
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2010)
M. Alexa and E. Do (Editors)

A Pen-Based Tool for Visualizing Vector Mathematics

Jared N. Bott and Joseph J. LaViola Jr.

University of Central Florida, School of EECS, Orlando, FL, USA

Abstract
We present VectorPad, a novel, pen-based application for three-dimensional vector mathematics visualization.
VectorPad allows users to define vectors and perform mathematical operations on them through the recognition
of handwritten mathematics. The user interface consists of a sketching area, where the user can write vector
definitions and operations such as addition, subtraction, scalar multiplication, and cross product, and a 3D graph
for visualization. Vectors are visualized dynamically on the graph, which can be manipulated by the user. We
also performed a short, informal user study evaluating the user interface and visualizations of VectorPad. Results
from the study show that visualizations were generally well liked but the application needs to provide a more
comprehensive set of visualization tools as well as refinement to some of the animations.

Categories and Subject Descriptors (according to ACM CCS): User Interfaces [H.5.2]: Interaction styles—User
Interfaces [H.5.2]: Graphical user interfaces—

1. Introduction

Visualization of three-dimensional vector operations can be
very helpful in understanding vector mathematics. Entering
3D vector mathematics when using traditional WIMP-based
(Window, Icon, Menu, Pointing device) [Shn86] techniques
can be confusing and typically requires special knowledge of
a one-dimensional input language. In addition, current tools
for visualizing 3D vector mathematics are often troublesome
and unintuitive. Often, they focus on support for one or two
mathematical operations and do not provide significant in-
sight into more complicated mathematical equations (e.g.,
equations that are composed of several vector operations).
Given the complexity of vector mathematics, the ability to
visually explore these operations has the potential to give
users valuable insight into their nature. Thus, our goal is to
provide a tool that provides the user with a simple way to vi-
sualize 3D vector operations with the ease of entering math-
ematics with pencil and paper.

To deal with these issues, we developed VectorPad, a
novel application prototype that provides users with the abil-
ity to enter handwritten vector mathematics equations using
a pen-based interface. These equations are then solved and
evaluated using a mathematics engine, and the results are
dynamically displayed on a 3D graph. Users can edit their
mathematical equations and see how these changes affect the
mathematical operations.

2. Related Work

Mathematics and pen-based computing has been explored
in a number of ways. First, there are a variety of systems
that use a stylus simply as a mathematics input system.
In [Fat04], Fateman examines a number of pen-based mathe-
matical input systems. PenCalc is another mathematical cal-
culation system that uses handwriting as its input [CY01].
The Freehand Formula Entry System (FFES) is a math-
ematical formula editor that uses handwriting as its in-
put [SNA01]. FFES also includes the ability to generate
LATEXfrom its input. Commercially, there are systems avail-
able such as Microsoft’s Equation Editor, which can export
to MathML.

Another type of pen-based mathematical system is math-
ematical sketching. First developed in MathPad2 [LZ04],
mathematical sketching is a pen-based approach for math-
ematics problem solving [Lav05] where users writes mathe-
matics and supporting diagrams to create simple animations.
These animations give the user the ability to use their in-
tuition of the mathematics and other domain knowledge to
verify that the mathematics is correct. Similarly, there are
interactive computation systems that take pen-based math-
ematics as input and solve the mathematics. MathBrush is
one such system, and uses a similar system architecture as
VectorPad, containing a character recognizer, a structural
parser, a typesetting system, and an interface with a compu-

c© The Eurographics Association 2010.



J. Bott & J. LaViola / A Pen-Based Tool for Visualizing Vector Mathematics

tational engine [LLM∗08]. Zeleznik et. al. developed Math-
Paper [ZMLL08], a gestural system for pen-based mathe-
matics, using a variety of gestures similar to MathPad2 .
MathPaper supports multiple computational engines, as well
as a set of notations for controlling computational assis-
tance. Microsoft Math [Mic09] is a commercial system that,
among other things, allows the user to input mathematics us-
ing handwriting and solve the expressions. With VectorPad,
we wanted to explicitly combine pen-computing and vector
algebra to explore an area not fully realized in other work.

In terms of vector algebra visualization, three-
dimensional vectors are generally visualized using a
Cartesian coordinate system, particularly in math and
physics textbooks. Often times 3D vector visualization
is explored in the context of geometry visualization
[KSW00, Mal04]. Most computer algebra systems provide
some sort of graphing ability, such as MathEdge [MW97],
which uses Maple as its computational backend. Tront’s
VectorPad [Tro09] is close in spirit to our application in that
it is a pen-based system for vector visualization that allows
the user to draw vectors and perform some mathematics
using them. However, Tront’s work focuses on 2D vector
mathematics, does not provide animations, and does not let
the user write down the vectors using mathematical notation.
There are many small applications available on the Internet
for basic vector mathematics visualization, particularly in
two dimensions, which have been studied and surveyed
in numerous papers [CZ00, Cat06, EH04]. However, these
applets have a narrow focus in their visualizations and
supported mathematics in comparison to VectorPad.

3. User Interface

3.1. Sketching Area

VectorPad was designed to have an interaction model similar
to pen and paper. To this end, we provide a sketching area
for the user to write mathematics as they normally would
using pen and paper (Figure 1). Using a stylus, the user in-
puts mathematics through writing and performing a variety
of gestures. A combination of three basic gestures are used,
a lasso gesture, a tap gesture, and a scribble gesture. Since
we use a reduced gesture set, similar combinations of ges-
tures were chosen to perform similar actions in order to aid
the user in remembering the gestures and their actions.

Each stroke the user writes is passed to an online mathe-
matical handwriting recognizer from [ZMLL08], which rec-
ognizes the individual characters and the underlying math-
ematical structure. The results from the mathematical rec-
ognizer are displayed below the user’s writing in real-time,
using a mathematical typesetting system (see Figure 2). Af-
ter a character is recognized, alternate recognition results are
displayed on a toolbar at the bottom of the screen. When the
user makes a lasso gesture around any set of strokes, the al-
ternates toolbar is populated with a list of alternate recogni-
tion results for the enclosed strokes. This approach is similar

Figure 1: VectorPad’s main window: on the left is the sketch-
ing area, on the right is the graph.

Figure 2: Three vectors are shown on the graph, A, B, and C.
C is the cross product of A and B. The plane made by A and
B is shown in a greenish-blue hue. C is shown as a purple
arrow.

to a suggestive interface [IH07]. The lasso gesture used in
combination with a tap gesture (lasso-tap) groups a set of
strokes into an equation, as in [LZ04].

After an equation is created, it can be edited through the
addition or removal of strokes. To remove strokes, a user
makes a scribble gesture upon the strokes. VectorPad’s graph
seamlessly reflects changes made to the equations written on
the sketching area. The results from one equation can also
be used in another and the dependent equation automatically
receives updates from the equation it depends upon.

3.2. Graph

The graph in VectorPad is implemented using a 3D view-
port with an orthographic camera, which we chose because
it provides the perspective that is commonly used in math-
ematics and physics textbooks. A three-dimensional Carte-
sian coordinate system is used, with the origin at the visual
center of the graph. This system is presented as a set of three
number lines with tick marks every one unit of measurement
(see Figure 1). At the outer edge of the positive side of each

c© The Eurographics Association 2010.



J. Bott & J. LaViola / A Pen-Based Tool for Visualizing Vector Mathematics

number line is a colored text label with the axis’s name (X,
Y, or Z). We think that this style works well as it should be
familiar to users since it is modeled upon a common visual-
ization.

After performing the gesture to recognize an equation,
vectors are dynamically illustrated on the graph. Each vector
is visually represented by a colored arrow and the equation
is highlighted with the arrow’s color; this highlight helps the
user to understand the bounds of the equation, both for edit-
ing the equation and writing other equations. When a mathe-
matical operation is recognized, the operation is animated on
the graph; each operation has its own animation, designed to
illustrate in an intuitive manner.

The graph is controlled using a trackball model, where
the user moves the stylus throughout the graph to rotate
it [CMS88] (see Figure 2). The graph can also be zoomed by
pressing the stylus button and moving the stylus up to zoom
in, and down to zoom out. When a new equation is graphed,
the graph is automatically zoomed in or out to fit the various
arrows onto the screen, so that they are fully visible.

A user might want to only see the arrows for a specific
equation, so we provide a gesture combination to hide spe-
cific arrows: a lasso-double-tap. The lasso-double-tap ges-
ture is performed by lassoing around an equation and tapping
twice within the lassoed area. This causes the arrows to be
removed from the graph and they are not used in calculations
for automatic zooming. Conversely, the user might want to
zoom in to a specific equation, which can be accomplished
through by double-tapping on the equation.

Numerous labels are on the graph, for example the num-
ber lines are labeled with their axis name, and each arrow
with its name. This text is visually two-dimensional, but
has a three-dimensional location within the graph. In order
to increase legibility of the text, as the graph is rotated by
the user, the text rotates to stay facing the camera. We also
wanted users to be able to see information about the vectors
that is not readily apparent from the graph, like the normal of
the vector, its length, and its equation. Clicking on an arrow
brings up a small visual overlay on the graph that shows its
equation, its vector value, length, and normal.

3.3. Visualization Constructs

VectorPad supports several mathematical operations: vector
addition and subtraction, scalar multiplication and division,
cross product, dot product, and length. When an operation
results in a vector answer, a new arrow is added to the graph.
These result arrows are colored one of several pink hues to
differentiate them from arrows not derived in this manner.
For vector-result operations, the operand arrows are moved
around the graph and leave behind semi-transparent “shad-
ows.” The animations typically show the operands moving
in some manner so that the user can see how the operation
affects the two operands. Then, an arrow for the result is

added to the graph. When an animation has finished, any ar-
rows that have moved return to their original positions and
the shadow copies are removed. This process shows the user
the operation separate from its final representation and al-
lows them to focus upon the operation before examining the
result. The length of an animation can also be changed, al-
lowing the user to examine how the operation works at their
own pace.

3.3.1. Addition and Subtraction

Addition is an operation that has two operands and results in
a vector answer, thus, the addition animation has two com-
ponent arrows and a result arrow. The animation for addition
takes the arrow for the second operand and translates it such
that its origin is no longer the origin of the graph, but the
endpoint of the first component arrow. This places the end-
point of the first arrow where the result’s endpoint will be.
Once the second arrow has finished translating, a new arrow
is created.

The subtraction animation is similar to addition, except
that the second arrow first rotates to its vector’s opposite (i.e.
its negative vector). We designed this animation for addition
and subtraction because it shows the user the common visu-
alization of these operations in vector mathematics, a trian-
gle made of the operands and the result.

3.3.2. Scalar Multiplication and Division

Scalar multiplication and division share the same animation
style. These operations have two operands, one a vector and
the other a scalar, and the result is a vector. In scalar multipli-
cation, all three components of the vector operand are multi-
plied by the scalar operand; in scalar division, all the vector
components are divided by the scalar operand. Since there
is only one vector operand, there is only one component ar-
row to be animated. We created two animations for these op-
erations. In the first variant, the component arrow scales to
the size specified by the operation. In the second animation,
which we termed the “stacking” animation, the component
arrow is stacked end over end the number of times specified
by the scalar value. With these animations, we hoped to show
the relationship between the vector and scalar operands.

3.3.3. Cross Product

The cross product operation has two operands, both vectors,
and the result is also a vector; a cross product of two vectors
results in a vector that is perpendicular to both operands. For
this operation, we also created two animations. In the first
animation, the first component arrow rotates to the second
component arrow and then rotates to the direction specified
by the resulting perpendicular vector. The second animation
is similar to the first, except that a semi-transparent plane
is added to illustrate the plane made by the two component
arrows. We created the second animation after some users
expressed that they were used to seeing a plane in the illus-
tration of a cross product operation.

c© The Eurographics Association 2010.



J. Bott & J. LaViola / A Pen-Based Tool for Visualizing Vector Mathematics

3.3.4. Dot Product

Like the previous operations, a dot product operation (also
known as the scalar product) has two operands, both vec-
tors. Unlike the previous operations the result of a dot prod-
uct is a scalar value: the like vector components of the two
operands are multiplied and summed together. This scalar
result led to a decision to display text results, since a scalar
is difficult to graphically represent. Another important as-
pect of the animation comes from the dot products’ relation
to the angle between the two vectors. By taking the length
of the first operand and multiplying it by the cosine of the
angle between the two vectors, the first vector is scalar pro-
jected onto the second vector. This is often illustrated when
showing the result of a dot product, so we felt it beneficial
to include it in the animation. We draw a distinctly colored
arrow to show this projection.

3.3.5. Complex Operations

VectorPad allows users to create complex equations utilizing
multiple operations. To make it easier for users to understand
a complex equation, we divide them into a series of sim-
ple animations. The complex animation for D = A⊗B⊗C
is show in Figure 3. In the list of animations that Vector-
Pad maintains, each animation for a subequation appears as
a normal animation, so that a user can repeat it as they like.

3.4. User Controls

VectorPad has several user controls designed to aid the user
in understanding the vector mathematics and the visualiza-
tions we constructed. We considered the ability to replay
animations important while designing VectorPad, because a
user might not understand an animation on their initial view-
ing. VectorPad thus has a set of VCR-like controls to give
the user the ability to playback animations. A slider control
and four VCR buttons are included: play, backward, forward,
and replay. The slider controls the length of time an anima-
tion plays for, from 0.5 seconds to 10 seconds, with a default
value of 2 seconds, which we found to be a good intermedi-
ate length and gives users sufficient time to examine the op-
eration. The replay button plays the last animation, allowing
the user to easily repeat the animation until they understand
it. The backward and forward buttons move through the list
of animations and the play button plays the currently se-
lected animation. In addition, VectorPad has a compare but-
ton that brings up a second window with two graphs to allow
the user to compare more easily visual changes to equation
parameters.

4. Architecture

The architecture of VectorPad is divided into three primary
components, one for the sketching area (the InkHandler),
one for equations and other mathematics (the EquationHan-
dler), and one for the graph (the GraphicsHandler).

Figure 3: Two cross product animations. The arrows for A
(blue), B (pink), and C (yellow) are shown in Subfigure A.
In Subfigure B., the arrow for B is rotating to C and has
been colored green. Subfigure C. shows an intermediate ar-
row scaling to its final length and the plane between B and
C is rotating into place. Subfigure D. shows another inter-
mediate step right before the plane has finished rotating. In
Subfigure E. the plane between B and C is in place and an
arrow for D (turquoise) has scaled and rotated to its final
position. Subfigure F. shows an intermediate state where the
plane between A and an intermediate arrow is rotating to its
final position. Subfigure G. shows that plane in its final po-
sition.

4.1. InkHandler

The InkHandler deals directly with user input; it consists of
a mathematical handwriting recognizer and a gesture rec-
ognizer, and directly interfaces with the EquationHandler
and GraphicsHandler. For mathematical handwriting recog-
nition, we chose to use the recognizer developed in MathPa-
per [ZMLL08] because it provided mathematical typesetting
and was easily modified to fit our application requirements.
For gestures, the InkHandler recognizes combinations of
three gestures, tap, scribble, and lasso, and then passes the
recognition of them on to the other components. A gesture is
used to group strokes into equations for two reasons. First,
the creation of arrows and animations based upon incom-
plete equations would likely be quite distracting and confus-
ing to users. Second, the math recognizer had difficulties in
differentiating closely spaced equations.

c© The Eurographics Association 2010.



J. Bott & J. LaViola / A Pen-Based Tool for Visualizing Vector Mathematics

4.2. EquationHandler

4.2.1. Identifier

We designed components to internally represent important
aspects of mathematical equations. The most base compo-
nent of these is an Identifier, which represents a variable in
an equation. Identifiers can be divided into two types in re-
lation to how they are used within an individual equation,
primary and secondary. Primary Identifiers are those whose
value is being assigned (the left hand side of the equation),
while secondary Identifiers are other Identifiers used in the
equation. For example, in A = [3,5,7]T , there is one Identi-
fier “A”, which is a primary Identifier, and has a vector value
of [3,5,7]T . In C = A + B, there are three Identifiers, A, B,
and C, where C is the primary Identifier, and A and B are
secondary Identifiers.

4.2.2. Equation

The next most specific component, which represents a user-
input equation, is the equation object, the main organiza-
tional unit of VectorPad. The primary purpose of an equation
object is to be a collection of the Identifiers, code, graphical
models, and other objects that are created when an equation
is written by the user.

Conceptually, there are two kinds of equation objects:
assignment equations, those that simply define an Identi-
fier with some value (e.g., A = [3,5,7]T ), and mathematical
equations, those that define an Identifier through a mathe-
matical operation (e.g. C = A + B). When a user writes an
equation and performs a lasso gesture, an equation object
is created, and all the strokes enclosed by the gesture are
stored in the equation object. Recognition results from the
math recognizer are also stored in the equation object in the
form of a MathML structure.

4.2.3. Code Generator

When an equation object is created, the EquationHandler
interfaces with the InkHandler and stores recognition re-
sults. To convert those results from MathML into a format
that the mathematical engine can execute, we implemented
a series of components to convert from one format to the
other and generate the code that we need to execute. This
Code Generator must also replace a diverse set of mathemat-
ical/typographical symbols with the specific set of symbols
accepted by our computational engine, MATLAB.

4.3. GraphicsHandler

Variables are represented graphically by 3D arrows (as de-
scribed in 3.2), which are implemented by the Arrow com-
ponent. We implemented the arrow model as a cylindrical
tube and a conical tip, and chose a set of distinct colors from
which to color the Arrows. We also have a second set of
colors, all shades of pink, for Arrows created for primary
Identifiers that are from mathematical equation objects.

Figure 4: An Arrow has been created for Identifier A. This
Arrow is colored blue, as is the box showing the bounds of
the equation object.

After executing an equation object’s code, an Arrow is
created for the primary Identifier of the equation object. As
discussed in Section 3, animations are created for mathe-
matical operations; these animations manipulate the Arrows
representing the secondary Identifiers in an equation object.

4.4. Process

In this section, we discuss the processes of VectorPad. The
InkHandler first recognizes handwriting, performs recog-
nition upon it, and passes the recognition results to the
EquationHandler when a lasso-tap gesture is recognized.
The EquationHandler then creates equation objects, and the
recognition results are analyzed for mathematical opera-
tions. Finally, GraphicsHandler takes over, creating Arrows
and animations as necessary.

4.4.1. Creating An Equation Object

When a user writes in the sketching area, the InkHandler op-
erates and each stroke is tested to see if it is a gesture; once
it has been determined that it is not, the stroke is passed to
the math recognizer. Results are typeset and displayed on
the sketching area. After a user has written their equation,
they lasso-tap around it, and the recognition results for all
the encircled strokes are pulled from the math recognizer
in the form of MathML. Finally, the component strokes are
grouped into an equation object which also stores the recog-
nition results.

4.4.2. Converting to Computational Engine Code

Next, the EquationHandler begins its task and the MathML
is passed to the Code Generator. Aside from generating exe-
cutable code, during the Code Generator’s processing, vari-
ables are identified, Identifiers are created, and secondary
Identifiers are generated. The code that is generated is in a
form from which it is easy to create animations.

4.4.3. Getting Results

Now the code can be executed by the computational engine
and the results retrieved. For an equation object, we retrieve

c© The Eurographics Association 2010.



J. Bott & J. LaViola / A Pen-Based Tool for Visualizing Vector Mathematics

the results only for the primary Identifiers for which results
are not already known. Each result is retrieved in the form of
an array, the dimensions of the array are examined to deter-
mine the Identifier’s type (scalar or vector), and the value is
stored.

4.4.4. Graphing and Animating

Next, the code for these Identifiers is examined to determine
if it is an assignment or a mathematical statement. From
here, the GraphicsHandler is in operation. A data structure
with information for creating Arrows and animations is cre-
ated from the Identifiers, and the structure is added to a
queue of pending graph operations.

In the case of an assignment, an arrow is created upon the
graph with its origin at (0,0,0) and its end at the vector value
of the Identifier. The new arrow is assigned a color upon
creation to help the user to differentiate between the various
arrows. The arrow is added to the equation object and the
object’s strokes are highlighted with the arrow’s color. When
the arrow is added to the graph, it appears in its final position,
with no animations showing its creation. Initially, VectorPad
animated the creation of an arrow, showing it “growing” and
rotating to its final size and rotation, but test users generally
did not like having this animation, as they found it confusing
and distracting, so it was removed. Once the Arrow has been
added to the graph, the graph is zoomed so that the Arrow
mostly fills the graph (see 4.4.5). At this time, the axes are
also extended if the arrow extends past the current bounds of
the axes.

For a mathematical animation, we first look at the math-
ematical operation to be animated. In general, animations
move the arrows associated with the secondary Identifiers
and leave behind “shadows” to show the user where the ar-
rows originally were located. Again, the axes are extended to
be longer than any arrow, if necessary. After the animation
has completed the camera is zoomed to fit all the arrows on
screen.

4.4.5. Fitting the Camera

When a new model is added to the graph, or an object is
updated, VectorPad zooms the camera to ensure that the rel-
evant models are visible on the graph and that they are max-
imized visually. The models that we are concerned with are
arrows, planes, and text labels that are not used to label an
axis. Fitting the camera to show all the models on the graph
is a complicated procedure. For each model, its 2D coordi-
nates on the graph must be computed, which is simple for
arrows and planes, but problematic for text labels. Unfortu-
nately, the approach we used for obtaining the 2D coordi-
nates for arrows and planes in the 3D viewport did not work
for our text labels, due to an implementation issue. In the
method we devised, we look at the collection of 3D points
that is used to create a text object’s component letters. We
took this collection, converting all the points to 2D by using

a matrix that converts the viewport’s 3D coordinates to 2D
screen coordinates, and then finding the top-most, bottom-
most, left-most, and right-most points to create a bounding
box.

Once we have the 2D bounding boxes for all the relevant
models, a bounding box containing all the models is cre-
ated. A fit test is performed in which the bounds of the box
are compared with the graph’s rendered dimensions to deter-
mine if the models are all on-screen, and if so, whether the
camera can zoom in more. If we determine that more zoom
is needed, we iteratively zoom in and perform the same fit
test until it is found that we have zoomed in too much. At
that point we iteratively zoom out and perform the fit test
until we have zoomed out too much. Lastly, we zoom out a
small amount to give a bit of room around the edges of the
graph. If the original fit test tells us that the models do not
fit on the screen, the same sort of process is performed, but
zooming out instead of in.

We felt that a user might want to zoom to the models for
a specific equation object; when the InkHandler recognizes
a double-tap in the bounds of an equation object, the Graph-
icsHandler starts the camera fitting process, but only for the
models associated with the equation object. If the user wants
to invoke fitting for all the models on the graph, they can
double-tap outside of all the equation objects.

4.4.6. Preventing Text Occlusion

With several arrows in the graph area, text labels are fairly
likely to occlude each other. We prevent this from occurring
by moving one of the two occluding texts. The approach
that worked best is the same as in 4.4.5, taking the texts’
point collections, converting them to 2D bounding boxes,
and comparing the bounding boxes. If the boxes intersect,
one text is iteratively moved until the bounding boxes no
longer intersect. We move the text in the direction of the
normal of its original position (~pnorm = ~p

‖~p‖ ). The text is
moved in increments of one-quarter the norm of the direc-
tion (~d = ~pnorm

4 ). Each time a text label is added to the graph,
each text is checked against each other text. The same pro-
cess occurs every time the graph is rotated. It is important
that each text’s bounding box is calculated using its origi-
nal intended position for the first test of each testing session,
otherwise texts will start to stray as the graph is rotated.

4.4.7. Updating An Equation

Updating an equation begins with one of two actions, eras-
ing an ink stroke, or adding an ink stroke in the bounds of an
established equation object. After an update to an equation
object, any equation objects that are dependent upon it are
updated. First, the graphics objects associated with the de-
pendent equation object are removed from the graph. Next,
the new Identifier values are given to the computational en-
gine. The final steps are essentially the same as creating an

c© The Eurographics Association 2010.



J. Bott & J. LaViola / A Pen-Based Tool for Visualizing Vector Mathematics

equation object. With a chain of dependent equation objects,
this update process may occur several times.

When the InkHandler gesture recognizer detects a scrib-
ble gesture, it tests to see what strokes it intersects with.
Any intersecting stroke is marked to be removed from the
sketching area and from any equation object that contains
it. Once the strokes to be removed have been collected,
they are passed to the EquationHandler, which determines
which equation object owns each stroke. Next, each stroke
is removed from its owning equation. The last step checks
whether all the strokes from an equation object have been
removed. If so, the equation object and its arrows are re-
moved from the system, and any equation objects that are
dependent upon the equation object’s primary Identifier are
updated.

We consider an equation object to be orphaned when it is
a dependent equation object, and the equation object upon
which it depends has been erased (or is orphaned itself). An
orphaned equation object does not have any arrows on the
graph, because its primary Identifier is considered to have
an unknown value. When we determine that there is an or-
phaned equation object, its strokes are colored a deep red
and the user is notified that it cannot be graphed until the
missing dependency has been resolved.

When a new stroke is made on the sketching area, the
InkHandler performs a hit test against all the recognized
equation objects to determine if the stroke belongs to an ex-
isting equation object, or to a new, unrecognized equation
object. If the stroke is mostly contained within the bounds of
an equation object, it is added to that object and new recogni-
tion results are generated. Old graphical models are cleared
from the graph and the same process as creating an equation
object is performed.

5. Informal User Study

We conducted an informal, preliminary user study with six
participants to obtain some feedback on VectorPad’s design
and user interface. Participants were generally versed in vec-
tor mathematics and linear algebra. First, we demonstrated
the use of VectorPad to the participants, showing them the
mathematics VectorPad recognizes and how to use the var-
ious gestures. Participants were then free to play with Vec-
torPad, although we asked them to try all the different ani-
mations. Once participants were done using VectorPad, we
asked them about their experience, such as which cross prod-
uct animation they preferred, whether they liked each anima-
tion, and for their comments on various aspects of the user
interface.

5.1. Results

We asked participants whether they found the different arrow
colors useful. While most participants said yes, one partici-
pant stated that he did not use the colors to identify the dif-

ferent arrows, but rather the labels. However, he did say that
he liked having the arrows different colors. Another partici-
pant said that she “liked the shaded rectangles with the same
color as the arrow,” because they helped to distinguish which
arrow represented which Identifier. Similarly, one participant
responded that she would like the labels to be the same color
as the arrow, which she said would make it easier to identify
which label was for which arrow.

Participants liked how the graph zoomed in on arrows and
animations, as it gave them a better view of the models. Most
participants never turned this feature off, even though they
were made aware of it during the demonstration and during
their usage of VectorPad. We think that this shows that most
users would not turn off the feature, at least initially; in other
words, care should be taken in the design of such a feature,
since users won’t turn it off, even when it causes them prob-
lems.

Five of the six participants responded that the animation
for the addition operation made sense and was clear. The last
participant replied that he understood it, but that it did not fit
his mental model for vector addition. While the participants
felt that the addition animation was clear, there were some
problems with the subtraction animation. The primary issue
was with the second arrow’s rotation to its negative position.
This rotation is animated while the arrow is translating to the
end of the first arrow and consequently three participants felt
that it was less than clear what was occurring. One partici-
pant commented that it could be made clearer by translating
and rotating at different times, while another said that rotat-
ing the arrow was not needed.

One participant who had a minimal background in vec-
tor mathematics found the second scalar multiplication an-
imation, the stacking animation, easier to understand, as it
better conveyed how the scalar operand affected the vector
operand. Participants did not otherwise display much of a
preference for one of the animations over the other, but sev-
eral did express that they felt that the stacking animation
would be better for novices who did not understand scalar
multiplication.

For cross product, most of the participants preferred the
animation that showed the plane made by the two operands.
One participant said that it “makes sense” and shows the way
people usually visualize it. However, another participant felt
that the plane would rarely be needed and that it should be
optional. Most participants seemed ambivalent about the dot
product animation. Showing the scalar projection was not
the most natural idea for the participants. Comments mainly
focused upon the text results, with one participant comment-
ing that the “text could make it cluttered quickly.”

We had several suggestions for VectorPad from the par-
ticipants. Some participants suggested that we show the an-
swer to each equation on the sketching area in text form.
Currently, to determine the value of a vector, a user must
click on its arrow to see the information box that pops open.

c© The Eurographics Association 2010.



J. Bott & J. LaViola / A Pen-Based Tool for Visualizing Vector Mathematics

We explored having the vector values on the sketching area
in early versions of VectorPad, but removed it after negative
user feedback.

From the user study we found that we should have pro-
vided a separate means for the user to identify the positive
and negative directions on the number lines. While each axis
is labeled on its positive side with the axis’s name, this was
not immediately clear to the participants. Additionally, when
the graph was zoomed in far enough, the labels were not
visible, so users would have no way to identify the positive
and negative directions for the axes. Similarly, it can be hard
to visually identify or verify the length of any arrow along
any axis, particularly for vectors with non-zero components
along all three axes. One participant suggested that showing
the X, Y, and Z components for each arrow would help users
to perform such visual identification.

Participant feedback gave us several avenues for future
work. While participants were happy with the default camera
position, it did not always provide an ideal view of the vec-
tors and animations. We would like to investigate methods
for automatically positioning the camera for specific vectors,
particularly during animations. Second, we want to see how
to present multiple vectors when there is a large disparity in
their lengths. Finally, we would like to explore methods for
recognizing when an equation has been completed.

6. Conclusions

We have presented VectorPad, a pen-based tool for dynamic
visualization of 3D vector mathematics. VectorPad provides
support for a number of mathematical operations on vectors,
including addition, scalar multiplication, and cross product,
and visualizes these operations using a 3D graph. Users in-
put vectors using pen-based techniques and VectorPad rec-
ognizes the user’s handwriting using character and math-
ematics recognition. We also conducted an informal user
study, where we found the animations we implemented were
generally liked by the participants. However, we also found
that the participants wanted tools to help them to further un-
derstand and view the visualizations, such as automatic cam-
era rotation. We also identified a number of areas for future
work including extending VectorPad to support vector Cal-
culus and further refinement of our dynamic visualizations.

7. Acknowledgements

This work is supported in part by NSF CAREER Award IIS-
0845921.

References
[Cat06] CATALOGLU E.: Open source software in teaching

physics: A case study on vector algebra and visual representa-
tions. The Turkish Online Journal of Educational Technology -
TOJET 5, 1 (January 2006). 2

[CMS88] CHEN M., MOUNTFORD S. J., SELLEN A.: A study in
interactive 3-d rotation using 2-d control devices. In SIGGRAPH
’88: Proceedings of the 15th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 1988),
ACM, pp. 121–129. 3

[CY01] CHAN K.-F., YEUNG D.-Y.: Pencalc: a novel applica-
tion of on-line mathematical expression recognition technology.
In Document Analysis and Recognition, 2001. Proceedings. Sixth
International Conference on (2001), pp. 774–778. 1

[CZ00] CROWE D., ZAND H.: Computers and undergraduate
mathematics 3: Internet resources. Computers & Education 35,
2 (2000), 123–147. 2

[EH04] EASON R., HEATH G.: Paintbrush of discovery: Using
java applets to enhancemathematics education. Primus 14, 1
(2004), 79–95. 2

[Fat04] FATEMAN R.: Handwriting + speech for computer
entry of mathematics. http: //www.eecs.berkeley.edu/
~fateman/papers/voice+hand.pdf , 2004. 1

[IH07] IGARASHI T., HUGHES J. F.: A suggestive interface for
3d drawing. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses
(New York, NY, USA, 2007), ACM, p. 20. 2

[KSW00] KAUFMANN H., SCHMALSTIEG D., WAGNER M.:
Construct3d: A virtual reality application for mathematics and
geometry education. Education and Information Technologies 5,
4 (2000), 263–276. 2

[Lav05] LAVIOLA JR. J. J.: Mathematical sketching: a new ap-
proach to creating and exploring dynamic illustrations. PhD the-
sis, Brown University, Providence, RI, USA, 2005. 1

[LLM∗08] LABAHN G., LANK E., MACLEAN S., MARZOUK
M., TAUSKY D.: Mathbrush: A system for doing math on
pen-based devices. In DAS ’08: Proceedings of the 2008 The
Eighth IAPR International Workshop on Document Analysis Sys-
tems (Washington, DC, USA, 2008), IEEE Computer Society,
pp. 599–606. 2

[LZ04] LAVIOLA JR. J. J., ZELEZNIK R. C.: Mathpad2: a sys-
tem for the creation and exploration of mathematical sketches. In
SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers (New York, NY,
USA, 2004), ACM, pp. 432–440. 1, 2

[Mal04] MALKOWSKY E.: Visualization and animation in math-
ematics and physics. In Proceedings of Institute of Mathematics
of NAS of Ukraine (2004), vol. 50. 2

[Mic09] Microsoft: Math. Computer program, July 2009.
http: //www.microsoft.com/math . 2

[MW97] MCCABE M., WATSON J.: From mathedge to math-
wise: The cutting ’edge of interactive learning and assessment in
mathematics. In 3rd International Conference on Technology in
Mathematics Teaching (October 1997). 2

[Shn86] SHNEIDERMAN B.: Designing the user interface: strate-
gies for effective human-computer interaction. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1986. 1

[SNA01] SMITHIES S., NOVINS K., ARVO J.: Equation entry
and editing via handwriting and gesture recognition. Behaviour
and Information Technology 20, 1 (January 2001), 53–67. 1

[Tro09] TRONT J.: Vectorpad. Computer program, July
2009. http: //filebox.ece.vt.edu/~jgtront/tabletpc/
vector_pad.html . 2

[ZMLL08] ZELEZNIK R., MILLER T., LI C., LAVIOLA JR. J. J.:
Mathpaper: Mathematical sketching with fluid support for inter-
active computation. In SG ’08: Proceedings of the 9th interna-
tional symposium on Smart Graphics (Berlin, Heidelberg, 2008),
Springer-Verlag, pp. 20–32. 2, 4

c© The Eurographics Association 2010.


