
Trajectory Adaptation of Robot Arms for Head-pose Dependent Assistive Tasks
Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Bölöni

Department of Computer Science
University of Central Florida

{rrahmati, pabolghasemi, lboloni}@eecs.ucf.edu

Amirhossein Jabalameli, Aman Behal
Department of Electrical and Computer Engineering

University of Central Florida
amir.jabal@knights.ucf.edu, abehal@ucf.edu

Abstract

Assistive robots promise to increase the autonomy of disabled
or elderly people by facilitating the performance of Activi-
ties of Daily Living (ADLs). Learning from Demonstration
(LfD) has emerged as one of the most promising approaches
for teaching robots tasks that are difficult to formalize. LfD
learns by requiring the operator to demonstrate one or several
times the execution of the task on the given hardware. Un-
fortunately, many ADLs such as personal grooming, feeding
or reading depend on the head pose of the assisted human.
Trajectories learned using LfD would become useless or dan-
gerous if applied naı̈vely in a situation with a different head
pose. In this paper we propose and experimentally validate a
method to adapt the trajectories learned using LfD to the cur-
rent head pose (position and orientation) and movement of
the head of the assisted user.

Introduction
With the extension of the human lifespan and general aging
of the population in many advanced countries it becomes
increasingly important that elderly and disabled people are
empowered to live autonomously. Assistive robots, which
can be either wheelchair mounted robotic arms or mobile
robots with one or more manipulators can help disabled peo-
ple perform the Activities of Daily Living (ADLs). Many
ADLs depend on the head pose of the user. Examples in-
clude feeding (using forks, spoons, glasses, bringing bot-
tles of juice or medication to the mouth), personal grooming
(combing the hair, shaving, brushing teeth) as well as other
ADLs such as reading a book or participating in a video chat.
This means that the assistive robot cannot simply reproduce
pre-programmed or rigidly learned trajectories. The trajec-
tory must be dependent on and adapting to the current head
pose of the user. For instance, when feeding the user, the
robot needs to bring the fork to the mouth of the user – other
trajectories are ineffective and potentially dangerous.

Adapting to the current head pose is not a problem if the
trajectory had been calculated from scratch using a formal
model of the task. Unfortunately, many ADLs are difficult
to describe formally - they might depend on the environment
and the preferences of the user. The most desirable way to

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

teach a robot to perform an ADL is Learning from Demon-
stration (LfD) - a technique in which the task is demon-
strated to the robot either by manually guiding its arm or by
teleoperation. Ideally, from a small number (possibly, just
one) demonstration, the robot should be able to generalize
the learned trajectories to a new environment or state. Due to
the increase in the problem complexity, previous LfD imple-
mentations that adapt the demonstrated trajectories to new
situations usually do not generalize to the 3D pose of the
objects in the environment.

Related work
In some problems, gathering relatively large number of
examples is possible in the simulation environment(e.g.
(Abolghasemi et al. 2016)). However, the challenge in many
LfD applications is to use a minimum number of examples to
learn a task. The examples may include situations in which
the geometry of the objects change from the demonstration
scene to the test scene (Schulman et al. 2013), where non-
rigid registration is used to map the camera input points from
the training scene onto the test scene. This registration is
later used to adapt the trajectory of the robot arm captured
during the demonstration to the testing situation. It turns out
that non-rigid registration works well as long as the environ-
ment does not change too much such that a valid registration
could not be found. For example, when person’s head rotates
180◦, most of the points of the demonstration are not visible
anymore, hence, finding a warping function fails.

Another method to capture the critical aspects of demon-
strated trajectories and maintain them during the test is in-
vestigated in (Ye and Alterovitz 2011). Their method han-
dles new positions of the involved objects while avoiding
new obstacles in the scene by using motion planning algo-
rithms. A method that utilizes averaging to generalize the
trajectory to the scenes where the object position is changed
is proposed by (Reiner et al. 2014). Neither method consid-
ers the orientation of the objects, thus they cannot be applied
to situations where a non-symmetric object rotates.

(Pastor et al. 2009) extend the Dynamic Movement Prim-
itives framework in which recorded movements can be rep-
resented with a set of differential equations. They adapt this
framework to generate trajectories that end at goals at differ-
ent positions while avoiding obstacles. (Calinon et al. 2009)
use a Hidden Markov Model to capture the constraints of



demonstrated trajectory. They use a set of pre-defined land-
marks for each trajectory to track the changes from demon-
stration to test.

More recently, (Jain et al. 2013) worked on improving the
demonstrated trajectories based on user preferences. Finally,
(Rozo, Jiménez, and Torras 2013) proposed a LfD frame-
work teaching force-based manipulation tasks to robots.

Problem definition

In learning from demonstration, we start by performing the
task for the robot and recording the executed trajectory. A
task can be executed using different trajectories based on the
state of the environment. For example, a robot performing
a head pose dependent ADL task might use either its right
or left arm depending on which one is closer to the head.
Therefore, we record trajectories augmented with the state
of the environment at every time step. For the purpose of the
work described in this paper, the state will be composed of
only the head pose. However, a complete sequence of RGB-
D frames from the camera can be considered as the state if
we have enough example demonstrations.

The trajectory of the robot arm is usually represented in
joint space by keeping track of the value of each joint at
each time step. This trajectory can also be shown in task
space in which the pose of the end-effector is stored. We use
task space trajectory in order to be able to transform it in 3D
space.

For each task, we record N demonstrations D =
{d1 . . . di . . . dN}. A demonstration di = {E,Q} consists
of Q, the state of environment including head pose H ,
and E = [e1 . . . et . . . eT ] a set of end-effector poses et
at time t = [1 . . . T ]. Pose et = [X,Y, Z, φ, α, ψ] is the
vector containing the position and orientation (roll, pitch,
yaw) of the end-effector with respect to origin. Similarly,
we show the set of head poses during the demonstration by
H = [h1 . . . ht . . . hT ] in which ht is the head pose at time
t.

Naturally, the robot is able to retrace a learned trajectory,
which would work fine provided that the evolution of the
head poses during test are the same as during the demonstra-
tion. The challenge we are trying to solve is that the head
pose during test time is different from the demonstration
ones: H ′ = [h1 . . . ht′ . . . hT ′ ] where ht′ is the head pose
at time t′. The goal is to find the corresponding end-effector
trajectory during the test time E′ = [e1 . . . et′ . . . eT ′ ]. Note
that not only the head poses might be different, but also
the total time of the trajectory t′ might be different at test
time than the time t it took at demonstration. For exam-
ple, consider the scenario shown in Figure 1 in which dur-
ing the demonstration the arm traverses a straight trajectory
towards the head. During the test, however, the trajectory
takes longer to be executed since the head moves simultane-
ously. This change in trajectory execution time might occur
because we prioritize maintaining the end-effector pose rel-
ative to the head pose rather than progressing in execution
of the trajectory.

(a) (b)

Figure 1: The duration of executed trajectory at test might
be different from the demonstration. Demonstrated trajec-
tory (a) is a straight trajectory towards the head. The desired
trajectory at test time (b) is longer since the head moves dur-
ing the execution.

Trajectory transfer method
In this section, we explain the steps to adapt the trajecto-
ries from the demonstration to the test situation. The real-
time head pose of the user is collected using a Kinect sensor
mounted on the robot. We use this information to transfer
each waypoint of a demonstrated trajectory to make a new
trajectory. The input of this transformation is the 3D pose of
the end-effector, so the result would be a 3D trajectory of
the end-effector. Therefore, in order for the robot to be able
to execute the trajectory, we convert the trajectory from task
space to joint space using inverse kinematics.

Let us start by defining the notations used in the remain-
ing of this section. Each pose in a 3D world can be uniquely
described by its position and orientation. We define opera-
tors p(x) and r(x) which decompose pose x into a transla-
tion vector and a rotation matrix respectively. We also define
p(∆(x, y)) = p(x) − p(y) to be a translation vector from x
to y and r(∆(x, y)) = r−1(y)r(x) will be the difference
between two rotation matrices.

Finding changes in the head pose
The head pose is extracted using the random regression
forests method proposed by (Fanelli et al. 2013). In practice,
we found the output of this method to be relatively noisy. By
taking advantage of the fact that we are recording a contin-
uous scene at fixed intervals, we applied an Exponentially
Moving Average (EMA), a common noise reduction tech-
nique for time-series data:

ht = αh̃t + (1− α)ht−1 (1)

where h̃t is the noisy head pose, and ht is the filtered head
pose by considering previous head poses with more empha-
sis on the most recent ones. The discount factor α controls
how much weight we give to the old data, which is set to 0.2
in our experiments.

Each demonstration consists of multiple trajectories. At
each time step, we need to select from the demonstrated tra-
jectories one that is “closest” to the test situation. For this
purpose, we use a K-Nearest Neighbor (KNN) classifier to
decide which head pose in the demonstrated trajectories is
closest to the current head pose at this time step. Based on
this prediction, we select a waypoint of the corresponding



Figure 2: Illustration of equation 4. The solid
vector is p(∆(ht, et)), the dashed vector is
r(∆(ht′ , ht))p(∆(ht, et)) and the dotted vector is
prot(∆(et′ , et)).

trajectory at the current time step to be translated. The dis-
tance measure used in KNN is as follows:

d(ht, ht′) = ‖p(∆(ht, ht′))‖+ β‖r(∆(ht, ht′))‖ (2)

where ht′ is the head pose at test time step t′, ht is the head
pose at demonstration time step t, and the parameter β con-
trols how much weight we give to the orientation compared
to the position. Note that the selection of the trajectory oc-
curs at each time step during the execution of the trajectory.
In other words, at each time step, we consider the head pose
in each trajectory and select the closest one, then we go to
the next time step.

Transferring end-effector poses
The objective in this part is to calculate p(et′) and r(et′)
which is position and orientation of robot’s end-effector at
test time t′ based on p(ht), r(ht), p(ht′), r(ht′), p(et) and
r(et). The assumption is that the end-effector should main-
tain its previous pose with respect to the head. To simplify
the problem, let us divide the changes in the pose of the head
to changes in its position and changes in its orientation. If
the head only moves without any change in its orientation,
the desired pose for the end-effector can be achieved by the
same head translation:

ptrans(∆(et′ , et)) = p(∆(ht, ht′)) (3)

On the other hand, if the head only rotates and does not
move as shown in Figure 2, the end-effector’s corresponding
action will be a translation to keep the same position with
respect to the head:

prot(∆(et′ , et)) = r(∆(ht′ , ht))p(∆(ht, et))−p(∆(ht, et))
(4)

and a rotation to adjust the orientation.

rrot(∆(et′ , et)) = r(∆(ht′ , ht))r(et) (5)

Now we can calculate the overall translation and rotation
matrix from et to et′ as

poverall(∆(et′ , et)) = ptrans(∆(et′ , et)) + prot(∆(et′ , et))
(6)

roverall(∆(et′ , et)) = rrot(∆(et′ , et)) (7)

The calculations we have performed up to this point are
finding the new pose of a single waypoint in a trajectory.
In practice, however, we need to transform the whole tra-
jectory so that it can perform the same task with respect to
the new pose of the head. The first observation we make
is that not all the points in the trajectory are required to be
transformed equally: for instance, points closer to the head
require should be translated more compared to the points far
away from the head. To decide how much a point in a tra-
jectory should be transformed, we use the following logis-
tic function as a Translation Factor (TF) for each waypoint
based on their distance to the head:

TF (d) =
1

1 + ek(d−d̂)
(8)

where d = p(∆(et, ht)) is the euclidean distance between
the end-effector and the center of the head, d̂ is the midpoint
of transformation, and k is the slope of the transformation.
The translation can vary from 0 when the end-effector is far
enough from the head to 1 when the end-effector is near the
head. The parameters d̂ and k can be decided based on the
task.

Finally, we can achieve the new position and orientation
of the end-effector using these formulas:

p(et′) = p(et) + poverall(∆(et′ , et))× TF (d) (9)

r(et′) = r(et) + roverall(∆(et′ , et))× TF (d) (10)

Converting end-effector trajectory to joint angles
In order for the robotic arm to be able to execute the trajec-
tory, a joint configuration should be found such that the end-
effector reaches the desired pose. This can be achieved using
inverse kinematics. We assume that the demonstration used
a smooth movement to perform the task. It is possible, how-
ever, that the trajectory resulting from the transfer is not go-
ing to be smooth, because, as shown in Figure 1, the change
in the head pose might insert new trajectory sequences. If
the robot tries to make these corrections too quickly in an at-
tempt to keep to the original schedule, it can result in a jerky
movement. To mitigate this problem, before transferring the
trajectory from task-space to joint-space, we interpolate be-
tween the successive end-effector poses which are far from
each other in 3D space. Then, we transfer the trajectory to
the joint space. We also designed a mechanism to control the
speed of the arm by interpolating between successive joint
configuration waypoints. This control is implemented at the
joint level just before the command is sent to the robot to
make sure that the trajectory is smooth and safe.

Experiments
We have implemented our technique using the Baxter robot
by Rethink Robotics. Baxter has a zero-force gravity com-
pensation mode in which a user can steer the robot’s arm
to desired configurations. While the user is moving the arm,
we record the joint configurations and also the pose of the
end-effector at a frequency of 20Hz. This series of recorded



Figure 3: Sequence of images demonstrating the task of
holding a book for the user to read. Notice that as the the
user turns his head, the robot positions the book for a com-
fortable reading position at an appropriate reading distance.

Figure 4: Sequence of images demonstrating the execution
of the tasks of recording a video of subject’s face for facili-
tating a video chat. The top row shows the relative position
of the user and the Baxter robot, while the bottom row shows
the video captured. Notice that although the user had moved
around significantly, his face remains centered in the video
stream.

end-effector poses augmented with the gripper status forms
the trajectory of the arm.

For our experiments we considered three different ADLs:

• Holding a book for the user such that he can read it.

• Facilitating a video chat by recording the face of the user
using a camera mounted on the wrist of the robot.

• Bringing a bottle of water close to the user’s head.

The experiments had been performed as follows. A hu-
man subject sits in front of the robot in such a way that the
robot arm can reach his head. A Microsoft Kinect sensor
mounted on the Baxter tracks the head pose of the user by
capturing RGB-D frames. Based on the relative pose of the
Baxter and the Kinect with respect to each other in the real
world, we use a translation matrix to convert the points from
Kinect coordinate system to the Robot’s coordinate system.
The captured frames are processed in real-time and the ex-
tracted head pose is recorded at the same rate as recording
end-effector trajectory waypoints.

In the task of recording video from the person’s face, the
camera on the Baxter’s arm is used. In this task, the head
of the person is centered to the camera frame. We expected
that by using our proposed method, the head should remain
in center when the person moves or rotates his head.

Results and Limitations
The sequence of images in Figure 3 shows how the robot
performs the tasks of holding a book for the subject while
Figure 4 shows the task of facilitating a video chat. In addi-
tion, the video of the robot executing the tasks can be found

online1. In the tasks of holding a book and recording video,
our algorithm could successfully adapt the demonstrated tra-
jectory in real-time as the human subject was moving.

For normal operating conditions we have found that the
robot was able to achieve all the three tasks successfully. We
have, however, also identified some limitations of the trained
trajectories.

In the task of bringing a bottle of water close to the hu-
man head, the translation factor TF plays an important role.
If we set the parameter so that it is a large number even for
points far from the head, the rate of unsuccessful trials will
increase. On the other hand, if we tune it so that even the
points close to the head are not translated completely, the
bottle will not end up in a proper position close the the sub-
ject’s head. Therefore, a trade-off needs to be made to tune
this parameter.
Acknowledgments: This work had been supported by the
National Science Foundation under Grant Number IIS-
1409823.

References
Abolghasemi, P.; Rahmatizadeh, R.; Behal, A.; and Bölöni,
L. 2016. A real-time technique for positioning a wheelchair-
mounted robotic arm for household manipulation tasks. In
Workshop on artificial intelligence applied to assistive tech-
nologies and smart environments (ATSE-16) at AAAI.
Calinon, S.; D’halluin, F.; Caldwell, D. G.; and Billard,
A. G. 2009. Handling of multiple constraints and motion al-
ternatives in a robot programming by demonstration frame-
work. In IEEE-RAS International Conference on Humanoid
Robots (Humanoids), 582–588.
Fanelli, G.; Dantone, M.; Gall, J.; Fossati, A.; and Van Gool,
L. 2013. Random forests for real time 3d face analysis.
International Journal of Computer Vision 101(3):437–458.
Jain, A.; Wojcik, B.; Joachims, T.; and Saxena, A. 2013.
Learning trajectory preferences for manipulators via itera-
tive improvement. In Neural Information Processing Sys-
tems (NIPS), 575–583.
Pastor, P.; Hoffmann, H.; Asfour, T.; and Schaal, S. 2009.
Learning and generalization of motor skills by learning
from demonstration. In IEEE International Conference on
Robotics and Automation (ICRA), 763–768.
Reiner, B.; Ertel, W.; Posenauer, H.; and Schneider, M.
2014. Lat: A simple learning from demonstration method.
In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 4436–4441.
Rozo, L.; Jiménez, P.; and Torras, C. 2013. A robot learning
from demonstration framework to perform force-based ma-
nipulation tasks. Intelligent Service Robotics 6(1):33–51.
Schulman, J.; Ho, J.; Lee, C.; and Abbeel, P. 2013. Learn-
ing from demonstrations through the use of non-rigid regis-
tration. In International Symposium on Robotics Research
(ISRR).
Ye, G., and Alterovitz, R. 2011. Demonstration-guided mo-
tion planning. In International Symposium on Robotics Re-
search (ISRR), volume 5.

1https://youtu.be/BU775Wdd4JU


