Comparing apples with oranges: evaluating
twelve paradigms of agency

Linus J. Luotsinen, Joakim N. Ekblad, T. Ryan Fitz-Gibbon, Charles Houchin,
Justin Key, Majid Ali Khan, Jin Lyu, Johann Nguyen Rex Oleson, Gary Stein,
Scott Vander Welde, Viet Trinh, and Ladislau Boloni

School of Electrical Engineering and Computer Science
University of Central Florida,
Orlando, FL
{1luotsin}@mail.ucf.edu

Abstract. We report on a study in which twelve different paradigms
were used to implement agents acting in an environment which borrows
elements from artificial life and multi-player strategy games. In choosing
the paradigms we strived to maintain a balance between high level, logic
based approaches to low level, physics oriented models; between impera-
tive programming, declarative approaches and “learning from basics” as
well as between anthropomorphic or biologically inspired models on one
hand and pragmatic, performance oriented approaches on the other.
Instead of strictly numerical comparisons (which can be applied to cer-
tain pairs of paradigms, but might be meaningless for others), we had
chosen to view each paradigm as a methodology, and compare the de-
sign, development and debugging process of implementing the agents in
the given paradigm.

We found that software engineering techniques could be easily applied
to some approaches, while they appeared basically meaningless for other
ones. The performance of some agents were easy to predict from the
start of the development, for other ones, impossible. The effort re-
quired to achieve certain functionality varied widely between the different
paradigms. Although far from providing a definitive verdict on the ben-
efits of the different paradigms, our study provided a good insight into
what type of conceptual, technical or organizational problems would a
development team face depending on their choice of agent paradigm.

1 Introduction

Researchers have designed a bewildering variety of paradigms for the control of
agents. Even if we restrict our inquiry to the case of embodied agents, that is,
artifacts which operate either in the physical world or a simulation of it, vir-
tually every paradigm of artificial intelligence, software engineering or control
theory was deployed with more or less success. However, wide ranging compar-
isons of agent paradigms are rare. When new methods and paradigms are intro-
duced, they are compared with only several, closely related approaches which

2 Linus J. Luotsinen et al.

are considered direct competitors of the proposed paradigm. Making or revisit-
ing comparisons between paradigms is a controversial, difficult and hard-to-sell
work. One might argue that a researcher might better spend his or her time in
designing new paradigms or improving existing ones instead of comparing, say,
swarm algorithms with affective computing in the design of embodied agents.
There might be people offended by the results, with reasonable claims that the
methodology was incorrect, the implementation of the paradigm substandard,
or simply, the measured quantity is not relevant to the given paradigm.

The fundamental question, of course, is whether if any of these comparisons
make sense. We argue that if both paradigms A and B can be used in the
implementation of the same requirements, then these two paradigms
can (and indeed, should be) compared. That is not to say that the com-
parison is easy or that it can be reduced to a single numerical “score”. Different
paradigms have different strengths and weaknesses, and the goal of a comparison
study is to shed light on these differences. Although we do not expect definite
answers on questions like “which paradigm would eventually lead to an agent
passing the Turing test”, we can provide insight into lesser but still important
questions such as:

— Would the implementation provide adequate performance?

— Can a rigorous software engineering process be applied to the development?
Can the performance be predicted?
— Can human expertise in the problem domain be transferred to the agent?
What will the development effort be?

— WiIll the resulting agent be predictable in its actions?

The remainder of this paper is organized as follows. In Section 2 we present
the Feed-Fight-Multiply game, our control problem. We succinctly describe the
twelve agents we implemented in Section 3. We detail our findings in Section 4.

2 The Feed-Fight-Multiply world

To study the benefits and drawbacks of various agent paradigms, we decided to
place them in a virtual environment in which many of the real world challenges
are reflected. We did not choose one of the existing environments, because the
existing implementations would have skewed the result of the comparison. One
requirement towards the environment was the existence of multiple paths to suc-
cess. We expected that agents implemented in various paradigms will have a
different external behavior as well. By measuring success as the conformance to
a predefined behavior we would have favored some paradigms and disadvantaged
others. In addition, having multiple paths to success is a quality of most natural
environments and many artificial ones.

Upon these considerations, we implemented the Feed-Fight-Multiply (or
Mate) game, which borrows elements from turn-based multi-player strategy
games and artificial life. Agents are sharing a two-dimensional environment hav-
ing accessible zones and obstacles. The agents can sense their environment within
the range of their sensors. Food resources appear at random points in the envi-

Comparing apples with oranges: evaluating twelve paradigms of agency 3

ronment; consuming food increases the energy level of the agents. Finally, agents
can multiply by (non-sexual) reproduction. The environment was implemented
in the YAES simulation environment [3]. Figure 1 shows a typical FFM game in
progress.

Fig. 1. Screenshot of the Feed-Fight-Multiply environment

An additional concern was to choose the level of the services provided by
the environment. Evidently, natural environments do not provide any kind of
service, but this would make the implementation of the agents unduly difficult.
The guiding principle was that whenever the problem had a well known, standard
implementation, we had chosen to implement it in the environment, and provide
it as a service to the agents. These services included: the scanning of the sensor
range for agents and food, tracking of moving agents and identifying agent types.

Finally, instead of keeping a single score, we decided to record multiple pa-
rameters of the agent behavior. This meant that not only there were multiple
paths to success, but the final goals of the agents could be different as well. Of
course, all agents were required to work towards their survival, but besides that,
the criteria for success could be maximum amount of resources gathered, sur-
vival on minimum amount of resources, largest number of agents killed, number
of individual agents of the same type at the end of the game, or others.

3 Twelve agents, twelve paradigms

We have developed twelve agents, implemented in twelve different paradigms of
agency. In choosing the paradigms we strived to maintain a balance between
high level, logic based approaches and low level, physics oriented models; be-
tween imperative programming, declarative approaches and “learning from ba-
sics” as well as between anthropomorphic or biologically inspired models on one
hand and pragmatic, performance oriented approaches on the other. The imple-
mented agents are concisely described in Table 1. The developers were instructed
to develop paradigm-pure implementations and to design the agents such that
the “spirit” of the paradigm is best expressed. When the paradigm could cover

4 Linus J. Luotsinen et al.

only some of the required functionality, the developers could use some limited
heuristics.

Table 1. Concise description of the twelve implemented agents

Name Paradigm Paradigm |[Team- |Offline Realtime
coverage |work Learning |adapt.

AffectiveAgent|Affective model,|Limited No No Yes
anthropomorphic
lifecycle

GenProgAgent |Genetic program-|Full Yes Yes No
ming

Reinforcer Reinforcement learn-|Full Yes Yes No
ing

CBRAgent Case based reasoning|Full No Yes Yes

RuleBasedAgent|Forward reasoning |Full Yes No No

NaiveAgent Nailve programming|Full Yes No No
(scripting)

GamerAgent Game theory Limited |Yes No No

CrowdAgent Crowd model Limited Yes No No

NeuralLearner |Neural networks Full No Yes No

SPFAgent Social potential fields|Limited |Yes No No

CxBRAgent Context based rea-|Full No No No
soning

KillerAgent Simple heuristics,|Full No No No
with path-planning

3.1 AffectiveAgent: anthropomorphic and affective model

The basic premise behind the affective agent paradigm is that the agent behaves
with an emotional frame of reference with which to weigh its decisions. Besides
providing the agent with emotional states such as anger, contentment or fear,
we also made it to mimic the basic lifecycle of humans: agents have a childhood,
maturity and old age, with their corresponding goals and priorities. In broad
lines, our implementation is an adaptation of the agents from [14]. The affective
model plays two roles in the behavior of the agent: action selection (e.g., what
to do next based on the current emotional state) and adaptation (e.g., short or
long-term changes in behavior due to the emotional states).

The short term variables which control the behavior of the agent are the
action tendency and the conflict tendency. The dynamic action tendency is the
probability whether an agent will fight or flee in a given situation. To adapt the
action tendency to the outcome of the agent’s interactions, the action tendency
is updated by the adaptation rule depending whether the agent is experiencing
loss or success.

Comparing apples with oranges: evaluating twelve paradigms of agency 5

This dynamic action tendency is used in calculating another dynamic param-
eter of the adaptive agents, namely, conflict tendency. This parameter determines
whether an agent seeks conflicts or avoids them. Emotive states such as anger
or fear are determined in terms of ranges of the action and conflict tendency.

Besides the mood of agent, its behavior is determined by its age. The agent
remains content, without adaptation, until the agent comes of age, which is set,
with apologies to Tolkien, to 33 cycles. After the age of maturity, the agents
conflict tendency is adapted every 10 cycles. To avoid agents becoming bogged
down in an emotional quagmire, a catalyst was installed in the way of a mood
swing. At 50 cycles and every 25 subsequent cycles, the agents current action
tendency is randomly reset to a new value and then action tendency and conflict
tendency are recalculated. This provides a potentially dramatic change in mood.
An agent could easily shift from an action tendency of 0.8 angry to 0.3 fearful.

The age of maturity was also employed to delay the agents mating. Moreover,
the agents mating is also limited by mood and by energy level. An agent that is
angry cannot mate. Only an emotional state of fearful or content will allow the
agent to mate.

3.2 GenProgAgent: genetic programming

Genetic Programming (GP) [8] is an evolutionary algorithm in which the evolu-
tionary units are computer programs or functions described by tree structures
consisting of conditional branches, mathematical operators, variables and con-
stants [2]. We based GenProgAgent on the generational genetic algorithm [6].

The evolution of the behavior of the agent is split in two stages. In the first
stage we evolve tactical behaviors, which control primitive actions such as eat
food, explore, attack and multiply. In the second stage we evolve game strategies
by combining the behaviors from the first stage using Finite State Machine
(FSM) structures.

Stage 1 - Evolving Tactical Behaviors. Four types of primitive behaviors were
created: Eat-food, Explore, Attack and Flee.

The eat-food behavior was generated using a fitness function which defines
an ideal individual as an agent that does not collide with obstacles and that eats
all the available food resources. The fitness is derived based on the number of
failed move sequences, the length of the failed move sequences and the amount
of food eaten. Although the algorithm did not find an optimal solution, the best
individual was able to, in most cases, effectively avoid obstacles and consume
available food resources. The behaviors for Explore, Attack and Flee can be
evolved similarly, or can be created from the Eat-Food behavior by replacing
the heuristics. As we did not manage to evolve optimal primitive behaviors
which reliably avoided being stuck on obstacles, we decided to augment the
evolved behaviors with helper heuristics. The heuristics used provide directions
to closest food, opponent agent and unexplored areas using A* search.

Stage 2 - Evolving Game Strategies. With the tactical behaviors already cre-
ated, the next challenge is to decide which tactics to be applied at any given
moment.

6 Linus J. Luotsinen et al.

Tactical decision are considered the states of a finite state machine, and we
apply genetic programming to evolve the transition rules for these structures.
Two types of game strategies were created: Balanced and Aggressive. The bal-
anced strategy seeks to create an agent that doesn’t specialize on any type of
behavior. The aggressive strategy seeks to create an agent that specialize on at-
tacking and killing other agents. The game strategies were generated in a FFM
game with 6 additional opponent agents. The purpose of the opponent agents
is to generate hostile and conflicting situations from which strategies resolving
these situations can be evolved.

3.3 Reinforcer: reinforcement learning

Reinforcement Learning (RL) has the ability to learn in an unknown do-
main without prior knowledge [10]. The specific technique chosen for the
ReinforcementAgent was Temporal Difference (TD) learning. This approach
uses a table of state action pairs and their corresponding reward. If an action
leads to a good result, but this is not detected until several steps later, that good
result will immediately propagate back to the initial action and therefore favor
it in the future. The following formula was used in the ReinforcementAgent
implementation.

Q(st,at) = (1 —) * Q(s¢, ar)
+ ax (re + v * maz(Q(ss+t, art1))) (1)
a=1/(1+ visits(s,a)) (2)

Where « is related to the number of times that the state action pair has been
visited, 7y is a user defined value between 0 and 1, Q(s, a) and r(s, a) is the value
and reward for current state action pair respectively.

The action set for the ReinforcementAgent is defined by 20 movement ac-
tions. Actions for eat, attack and flee are also included in the action set. The
state set consist of various energy level thresholds, possible actions to take in
each game round and on the objects and their directions as seen in the agent’s
sensors. In total there are 117760 state action pairs. Reinforcement is applied
using direct stimuli from the environment. Negative reinforcement is imposed
when the agent fail to perform some action or when the agent performs to many
consecutive actions of equal type. In similar manner, positive reinforcements is
given when an agent successfully performs some action.

3.4 CBRAgent: case-based reasoning

Case-Based Reasoning (CBR) [1,13] is the process of intelligently solving new
problems based on the previous similar problems. The basic steps of CBR are
retrieve, reuse, revise and retain. First, CBR retrieves the most relevant case
to the current problem at hand. The retrieved case is reused and revised to
incorporate minor variations in the solutions. This adaptation step gives CBR a
power to form more precise and accurate solutions to the future problems. Finally

Comparing apples with oranges: evaluating twelve paradigms of agency 7

the revised solution is retained for future use. [9] has shown the capability of
CBR as the intelligent search method for controlling the navigation behavior of
the autonomous robot. Our implementation is an adaptation of this model.

The case was represented using ten parameters (the closest food, enemy and
obstacle, the density of food and enemies, the ratio between the agents health and
the opponents, and parameters determining the actions currently available to the
agent). A weighting scheme was used to emphasize the more important features.
We have identified 19 historic cases that are selected based on the performance
of the agent in training simulations. Even with the small number of cases, the
CBR-based agent shows drastic improvement over the random behavior and can
be refined by adding more specific cases to the library. The selection of the case
was done with a distance matrix based selection. The reliability of the case based
on the previous failures is used as a weight in order to encourage the selection of
variety of cases. The reliability of the case is dynamically adapted depending on
whether the case can or cannot be successfully applied to the current situation.

After the action to be performed is selected by the CBR module, a set of
heuristics are used to adapt the action to the current environment. First, the
heuristic module checks whether the proposed action is feasible. In case of failure,
the reliability measure of the case which proposed the action is reduced. The
reliability of the case is used as a weight during the calculation of the distance
matrix, so that case with the less reliability will have greater distance in the
subsequent cycles. The second heuristic calculates the direction and the speed
of the agent movement. For instance, eating a food item requires the direction
toward the food and appropriate setting of the speed such that the agent stops
at the food item.

3.5 RuleBasedAgent: forward reasoning

A rule based system consists of an inference engine and knowledge base. The en-
gine’s reasoning mechanism uses a forward-reasoning technique. The knowledge
base contains a fact base and a rule base. The fact base acts as a repository of all
the truths that is seen or understood by the agent. The fact base is periodically
updated with new sensor data, which triggers the execution of rules. To reduce
the number of rules necessary to determine the behavior of the system, we have
decided to choose the atomic actions at a relatively high level of abstraction. For
example, a typical rule would have the consequent of movement towards a par-
ticular spot. Many additional intermediate rules could have been implemented
to determine exactly how to move towards the objective. Instead, once this rule
has been fired, a helper function is called to determine where the objective is
and binds various directional parameters of the consequent of the rule.

The rule base of the RuleBasedAgent agent consists of 15 rules. The con-
sequent of each rule may result in another fact pushed onto the fact base or
an action of the agent which would terminate the inference mechanism for that
simulation cycle. The salience of the rule is used to aid in conflict resolution as
well as the method of sorting in the rule base stack. This method prioritizes the
various rules which in turn define the behavior of the agent.

8 Linus J. Luotsinen et al.

The RuleBasedAgent implements all the five basic commands of the game
(movement, feeding, fleeing, attacking and mating). Whenever a decision needs
to be taken, it is determined by synthetic facts in the fact base of the agent. For
instance, the choice to attack is determined by the fact AGGRESSIVE, while a
choice to flee is triggered by the fact TIMID. Whenever there is a potential for
an encounter with another agent, the decision of the aggressive or timid behavior
is made by the relative energy of the agents.

The rule based agent implements flocking behavior with other rule based
agents in its sensor range. If the fact base contains the synthetic fact FLOCK,
the move commands will be restricted to movements which allow the agent to
remain in the flock. The leader of the flock is the agent with the lowest id (the
oldest agent). Two scenarios occur when food is within range while in a flock.
If the GREEDY fact exists, the agent attempts to move and acquire the food
closest to them. If the fact does not exist, then the agent only attempts to move
and acquire a food resource if no other rule-based agent is closer to the resource.
The second scenario promotes efficient feeding while in the pack to avoid agents
ineffective attempts to acquire the same resource. The agents in the pack also
synchronize their attack and fleeing behaviors. If the leader of the pack attacks
an agent, all the members of the pack will attack, regardless of their energy levels
or aggressiveness ratio.

3.6 NaiveAgent: naive programming, scripting

Naive programming is a style of coding that allows the developer to hand-
optimize the code for a particular task. NaiveAgent relies on the hand scripting
of encounters for its success - a technique frequently used in the development of
multi-player games. For each possible encounter, a script was written specifying
how the agent should react. In the following we discuss some of the heuristics
used in the implementation:

Exploration: in the absence of other tasks, the NaiveAgent moves around
the environment with its maximum speed. This way, by covering more area, the
probability of finding food increases. It was found that the benefit of finding
more food outweights the extra expenditure of energy. The higher coverage also
increases the chance of encountering other agents, which is beneficial, given the
aggressive nature of the NaiveAgent.

Obstacle avoidance: Instead of using a sophisticated decision-making process
to guide the movement of the agent, the NaiveAgent simply moves right every
time it encounters an obstacle. To avoid getting stuck, a failcount variable is
incremented each time the agent makes a right turn. Only encountering another
agent or food particle can reset the fail count. If the fail count is greater than
five, the direction is chosen randomly.

Social behavior: If the NaiveAgent has a particle of food and another
NaiveAgent is within the sensor range, only the agent with the lowest energy
level is allowed to eat.

Aggression: Whenever a different agent is detected in the sensor range, and
the agents’ energy level is larger than 120% of the opponents, the NaiveAgent

Comparing apples with oranges: evaluating twelve paradigms of agency 9

attacks the opponent. If more than two agents are in the range, the NaiveAgent
attacks the weakest opponent.

3.7 GamerAgent: game theory

Game theory [7] is a mathematical formulation of cooperative or competitive
interaction between multiple entities. The key concern in game theory is to
extract rational (optimal) behavior from a given interaction between autonomous
agents. We model the FFM world as a zero-sum game.

The game consists of two entities, and each one of them can choose from
two strategies: attack or flee. The utility functions for each strategy are based
on the ratio of energy levels A and the likelihood of attack or flee by the other
agent based on previous interactions p. We will denote U, ;, the utility of taking
action a when the opponent agent takes action b (where the actions can be A
for attacking and F' for fleeing. The utility functions are defined as follows:

Uaa=(1—p)x 100+ A x 200 (3)
Uar = pu x 100 + A x 200 (4)
Up.a = pu x 100 — A x 200 (5)
Urr = (1 —p) x 100 — A x 200 (6)

Given the matrix, the optimal strategy is chosen by summing up the utility
for each strategy. The strategy that provides the maximum utility is then chosen
as the optimal strategy.

Several heuristics were used to guide the agent to explore the map and eat
available food. The expert agent uses an internal data structure representing the
perceived game map as a base for the heuristics.

3.8 CrowdAgent: crowd model

Crowd modeling techniques traditionally take inspiration either from fluid sys-
tems or particle systems. Both approaches deal with attractive, repulsive and
frictional forces; in addition, particle systems place motion decision with the in-
dividual [4]. In the implementation of the CrowdAgent, we chose the aggression
level of the agents as the grouping characteristic of the crowd. An agent will
start out with an initial aggression rating, A(0) = A;, and then migrate towards
the aggression level of the agents surrounding them. This transition is governed
by:

(A(0) — A(t))? = At N
(M- AW)
(oobtatn = i7) maz((D7),4) @

A(t+ At) = A(t) +

[]

b=0

Where Dy is the distance between the current agent and agent b. The first
term of the equation guarantees that if the agent is not surrounded by other

10 Linus J. Luotsinen et al.

agents it will return to its initial aggression level. If there are other crowd agents
in the neighborhood, the agent will have its aggression level pulled towards the
aggression level of each of the surrounding agents. The motion of an agent is
related to the position of all other agents in the sensor range, and what there
aggression levels are. The equation of motion used is:

Xt 80) = X(0) + At Ve T PR ®)

A similar function is calculated for the Y direction. Once again we are sum-
ming over all agents in the sensor range, but this time we also generate a factor
for the attraction between agents. The pF attribute is based on the aggression
of the agent of interest and the aggression of the agent in the sensor range. This
is an attractive/repulsive attribute which is defined by the piecewise function

—1x L5« |A— A2 + pfA
if |[A— Ay <= pfB
2
pr*4*(|AfAb\fw) —pfC
if [A— Ay > pfB

fn) = (9)

The pF factor will give an attractive influence between 0 and pf B, the re-
maining distance will give a repulsive influence. As long as the attractive forces
are not made too large then the individuals will have the ability to separate from
a group, and rejoin another group.

As the particle grouping paradigm deals only with the motion of agent in the
presence of crowds, it was supplemented by a series of heuristics. In the absence
of other agents, the agent will perform random wandering. If food is detected, the
agent moves directly towards the food. The agent is reproducing with a random
probability whenever the energy level is high enough. A simple heuristic was
used for fighting: the agent tries to avoid coming in contact with other agents,
but if it comes into contact, it will attack. Finally, a simple heuristics is used for
obstacle avoidance. If an obstacle is in the direction you are trying to move then
keep turning to the right until you find an open direction and go that way.

In practice we found that there was a need for at least 4 agents of this type to
get any really dynamic interactions going, and this was also the needed level to
guarantee a long survival time, the algorithm performing the best with 6 agents
of this type, given the limitations of the environment size.

3.9 NeuralLearner: neural networks

Neural networks are a natural choice as the control paradigm for embodied
agents. An agent is trained with a set of training data representing sensory
inputs and desired actions as outputs, and a learning algorithm such as back-
propagation [12] is used to teach the agent the optimal behavior.

The defining difficulty in our implementation was the acquisition of training
data, a problem noticed by other artificial life reseachers as well [15]. The problem
is that there is no input-output mapping inherent to artificial life simulations.

Comparing apples with oranges: evaluating twelve paradigms of agency 11

One must find a mapping that the neural network should estimate, and then
acquire data based on that mapping. This requires the pre-existence of other
agents, and the performance of the NeurallLearner will be determined by the
performance of the model agent. Based on this balance, this project has two
parts: search the entire input-output mapping space for a possible solution, then
teach that solution to a neural network agent.

All the decisions in a NeuralLearner agent are made by a single multilayer
neural network. The inputs to this network consisted of the agents current energy
level, the presence and direction of another agents, food and obstacles. Also
included in the input was whether or not the agent could currently eat, mate,
attack, or flee. The output of this network was an action selection (move, eat,
attack, flee, mate), a direction (north, south, east, or west), and speed value.
To acquire data for the training of the NeuralLearner a random agent was first
created to explore the artificial life world and record data to be used to train
the network. The actions of the random agent where filtered, and the training
set contained only the input-output pairs that either led to a direct increase in
energy, or kept the agent alive over a long period of time. Unfortunately, the
random agent usually (about 80% of the time) made a decision that did not lead
to useful data. Hence, the random agent approach was a very inefficient method
of acquiring data. To improve data acquisition, the random agent was pushed
towards situations where it would have experiences, both good and bad.

The resulting data sets were used to perform offline training on the neural
network of the agent. The network was then used statically with the agent, that
is, no more learning took place.

3.10 SPFAgent: social potential fields

Social potential fields [11] are a way to control autonomous agents using inverse-
power laws on attractive and repulsive forces between the agents and objects of
the environment. We have implemented an agent whose movement is determined
by a set of forces which attract or repulse the agent to agents and object of its
sensor field. The resulting force is

- _ C1 C2
F,L' = Zvij . (_TTI + E) (10)

where 75 is the unit vector of the direction from agent i to agent j, and r is
the distance from agent i to agent j. The parameters c¢1,co > 0 and 01,09 > 0
are determining the nature of the forces between the agent and the object.

Once we decided on the general form of the forces, the next step is the
choice of the parameters c1, ¢z, 01 and oo such that the desired behavior of
the agent is obtained. In practice, the determination of these parameters is a
result of experience and experimentation. We have determined four sets of these
parameters, which describe the relationship of a social potential field agent to
(1) another social potential field agent, (2) an other agent, (3) food items and
(4) obstacles. The experimentally obtained values are displayed in Table 2.

12 Linus J. Luotsinen et al.

Table 2. The inverse power force law constants used in SPFAgent

Object of Interest |c1 Co o1 o)
SPF Agent (a) 45.0 |20.0 (1.0 |0.7
Other Agent (n) [45.0 0.0 [1.0 0.7
Food (f) 0.0 (20.0 [1.0 0.8
Obstacle (o) 50 10.0 1|5.0 |1.0

During testing, two major problems were found with the movements of the
agents. Agents had a tendency to be stuck to into local minima, such as becom-
ing immobile in the geometrical center of several food sources. Second, agents
frequently overshot the food location and performed an oscillatory movement
around it. A similar problem led to the agent bouncing indefinitely between two
obstacles. These problems were solved by adding heuristics which (a) break the
tie between the attraction forces and (b) prevent repetitive movements.

As the SPF paradigm describes only the movement of an agent, we applied a
set of simple heuristics for the remaining actions. The attack heuristics dictates
that the agent attacks any agent which gets closer than half of the critical dis-
tance 10. The mating heuristics encourages the mating of isolated SPF agents,
but restricts the mating of SPF agents inside groups. As an emergent property,
this heuristics leads to moderate size, relatively stable groups of SPF agents.

3.11 CxBRAgent: context based reasoning

Context-based Reasoning (CxBR) is a paradigm intended to model human tac-
tical behaviors [5]. Contexts encapsulate knowledge about appropriate actions
needed to address specific situations. The CxBR paradigm is composed of a
tactical agent, mission context, major contexts, sub-contexts and sentinel rules
which control the transitions between contexts.

CxBRAgent was implemented using eight different context constructs: 1) The
ExploreContext is the default context of the mission. 2) The BackTrackContext
is called from ExploreContext when there is nothing new to explore in the map at
the current location of the agent. The agent will then retrace its step and search
for new places to explore. 3) The AttackContext is deployed when there is a
hostile entity within the sensor range. 4) The AvoidContext represents the case
when there is a hostile entity within the sensor range and the agent cannot attack
the other agent. The agent will move away from the hostile agent, trying to avoid
being chased or attacked by the other agent. 5) The EatContext is called from
either the ExploreContext or BackTrackContext when there is food within the
sensor range. The agent will move towards the food and invoke the eat command
on the food resource. 6) The FleeContext is invoked when the agent have been
attacked. The agent attempts to flee away from an attacker. 7) The MateContext
is invoked rules when the agent can mate. 8) The NearDeathContext is invoked
when the energy level of the agent is below a certain threshold. It will attempt
to extend its lifeline by spawning another agent.

The CxBR agent implements a simple path-planning algorithm which allows
it to navigate an internal representation of the global FFM map. The same

Comparing apples with oranges: evaluating twelve paradigms of agency 13

path-planner is used when approaching objects in the agent’s local sensor range.

3.12 KillerAgent: simple heuristics

The KillerAgent is implemented using a set of simple heuristics. The agent
keeps track of direction, failed moves and successful moves. If the number of
consecutive failed moves exceed a predefined threshold then a direction switch is
performed. The same simple idea is used if too many moves have been successful.
However, the threshold is higher in this case. When the agent detects food in
its sensor it will immediately navigate to it and eat the food. If the agent senses
other agents within its sensor range it will prioritize an attack over any other
action. If the agent itself is attacked it will flee. This agent does not utilize the
multiply feature or any teamwork strategies.

4 Findings

Development process: We found that the explicit programming paradigms
(scripting, rule based, CxBR and, to a certain level CBR) were easier to pro-
gram, yielded a steady improvement in their performance during the develop-
ment process and did not require costly rewriting (although, occasional Java
refactorings were performed). The human knowledge integrated in these agents
allowed them to outperform their implicit cousins in test runs.

Learning: All paradigms which relied on learning (Neural Networks, Ge-
netic Programming and Reinforcement Learning) have been successful in creat-
ing agents which can survive in the environment in the absence of predators. For
all paradigms the developers spent significant time designing learning scenarios
in which the algorithms can be steered in the right direction. This was made
difficult by the fact that these scenarios had to be populated with agents. The
most problematic paradigm from this point of view turned out to be the neural
network agent, whose supervised learning algorithm required an existing agent
to perform the scenario to generate “correct” input and output pairs. Admit-
tedly, this difficulty would be irrelevant in applications where such an imitation
target exists and can be used at will.

What can be learned? All agents were successful in learning policies and
inclinations (such as the ideal value of aggression), and they performed better
than human intuition for these parameters. However, the learning agents were
unsuccessful in learning (essentially, discovering) algorithms. The farthest they
got was discovering approaches for collision avoidance, speed control for ap-
proaching the food, or avoiding to get stuck. However, we were not successful in
developing path planning algorithms (such as an approach for visiting food lo-
cations). The genetic programming approach was the only learning model which
would represent (and, theoretically evolve) such a model. However, an exam-
ination of the evolved genetic programs showed that they were very far from
evolving anything like a path planning algorithm. This inevitably put them at a
disadvantage against explicitly programmed agents which can deploy advanced

14 Linus J. Luotsinen et al.

algorithms such as A*, path planning, approximate Hamiltonian cycles and in-
crementally built internal maps.

A rose by another name. Many paradigms led to surprisingly similar
implementations, while giving very different interpretations to the variables in-
volved. For instance, the developers of affective models AffectiveAgent and
CrowdAgent used the variables describing the emotional states as just another
state variable and applying regular programming techniques on them, on hind-
sight labeling them with emotional significance (the write-up for affective agents
contained terms such as “emotional quagmire” for being stuck in a local minima).
On the other hand, developers of other agents tended to assign anthropomor-
phic significance to their state variables (“the agent gets angry”), even if their
paradigm did not required it.

A similar phenomena was observed related to contexts. Context based reason-
ing, as implemented in the CxBRAgent requires the developer to actively identify
the context of the agents operation and describes ways to handle it. However,
the concept of context was actively used in at least four other agents.

The SPFAgent and the CrowdAgent ended up deploying very similar attrac-
tion and repulsion forces, starting from different physical models and very dif-
ferent high level interpretations.

The importance of the heuristics. Although the game was not easy
(humans playing it at first time did not perform better than agents), human users
could easily come up with rules of thumb which offered significant performance
increase. The ease of representing these heuristics in the agents was a
determining factor in the performance. Agents in which this could be done
only in a very convoluted way (such as the learning agents, and, in lesser degree,
the potential field, crowd and affective models), had scored the worst in direct
comparisons, and led to significant frustration.

Paradigm-pure models considered harmful. We found that the require-
ment to use a single paradigm had significantly reduced the performance of the
agents. This effect was less pronounced for the explicitly programmable models
because the developers could “sneak in” some foreign concepts. These improved
the performance on the short term, but led to messy design. We find it a good
approach to plan for a hybrid model from the beginning, and explicitly plan the
roles of various approaches in the functioning of the agent.

5 Conclusions

In this paper we report on the findings of a study in which twelve paradigms
of agency were compared in an environment inspired from strategy games
and artificial life. A more extensive report on the study, together with
source code and playable simulation runs is available from the website
http://netmoc.cpe.ucf.edu/Yaes/index.html.

References

1. A. Aamodt and E. Plaza. Case-based reasoning: foundational issues, methodolog-
ical variations, and system approaches. AI Commun., 7(1):39-59, 1994.

10.
11.

12.

13.

14.

15.

Comparing apples with oranges: evaluating twelve paradigms of agency 15

W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic programming -
an introduction: On the automatic evolution of computer programs and its appli-
cations. In Morgan Kauffman Publishers Inc., 1998.

L. Boloni and D. Turgut. YAES - a modular simulator for mobile networks. In
8-th ACM/IEEE International Symposium on Modeling, Analysis and Simulation
of Wireless and Mobile Systems MSWIM 2005, 2005.

E. Bouvier, E. Cohen, and L. Najman. From crowd simulation to airbag deploy-
ment: Particle systems, a new paradigm of simulation. J. FElectronic Imaging,
6(1):94-107, 1997.

A. J. Gonzalez and R. H. Ahlers. Context-based representation of intelligent be-
havior in simulated opponents. In Proceedings of the Computer Generated Forces
and Behavior Representation Conference, 1996.

J. H. Holland. Adaptation in natural and artificial systems. In University of
Michigan Press, Ann Arbor, 1975.

J.V.Neumann and O.Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

. J. R. Koza. Genetically breeding populations of computer programs to solve prob-

lems in artificial intelligence. In Proceedings of the Second International Conference
on Tools for AI, Herndon, Virginia, USA, pages 819-827. IEEE Computer Society
Press, Los Alamitos, CA, USA, 6-9 Nov. 1990.

M. Likhachev, M. Kaess, Z. Kira, and R. C. Arkin. Spatio-temporal case-based
reasoning for efficient reactive robot navigation. 2005.

T. M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.

J. Reif and H. Wang. Social potential fields: A distributed behavioral control for
autonomous robots. In Proceedings of the International Workshop on Algorithmic
Foundations of Robotics (WAFR), pages 431-459, 1995.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. In Parallel distributed processing: explorations in
the microstructure of cognition, vol. 1: foundations, pages 318-362. MIT Press,
Cambridge, MA, USA, 1986.

R. C. Schank. Dynamic Memory: A Theory of Reminding and Learning in Com-
puters and People. Cambridge University Press, New York, NY, USA, 1983.

M. Scheutz. Useful roles of emotions in artificial agents: A case study from artificial
life. In D. L. McGuinness and G. Ferguson, editors, AAAI pages 42-48. AAAI
Press / The MIT Press, 2004.

G. N. Yannakakis, J. Levine, J. Hallam, and M. Papageorgiou. Performance, ro-
bustness and effort cost comparison of machine learning mechanisms in FlatLand.
IEEE Proceedings of the 11th Mediterranean Conference on Control and Automa-
tion, June 2003.

