screen so that they do not overlap. Arrows between bub-
bles show creation or programmer-specified relationships.
Bubbles are colored either according to their type (e.g.,
note bubbles are yellow), or according to their package for
source bubbles. All source and note bubbles are editable,
and, where bubbles are duplicated or represent overlapping
sources (e.g. a class bubble and a bubble for a method of that
class), changes in one are immediately reflected in the other.
The colors have been chosen to be non-obtrusive while still
providing the programmer with important information.

The environment provides a variety of ways of finding and
creating bubbles. These include a powerful search facility,
the ability to find all definitions (including inherited or
virtual ones) or references to an identifier, and implicit links
from items such as error messages and test cases. Bubbles
are easily moved around the screen and resized as needed.
Reflow and elision are used to reduce the amount of screen
space required for each bubble. Bubbles with a common
purpose can be grouped, with the group being shown as a
colored outline, and grouped bubbles can be manipulated as
a set.

The visible screen is actually a small portion of a much
larger canvas the programmer can use and navigate over. An
overview of the canvas is shown at the top of the window.

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE ICSE 2012, Zurich, Switzerland
Formal Research Demonstrations

1411

Figure 1. A view of the Code Bubbles environment showing a variety of bubbles in the current working set. These bubbles include source code bubbles,
notes bubbles, documentation bubbles, and an error message bubble. The view shows eight visible code bubbles, a fraction of the thirty-six bubbles that
were opened so far in the session and can be seen in the overview panel at the top of the display.

The canvas can be used to handle multiple tasks and manage
interruptions, letting the programmer move to a new context
as needed and then return to their original context. Bubbles
can either be fixed on the screen or part of this canvas.

In developing a practical implementation of the code
bubbles concept, we have had to deal with a number of
issues. One was ensuring that performance of the system
meets the user’s expectations, especially for editing and
screen management. Another was defining what UNDO
meant in the bubbles environment so that it met the user’s
expectations that each bubble is an independent editor while
maintaining consistency. A third was providing natural ways
for creating new packages, classes, fields, and methods.

An issue that came up as the environment was used
more was the complexity of the bubble displays created
by the programmer. The example in Figure 1 shows the
set of bubbles from about an hour of work; not only is
the display filled with bubbles, but the overview shows the
large set of bubbles that were opened and used to get to the
current display. With this many bubbles on the display, it
is important to ensure that the programmer retains control
over the layout and organization of the bubbles. We have
introduced a number of mechanisms including group-aware
positioning of new bubbles, providing a short (2 second)
interval for manual placement of new bubbles, and automatic
cleanup of the bubble layout.

III. DEBUGGING

Code Bubbles provides a complete debugging environ-
ment designed to handle complex multithreaded programs.
Debugging is done in separate contexts, and multiple debug-

Figure 2. A view of the debugging view in the Code Bubbles environment
showing control panel, a console bubble, a stack bubble, and a debugger
history bubble on the left, and the current source and stack bubbles on the
right.

ging contexts can be used simultaneously. An example of a
debugging context is shown in Figure 2.

The bubbles environment provides standard debugging ca-
pabilities such as breakpoints, stepping, update and continue,
and value displays. Bubbles are used to show the current
location and the current stack. Separate bubbles are used for
controlling the debugging session, the console, and showing
the state of threads. When the user steps into a new method,
new bubbles for the source and values are created to the

1412

right of the original bubbles. Where separate threads are
involved, the corresponding bubbles are displayed vertically.
A heuristic layout manager determines where new source
and values bubbles should be placed, when bubbles on the
screen should be reused, and when bubbles can be removed.

Value bubbles can show the whole stack, a single stack
frame, a single variable, or a component of a variable such as
a field. These bubbles can be live, showing the current value
and updating as the values change, or frozen, recording the
current value so the programmer can refer to it later in the
debugging session.

Debugging in the environment includes a feature we call
“active debugging” where part of the debugger executes in
the user’s application as a separate thread. This is used
to provide the programmer with additional information in-
cluding performance analysis, instant deadlock detection,
detailed thread state monitoring, Java Swing hierarchy infor-
mation, and a history of the last few seconds of execution
just before a breakpoint was reached.

Microsoft has developed an alternative implementation of
the Code Bubbles paradigm for debugging in the Debugger
Canvas extension to Visual Studio [3].

IV. PROVIDING CONTEXT

Programmers are used to working with files and they serve
a useful purpose in programming. Files provide context and
organization of the code. They are used by a variety of
tools and as the basis for reading code. The organization of
the system in terms of files and their contents is important
to the programmer and the system. Our implementation of
Code Bubbles, while providing a method-centric approach,
attempts to provide the appropriate context in a variety of
ways. These are shown in Figure 3.

One approach we use is to provide higher-level bubbles
with appropriate elision facilities. This includes bubbles for
a whole class and bubbles for a whole file. A class bubble is
shown in the lower right of the figure. A second approach,
shown in the lower left, provides a file overview compactly
summarizing the content of the file. This overview can be
used to create bubbles, browse the file, or even reorganize
the file. The bubble in the upper left of the figure shows
the file locations of bubbles in the current context. Each
bubble is highlighted to show what file it comes from and
where. The bubble with the current focus is highlighted in
red. Finally, the package viewer, shown in the upper right
of the figure, provides a flexible view of the static structure
of the system at the package, class, or method level. The
user can specify what types of items to display, and what
relationships are relevant (ranging from class hierarchy to
calls and field references).

V. COLLABORATION

Code Bubbles provides support for collaborative develop-
ment including both general facilities for collaboration and

Figure 3. Context display bubbles. A class bubble is shown in the lower
right while a file overview is shown in the lower left. In the top left, the
file context provides a pictoral view showing where the current codebubbles
are located in the file structure; the top right contains a graphical package
viewer.

facilities for sharing source and running the environment in
the cloud.

Code Bubbles is implemented as a front end that talks
to Eclipse through a socket-based message bus. Eclipse is
used to provide debugging, parsing, source access, project
management, and similar facilities. The message bus is also
used as a means for coordinated editing. Multiple Code
Bubbles front ends can talk to the same instance of Eclipse.
This lets multiple programmers work on the same source
simultaneously, with edits showing up in any common
bubbles on all displays as they are made.

In addition, the environment provides support for pro-
grammer communication. This includes chat bubbles that
support most of the common chat protocols and chat history
bubbles that retain a permanent record of such conversations.
It supports sharing the set of bubbles in the current working
set through either email or as part of a chat conversation. In
addition, for pair programming, it supports shared working
sets with immediate update as bubbles are moved, created
and resized.

The environment also supports a programmer’s log. This
log provides an annotated and searchable history of the
development of the system. The log is designed to be as
easy as possible to use by the programmer. Programmers are
prompted to select or define a task when they start a new
working set. They can hit the F2 key at any time to add
notes, annotations, screen shots, or other documents to the
log. Logs can be shared among programmers on a team. In
addition, the system automatically records significant events
such as which methods are viewed and which methods are
edited as part of a task. The log is viewed through a query
interface where the programmer can specify what methods,

1413

Figure 4. Programmer’s Log interaction and display bubbles. This log
provides an annotated and searchable history of the development of the
system. The interaction bubble at the top left lets the programmer add
annotations, attachments, and screen shots to the log.

classes, users, or tasks they are interested in and what types
of information they want to see. An example of a log and
input window are shown in Figure 4.

The programmer’s log is similar to existing frameworks
such as Mylyn [4], Syde [5], or SpyWare [6]. Ours has the
potential to provide more useful information since we know
more details such as the particular functions that are looked
at, since we have a built in notion of a working set based
on location on the overall canvas that lets us disambiguate
among multiple tasks, and since we can provide additional
information such as a screenshot showing the relationships
between the relevant working set components.

Code Bubbles can be run in client-server mode, with a
server instance of the environment controlling Eclipse and
handling common operations such as file access, and a client
instance handling the actual programmer interaction. In this
mode, Eclipse and the server can be run on one machine,
say in the cloud, and the client can be run on the user’s
desktop. This mode is further supported by an extension
of the message bus that provides encrypted communication
through an Internet proxy.

VI. TESTING

Code Bubbles also provides facilities for JUnit-based
testing. It runs a separate process (in the cloud if appropriate)
that automatically finds all the tests in the current project.
Tests are then run with a harness that records block, branch
and call coverage information.

This testing process uses the message bus to monitor
when functions are edited and when they are successfully
compiled. This lets it determine when tests are out of date
and when they need to be rerun. It can be configured to

either run tests automatically as in [7] or on demand. A test
management bubble shows the status of all tests and lets the
user get test information, view the test source, or create a
debugging session for a given test.

VII. CONCLUSION

Our demonstration of Code Bubbles will show how the
environment can improve programmer efficiency while per-
forming a variety of programming tasks. We will run through
a real-life scenario on a non-trivial system, and will illustrate
both the basic operation of the environment and many of the
features described above. We encourage readers to try the
environment for themselves by downloading it from our web
site.

ACKNOWLEDGMENT

This work has been supported by the National Sci-
ence Foundation grant CCF1130822. Additional support has
come from Microsoft and Google.

REFERENCES

[1] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr.,
“Code bubbles: a working set-based interface for code under-
standing and maintenance,” in Proceedings of the 28th inter-
national conference on Human factors in computing systems,
2010, pp. 2503–2512.

[2] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr.,
“Code bubbles: rethinking the user interface paradigm of inte-
grated development environments,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering
- Volume 1, 2010, pp. 455–464.

[3] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P.
Reiss, “Debugger canvas: industrial experience with the code
bubbles paradigm,” in Proceedings of the 34nd ACM/IEEE
International Conference on Software Engineering. New York,
NY, USA: ACM, 2012.

[4] M. Kersten and G. C. Murphy, “Using task context to improve
programmer productivity,” in Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of software
engineering, 2006, pp. 1–11.

[5] L. Hattori and M. Lanza, “An environment for synchronous
software development.” in ICSE Companion, 2009, pp. 223–
226.

[6] R. Robbes and M. Lanza, “Spyware: a change-aware de-
velopment toolset,” in Proceedings of the 30th international
conference on Software engineering, 2008, pp. 847–850.

[7] D. Saff and M. D. Ernst, “An experimental evaluation of
continuous testing during development,” in Proceedings of
ISSTA 2004, 2004, pp. 76–85.

1414

