ENHANCING BASE-CODE PROTECTION
IN ASPECT-ORIENTED PROGRAMS

Mohamed EIBendary and John Boyland
University of Wisconsin-Milwaukee

Outline

* |ntroduction - Motivation

= Our AOP Modularity Focus

= Interface Image (I12) Approach
= |2 implementation

= |2 Evaluation

= Related Work

= Conclusion

Introduction - Motivation

= Separation of crosscutting concerns

= Roadblocks to AOP adoption
Not just education
Reality of coding standards for small companies
Lack of invasiveness regulation
Pure obliviousness

= Support for AOP adoption has to come at the
language level.

Introduction - Motivation

= Interfaces Role Overlap:
Base code sees: Service Access Points

Aspect code sees: Event Hooks

= Protection (invasiveness control) is easier
when roles are separated

Our AOP Modularity Focus

* Independent evolution of components
» Expanding parallel development

= Enhancing module protection

= Supporting modular reasoning

Classical AOP Limitations

= |n our context, Classical AOP means: Pure
Obliviousness

* Tight coupling between aspects and base code

= Base code cannot regulate any advising activity on
itself

* |mpossible to reason about a base code component
solely by examining its interface (Tool support can
help with this)

Interface Image (I2) Approach

= What s an Interface Image?
= “image” construct syntax

" “image” construct semantics
= What does |2 offer?

What 1s an interface image?

= Alanguage mechanism for exporting views of
a component’s advisable interface

= A middleware through which all advising is
carried out

= Alanguage mechanism for base code to
express advising constraints

Separation of XCC — I2 Style

A’s Interface
Image
A’s Internals
A’s Interface Logging
concern

Component A

Component B

B’s Internals
B's | f B’s Interface
S Interrace Image

The “image” construct

Image {
[opento: {aspects allowed ITD’s}]
[alias definitions]

5

= An empty image scope reduces |2 to AspectJ-
style AOP

Alias Definitions - Syntax

[modifiers] RT method—-name(P) =
[modifiers] RT alias(P) § Constraints }

modifiers: Java—style method modifiers

RT: return type

method—name, alias: Java—style method
1dentifier

P: Java-style method parameter list

Constraints: A list of advising constraints

Constraints: kind clause

= Kind: {Advice_Kind*}

= Advice_Kind: before | after| after_returning |
after_throwing | around

Constraints: (origin, boundary)

= (origin=0ORIGIN, boundary=BOUNDARY);
= ORIGIN: internal | external
= BOUNDARY: method | class | package

Constrailnts: exceptions clause

= Exceptions: {Exception_Type*}
= Exception_Type: Java-style type identifier

“image” Construct Semantics

= Only classes declaring images are advisable
= Omitting a clause implies no constraint
= Empty “kind” list implies no advice allowed

= Empty “exceptions” list implies no checked
exceptions can be softened

“image” Construct Semantics

= “opento” semantics

= “kind” semantics

= “(origin, boundary)” semantics
= “exceptions” semantics

Alias Definition Rules

= Aclass can only alias methods it declares

= Multiple (distinct) aliases for the same aliased
method allowed

= Alias definitions in a base class are advisable
in derived class unless method private in base

Example: Point class

Class Point extends Shape §
protectedintx, y;
public void moveby(int dx, int dy){
X +=dx; y += dy;
5

[/ image goes here (next slide)

5

Example: Point class

Image {
opento: {CheckScence};
public void moveby(int dx, int dy) =
public void translate(int dx, int dy) §
kind: {after};
(origin=external, boundary=class);
exceptions: {ScenelnvariantViolation};

Example: Rectangle class

class Rectangle extends Shape §
void moveby(int dx, int dy){
pax +=dx; p1y +=dy; p2x +=dx; p2y +=dy;
}
Image {
void moveby(int, int) = void translate(int, int){}

5

Example:
CheckScenelnvariants aspect

aspect CheckScenelnvariants §
pointcut moves(): call (void Shape+.translate(..));
after(): moves() §
scene.checklnvariants();

5
5

Example: modifying moveby()

class Rectangle extends Shape { P2.moveby(dx,dy);
void moveby(int dx, int dy){

pax +=dx; p1y +=dy; p2x +=dx; p2y +=dy;

d moveby(int, int) = void translate(int, int){}

Example: Updating Point

class Point extends Shape {

Image { ...
void moveby(int, int) = void translate(int, int){
(origin=external, boundary=class);
5
}
}

What does I2 offer?

= Alevel of indirection through which all
advising requests are carried out

= Provides base code qualification of classes:

advisa

" A mec
of join

ole and unadvisable
nanism for base code to expose views

points along with advising constraints

What does I2 offer?

= Control over aspect invasiveness (traded for
less obliviousness)

= |2 affords better parallel development and
reduces aspect brittleness

= |2 advising control does not limit AOP
capabilities

I2 Implementation

= JastAdd

Error Checking
AST Rewrite

= abc
Compilation Sequence

I2 Implementation

= Image checking and collecting information:
“opento” clause
“kind” clause
“exceptions” clause

I2 Implementation

= “image” rewrite
Wrapper methods introduction
(origin, boundary) to pointcuts
“around” advice

= Sample translation
= Precedence ordering aspect

Sample Translation

Priviliged static imageAspect §
public void Point.translate(int dx, int dy) §
moveby(dx, dy);
5
void around(Point p):
target(p) && lwithin(imageAspect) &&
lwithin(Point) &&
call(public void Point.moveby(int dx, int dy)){
p.translate(dx, dy);

5
5

Precedence Ordering Aspect

public aspect _internalOrderingAspect
declare precedence: *..*imageAspect*. *;

5

Compilation Sequence

* |Image checking happens after computing intertype
declarations

* Image rewrite and precedence ordering aspect
= Computing advice lists

» Filtering advice

= Weaving

Evaluation: Quantitative

= What are we measuring?
= How are we measuring it?
= Evaluation examples

= Results

What are we measuring?

= We measure coupling between aspects and
base code classes

= Coupling is measured in terms of crosscutting
relationships

= Crosscutting relationships result from advice
and intertype declarations

How are we measuring it?

= Simulating effects of 12 syntax for AJDT
* Input to AJDT

Evaluation Examples

= Subject/Observer Protocol (1p, 6c¢, 2a)
= ASimple Telecom Simulation (1p, 10c¢, 2 a)
= Ants Simulation (11p, 33¢, 113)

Results

= |2 induces 26.3% more coupling for
Subject/Observer Protocol

= |2 reduces coupling by 20% for Telecom
Simulation

= |2 reduces coupling by 6.6% for Ants
Simulation

Results

= Subject/Observer has only one advice, not
much room for decoupling with aliases

= The use of “opento” introduces crosscutting
relationships that were not existing in the
original implementation

Results

= The more aspects use advice, the more the
payoff (more room for aliasing)

= Ants Simulation is closer to real AOP
programs in terms of the feature-mix. So it’s

result is a better representative of effects of
aliasing

Related Work

* Open Modules(2004)

= AAIl (2005)

= XPIl (2006)

= EJP (2007)

= MAO (2007)

» Ptolemy (2007, 2008, 20097?)
= Key distinction

Differences from Open Modules

= Loose coupling without restricting advising

= |2 exposes an explicit set of joinpoints versus
compact OM pointcuts

= Flexible joinpoint aliasing and advising
constraints

Differences from AAI

= Inl2, class is oblivious to which aspect will be
extending its interface (except with opento)

= Improved readability

= Loose coupling between base code and
aspect code

Differences from XPI

* |nl2, joinpoints and constraints are the responsibility
of the base code while pointcuts and advice are of
the aspect code

* |nl2, all advice is channeled through images

= Documentation of entry points into the class
interface

Differences from EJP

= EJP can advise arbitrary blocks of code, I2
cannot

= EJP requires advising markers to be placed
manually in the source code, 12 does not

= EJP does notincorporate advising constraints
on the base code side

Differences from MAO

= MAO supports better modular reasoning in
exchange for less feature-obliviousness

= Control effects and heap effects

= |2 engages the base code while MAO engages
the aspect code for protection

Ptolemy

= Solves the fragile pointcut problem using
typed events that pointcuts can be written in
terms of

= |2 still relies on aliases so pointcuts are as
stable as the aliases

= |2 relies on the predefined possible events of
Aspect)

Key Distinction

» |2 recognize that interface specifications (e.qg.
method signatures) are intended to play two
different roles in one breath:

Service Access Points
Joinpoints for use by aspects

= |2 reassigns these responsibilities by introducing the
image construct and removes the role overlap

Conclusion

= |tis possible to realize a design that loosely
couples the evolution of base code interfaces
from the AO code advising those
components.

= |tis possible to afford better parallel
development and maintainability in exchange
for less obliviousness.

Conclusion

= |tis possible to provide a level of protection
to the base code without restricting AO

capabilities.
= Aid to modular reasoning in the presence of
aspects.

= Achievable while maintaining a practical level
that facilitates AOP adoption.

ThankYou!

	Enhancing Base-code Protection in Aspect-Oriented Programs
	Outline
	Introduction - Motivation
	Introduction - Motivation
	Our AOP Modularity Focus
	Classical AOP Limitations
	Interface Image (I2) Approach
	What is an interface image?
	Separation of XCC – I2 Style
	The “image” construct
	Alias Definitions - Syntax
	Constraints: kind clause
	Constraints: (origin, boundary)
	Constraints: exceptions clause
	“image” Construct Semantics
	“image” Construct Semantics
	Alias Definition Rules
	Example: Point class
	Example: Point class
	Example: Rectangle class
	Example: CheckSceneInvariants aspect
	Example: modifying moveby()
	Example: Updating Point
	What does I2 offer?
	What does I2 offer?
	I2 Implementation
	I2 Implementation
	I2 Implementation
	Sample Translation
	Precedence Ordering Aspect
	Compilation Sequence
	Evaluation: Quantitative
	What are we measuring?
	How are we measuring it?
	Evaluation Examples
	Results
	Results
	Results
	Related Work
	Differences from Open Modules
	Differences from AAI
	Differences from XPI
	Differences from EJP
	Differences from MAO
	Ptolemy
	Key Distinction
	Conclusion
	Conclusion
	Slide Number 49

