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Introduction - Motivation

= Separation of crosscutting concerns

= Roadblocks to AOP adoption
Not just education
Reality of coding standards for small companies
Lack of invasiveness regulation
Pure obliviousness

= Support for AOP adoption has to come at the
language level.




Introduction - Motivation

= Interfaces Role Overlap:
Base code sees: Service Access Points

Aspect code sees: Event Hooks

= Protection (invasiveness control) is easier
when roles are separated




Our AOP Modularity Focus

* Independent evolution of components
» Expanding parallel development

= Enhancing module protection

= Supporting modular reasoning




Classical AOP Limitations

= |n our context, Classical AOP means: Pure
Obliviousness

* Tight coupling between aspects and base code

= Base code cannot regulate any advising activity on
itself

* |mpossible to reason about a base code component
solely by examining its interface (Tool support can
help with this)




Interface Image (I2) Approach

= What s an Interface Image?
= “image” construct syntax

" “image” construct semantics
= What does |2 offer?




What 1s an interface image?

= Alanguage mechanism for exporting views of
a component’s advisable interface

= A middleware through which all advising is
carried out

= Alanguage mechanism for base code to
express advising constraints




Separation of XCC — I2 Style

A’s Interface
Image
A’s Internals
A’s Interface Logging
concern

Component A

Component B

B’s Internals
B's | f B’s Interface
S Interrace Image




The “image” construct

Image {
[opento: {aspects allowed ITD’s}]
[alias definitions ]
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= An empty image scope reduces |2 to AspectJ-
style AOP




Alias Definitions - Syntax

[modifiers] RT method—-name(P) =
[modifiers] RT alias(P) § Constraints }

modifiers: Java—style method modifiers

RT: return type

method—name, alias: Java—style method
1dentifier

P: Java-style method parameter list

Constraints: A list of advising constraints



Constraints: kind clause

= Kind: {Advice_Kind*}

= Advice_Kind: before | after| after_returning |
after_throwing | around




Constraints: (origin, boundary)

= (origin=0ORIGIN, boundary=BOUNDARY);
= ORIGIN: internal | external
= BOUNDARY: method | class | package




Constrailnts: exceptions clause

= Exceptions: {Exception_Type*}
= Exception_Type: Java-style type identifier




“image” Construct Semantics

= Only classes declaring images are advisable
= Omitting a clause implies no constraint
= Empty “kind” list implies no advice allowed

= Empty “exceptions” list implies no checked
exceptions can be softened




“image” Construct Semantics

= “opento” semantics

= “kind” semantics

= “(origin, boundary)” semantics
= “exceptions” semantics




Alias Definition Rules

= Aclass can only alias methods it declares

= Multiple (distinct) aliases for the same aliased
method allowed

= Alias definitions in a base class are advisable
in derived class unless method private in base




Example: Point class

Class Point extends Shape §
protectedintx, y;
public void moveby(int dx, int dy){
X +=dx; y += dy;
5

[/ image goes here (next slide)
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Example: Point class

Image {
opento: {CheckScence};
public void moveby(int dx, int dy) =
public void translate(int dx, int dy) §
kind: {after};
(origin=external, boundary=class);
exceptions: {ScenelnvariantViolation};




Example: Rectangle class

class Rectangle extends Shape §
void moveby(int dx, int dy){
pax +=dx; p1y +=dy; p2x +=dx; p2y +=dy;
}
Image {
void moveby(int, int) = void translate(int, int){}
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Example:
CheckScenelnvariants aspect

aspect CheckScenelnvariants §
pointcut moves(): call (void Shape+.translate(..));
after(): moves() §
scene.checklnvariants();

5
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Example: modifying moveby()

class Rectangle extends Shape { P2.moveby(dx,dy);
void moveby(int dx, int dy){

pax +=dx; p1y +=dy; p2x +=dx; p2y +=dy;

d moveby(int, int) = void translate(int, int){}




Example: Updating Point

class Point extends Shape {

Image { ...
void moveby(int, int) = void translate(int, int){
(origin=external, boundary=class);
5
}
}




What does I2 offer?

= Alevel of indirection through which all
advising requests are carried out

= Provides base code qualification of classes:

advisa

" A mec
of join

ole and unadvisable
nanism for base code to expose views

points along with advising constraints



What does I2 offer?

= Control over aspect invasiveness (traded for
less obliviousness)

= |2 affords better parallel development and
reduces aspect brittleness

= |2 advising control does not limit AOP
capabilities




I2 Implementation

= JastAdd

Error Checking
AST Rewrite

= abc
Compilation Sequence




I2 Implementation

= Image checking and collecting information:
“opento” clause
“kind” clause
“exceptions” clause




I2 Implementation

= “image” rewrite
Wrapper methods introduction
(origin, boundary) to pointcuts
“around” advice

=  Sample translation
= Precedence ordering aspect




Sample Translation

Priviliged static imageAspect §
public void Point.translate(int dx, int dy) §
moveby(dx, dy);
5
void around(Point p):
target(p) && lwithin(imageAspect) &&
lwithin(Point) &&
call(public void Point.moveby(int dx, int dy)){
p.translate(dx, dy);

5
5




Precedence Ordering Aspect

public aspect _internalOrderingAspect
declare precedence: *..*imageAspect*. *;

5




Compilation Sequence

* |Image checking happens after computing intertype
declarations

* Image rewrite and precedence ordering aspect
= Computing advice lists

» Filtering advice

= Weaving




Evaluation: Quantitative

= What are we measuring?
= How are we measuring it?
= Evaluation examples

= Results




What are we measuring?

= We measure coupling between aspects and
base code classes

= Coupling is measured in terms of crosscutting
relationships

= Crosscutting relationships result from advice
and intertype declarations




How are we measuring it?

= Simulating effects of 12 syntax for AJDT
* Input to AJDT




Evaluation Examples

= Subject/Observer Protocol (1p, 6c¢, 2a)
= ASimple Telecom Simulation (1p, 10c¢, 2 a)
= Ants Simulation (11p, 33¢, 113)




Results

= |2 induces 26.3% more coupling for
Subject/Observer Protocol

= |2 reduces coupling by 20% for Telecom
Simulation

= |2 reduces coupling by 6.6% for Ants
Simulation




Results

= Subject/Observer has only one advice, not
much room for decoupling with aliases

= The use of “opento” introduces crosscutting
relationships that were not existing in the
original implementation




Results

= The more aspects use advice, the more the
payoff (more room for aliasing)

= Ants Simulation is closer to real AOP
programs in terms of the feature-mix. So it’s

result is a better representative of effects of
aliasing




Related Work

* Open Modules(2004)

= AAIl (2005)

= XPIl (2006)

= EJP (2007)

= MAO (2007)

» Ptolemy (2007, 2008, 20097?)
= Key distinction




Differences from Open Modules

= Loose coupling without restricting advising

= |2 exposes an explicit set of joinpoints versus
compact OM pointcuts

= Flexible joinpoint aliasing and advising
constraints




Differences from AAI

= Inl2, class is oblivious to which aspect will be
extending its interface (except with opento)

= Improved readability

= Loose coupling between base code and
aspect code




Differences from XPI

* |nl2, joinpoints and constraints are the responsibility
of the base code while pointcuts and advice are of
the aspect code

* |nl2, all advice is channeled through images

= Documentation of entry points into the class
interface



Differences from EJP

= EJP can advise arbitrary blocks of code, I2
cannot

= EJP requires advising markers to be placed
manually in the source code, 12 does not

= EJP does notincorporate advising constraints
on the base code side




Differences from MAO

= MAO supports better modular reasoning in
exchange for less feature-obliviousness

= Control effects and heap effects

= |2 engages the base code while MAO engages
the aspect code for protection




Ptolemy

= Solves the fragile pointcut problem using
typed events that pointcuts can be written in
terms of

= |2 still relies on aliases so pointcuts are as
stable as the aliases

= |2 relies on the predefined possible events of
Aspect)




Key Distinction

» |2 recognize that interface specifications (e.qg.
method signatures) are intended to play two
different roles in one breath:

Service Access Points
Joinpoints for use by aspects

= |2 reassigns these responsibilities by introducing the
image construct and removes the role overlap




Conclusion

= |tis possible to realize a design that loosely
couples the evolution of base code interfaces
from the AO code advising those
components.

= |tis possible to afford better parallel
development and maintainability in exchange
for less obliviousness.




Conclusion

= |tis possible to provide a level of protection
to the base code without restricting AO

capabilities.
= Aid to modular reasoning in the presence of
aspects.

= Achievable while maintaining a practical level
that facilitates AOP adoption.




ThankYou!
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