
Reasoning about Composition:
A Predicate Transformer Approach

[Position Paper]

Michel Charpentier
Department of Computer Science

University of New Hampshire

charpov@cs.unh.edu

ABSTRACT
As interest in components and composition-related methods
is growing rapidly, it is not always clear what the goals (and
the corresponding difficulties) actually are. If composition
is to become central in the future of software engineering,
we need to better identify the fundamental issues that are
related to it, before we attempt to solve them as they oc-
cur in object-oriented systems or in concurrent and reactive
systems. In this paper, we present our formulation of some
of the composition problems in a context of formal methods
and program specification and verification. This formaliza-
tion is based on predicate calculus and predicate transform-
ers and aims at remaining as general as possible. This way,
we hope to better understand some of the fundamental is-
sues of composition and component-based reasoning.

1. INTRODUCTION
Composition is receiving a lot of attention these days: Com-
ponents are everywhere and everything is (or ought to be)
“compositional”. What is meant by that, though, is far
from being clear, and there is a wide range of opinions
on what is still to be done. Some might argue that the
composition problem is now solved at a fundamental level
and that actual techniques and tools just need to be put
in place. At the other end of the spectrum, some might be-
lieve that composition, as we understand it today, cannot be
achieved in software engineering and that other approaches
must be sought. And, between these two extremes, are re-
search projects, mostly independent from one another, that
focus on specific instances of this composition problem, be
it a type system in an object-oriented context or a temporal
logic for reactive systems.

A possible reason for this apparent contradiction and con-
fusion is that composition is a broad concept and that the
composition problem might not be unique. There are many

issues related to composition, some are easier to tackle than
others, and many must be dealt with before the problem
can be considered solved (or unsolvable). In this paper, we
advocate the idea that an important step today is to iden-
tify those composition problems and to understand how they
relate to each other.

We restrict our attention to composition in a formal methods
context. Other contexts, such as for instance programming
languages, lead to other composition problems and all have
to be solved in order to make composition viable as a whole.
Furthermore, we choose a static point of view: we reason
about properties of systems and components whereas a dy-
namic point of view would focus on the process of building
systems from components.

These choices, however, leave us in a broad background
where fundamental questions related to many forms of com-
position can be explored: What are components? How are
they composed? How are they described and specified?
What do we expect from such specifications? What is the re-
lationship between systems and components specifications?
What does it mean to be “compositional”? How can we ob-
tain compositional specifications? Can composition lead to
simpler correctness proofs? How does composition relate to
reuse? How does it relate to abstraction?

Our current effort focuses on addressing these questions with-
out specializing the chosen context any further. This way,
we hope to better understand what problems are common to
different forms of composition and what problems are spe-
cific to families of components or laws of composition. As a
guideline for this general exploration, we also consider the
special case of concurrent composition of processes specified
in temporal logic. This familiar but complex background, in
which the composition problem is far from being solved, is
both a source of inspiration and a test-bench for our abstract
study of composition. Our approach to studying composi-
tion as well as some of our results are informally introduced
in the remaining of this paper. Technical details can be
found in cited references.



2. SPECIFICATIONS AND PROOFS
IN COMPOSITIONAL DESIGNS

2.1 Compositional Design versus
Compositional Verification

Composition has often been advocated as a necessary step
in the proof of large systems. While this is certainly true,
we do not want to restrict composition to that role.

For instance, it is possible to build a system from compo-
nents, generate correctness proof obligations from the com-
plete system, and then apply composition at the proof level
(split the global proof obligation into several independent
proofs). This approach is suggested, for instance, in [24].
Compositional model-checking also follows this philosophy
to some degree.

While the previous technique is relatively simple and allows
verification techniques to handle large systems, we have in
mind a more ambitious role for composition, namely the
“open system” approach. In this approach, we want to ver-
ify the correctness of components in isolation, before they
become part of any system. In the previous case, the com-
plete knowledge of the system can be used to verify one
component. For open systems, this is not true anymore. All
that is known are specific assumptions on possible environ-
ments, which are part of a component specification. This
tends to make proofs harder since these assumptions de-
scribe a set of possible environments instead of a completely
specified context, and they have to be abstract and generic
enough to allow a large number of environments to use the
component.

However, the open system approach also has benefits that
make its study worthwhile. Firstly, since components are
already proved correct with respect to their specifications,
the correctness proof of a complete system can rely on these
specifications instead of the components’ implementations.
This allows designers not to take into account the many
details of the internal structure of each component. Com-
positionality of designs breaks down when reasoning about
a system requires managing too many details from each part
of that system.

Secondly, and this is probably the main benefit, the open
system approach allows designers to embed parts of a cor-
rectness proof into components, making these parts available
each time a component is used to build a system. Indeed,
when a component is proved correct with respect to its spec-
ification, relevant facts about this component are extracted
from the details of its implementation and become part of
the component specification. When this component is com-
posed with a larger system, these facts can be used in the
system correctness proof without the need for proving them
again. Each time a component is reused, a (possibly diffi-
cult) proof is reused too, as well as any other correctness
argument available such as tests or behavior in other sys-
tems.

2.2 Abstract Specifications
In order to be able to achieve such reuse, we need specifica-
tions to remain abstract enough to describe what is required
from a component, all that is required and only what is re-

quired. When designing a system and looking for a suitable
component, the specification used by the designer cannot in-
clude too many details about this component, because any
component with the right functionalities should be usable,
whatever its implementation details are. Such a specifica-
tion must also be able to express that some aspects are irrel-
evant in order to avoid an overspecification of requirements.
If requirements are overspecified, then designers might end
up not finding any suitable component while actually some
existing component would fit their needs perfectly.

A second reason why we want specifications to be abstract
is to keep composition worthwhile and cost effective in spite
of the natural overhead it generates. A key idea of com-
ponent technology is that the same component can be used
in many systems, and thus the effort that goes into specify-
ing, proving and implementing components can be exploited
many times. As explained before, each time a component is
reused, a proof, the correctness proof of that component, is
reused too. If a component specification contains abstract,
relevant, hard-to-prove facts about the component, a possi-
bly difficult and large proof is reused. However, if a compo-
nent specification is too close to its implementation and not
abstract enough, very little proof can be reused. Therefore,
greater productivity is achieved by using components that
embody substantial effort by containing proofs of abstract
specifications.

This situation is illustrated in figure 1. Proofs labeled with
‘T’ are those component-correctness proofs that are left un-
changed through composition and that can be reused in the
design of several systems. Proofs labeled with ‘C’ are proofs
of composition, i.e., proofs of system properties from com-
ponent properties. The level of abstraction of component
specifications clearly influences the amount of effort that has
to be put in T-proofs and in C-proofs. A good framework
for composition should allow us to put most of the effort in
T-proofs and keep C-proofs as simple as possible. Even if
the sum of C and T-proofs is larger and more complex than
a direct (noncompositional) proof for the same system, com-
position is still worthwhile because existing T-proofs can be
reused.

Part of the problem is that specifications that are too ab-
stract do not contain enough information to be composed.
Therefore, the right balance between abstraction and ability
to be composed must be found.

3. SPECIFICITY OF OUR RESEARCH

3.1 Shortcomings of Current Approaches
When deterministic components are composed sequentially,
the problem reduces to composition of functions and remains
tractable. Developers use libraries of procedures every day
and rely on their specifications without having to consider
implementation details.

However, effective compositional design often involves non-
deterministic components and concurrent composition. For
instance, the different parts of a reactive system cannot be
specified in terms of precondition and postcondition because
of their possibly infinite behavior, which leads to tremendous
difficulties in terms of composition.



Specification

Program

C Proof of composition

T Proof of component correctness

Global System

T

Component
2

Component
...

Component
...

T

Program Text
1 2

Program Text

Component
1

...
Component

...
Component

C

C

Figure 1: A compositional design

Composition of such systems, which interact at the level of
their behavior, not at the level of their initial/final state, has
been extensively studied. Very schematically, two distinct
families emerge.

On the one hand, process algebras, such as CSP, CCS or
π-calculus to name a few, integrate composition as a cen-
tral part of their design. Systems are compositions of pro-
cesses and processes compose quite naturally. The resulting
formally well-defined notation, however, often looks like a
programming language more than a specification language.
In this context, it is quite difficult to express abstract prop-
erties on the expected behavior of these components and
systems. As a consequence, it is difficult to obtain reusable
generic specifications, as well as specifications easily related
to informal requirements.

Temporal logics, on the other hand, such as LTL, CTL,
TLA, or Unity, are well-suited to express nonoperational,
abstract specifications. They provide us with specification
languages that are closer to informal descriptions, which
makes specifications more easily readable and checkable with
respect to informal requirements. However, the starting
point of these notations is the specification of a system, glob-
ally. Composition is viewed as an additional issue, which re-
quires a specific treatment. Work has been done to manage
composition issues with specific logics [25, 19, 18, 2, 20, 23,
34, 21], but little work has been done to study composition
in itself, independently of the underlying logic [1, 4, 3].

3.2 Composition in the Abstract
The specificity of our approach is to study composition in-
dependently from what components and the laws of com-
position actually are. We are not focusing on a specific
domain, nor do we want to design specification languages

tailored to certain forms of composition. Our view is one
of a component-based software industry, where composition
is involved in almost every design. We want to deal with
this composition, whether it works well or not, whether it
is easy or not. This departs from the works on temporal
logic cited above, where usually the whole language is made
“composable” by restricting up front the type of interaction
under consideration. For instance, composition works fine
in TLA (it reduces to conjunction) [2], but component as-
sumptions are made at the transition level and cannot be at
the computation level, as in the case of liveness assumptions
(see example in section 4.4).

The context of our work is therefore independent of the na-
ture of systems. It is not a context of “variables”, “states”,
“computations”, “interleaving”, “safety” or “liveness”, but
rather one of “systems”, “components”, “specifications” and
“composition laws”. No specific logic or process model is
used and few hypotheses are made on composition laws.
This way, it is hoped that we can understand aspects that
are common to many forms of composition and many types
of systems. Later, that knowledge can be applied to the
concurrent composition of reactive systems, for instance.

This approach inherits from both the process algebra and
the temporal logic families mentioned above. On the one
hand, we consider that systems are specified logically (with-
out choosing a specific logic), which provides us with a rich
specification language and allows us potentially to apply re-
sults to temporal logics for reactive systems. On the other
hand, we define an algebra of composition with the goal of
obtaining a calculus that would allow us to calculate (in-
stead of guess and then prove) properties of systems and
components. In this respect, our approach relates to pro-
cess calculus based approaches.



4. CURRENT WORK
4.1 Existential and Universal Specifications
The starting point of our exploration is the definition of
a simple model of components, systems and specifications.
Because of our concern with generality, we use a monoid-
like structure of components and specifications are boolean
functions (predicates) on components and systems. In other
words, we assume that components are composed with a sin-
gle law of composition for which we assume associativity but
no other property such as symmetry or idempotency. As a
consequence, the model can be instantiated with transfor-
mational programs (specified in terms of preconditions and
postconditions and composed sequentially) or with reactive
processes (specified with temporal logics and composed con-
currently), among other things.

In this context, we first focused on two particular families
of specifications called existential and universal [7, 14]. We
say that a specification is existential exactly when, for all
systems, the specification holds in a system if it holds in at
least one component of that system. Similarly, a specifica-
tion is universal if it holds in a system when it holds in all
components of that system. Existential and universal are
characteristics of specifications, independent of a particular
set of components. Some specifications are existential, some
are universal and, of course, some are neither. However,
when existential and universal specifications are used, they
naturally lead to simple proofs of composition (C-proofs),
properties being inherited by a system from its components.

4.2 A “guarantees” Operator for
Assumption-Commitment Specifications

If we only allow existential and universal specifications to
appear in component descriptions, this is a restriction on
how components can be described. This is the price to pay
for simple proofs of composition. However, we have found
these two classes to be surprisingly rich. For instance, the
work on temporal logics in [19, 18, 2, 20, 34, 21] relies almost
exclusively on existential-like composition.

One reason why existential specifications appear to be so
convenient is the existence of the guarantees operator de-
fined in [7]. The guarantees operator can be used to ex-
press existential assumption-commitment specifications. Its
main originality is that it is not defined in terms of com-
ponent environments, as assumption-commitment specifica-
tions usually are (components are making assumptions on
their possible environments). In the case of guarantees, the
commitment part of the specification as well as the assump-
tion part apply to a complete system (environment + com-
ponent): X guarantees Y holds in a component F if and
only if Y holds in G◦F◦H (where ◦ denotes the law of com-
position under consideration) when X holds in G◦F◦H, for
all systems G and H that can be composed with F . The
fundamental property of guarantees is that X guarantees Y
is existential regardless of what the specifications X and Y
are. Therefore, proofs of composition are simplified when
components are specified in terms of guarantees.

4.3 Predicate Transformers for Composition
By studying the guarantees operator carefully, we made
the observation that it is merely the application to logi-

cal implication of a more general operator which we called
WE [6]. This allows a separation of concerns: WE actually
represents composition while logical implication represents
the assumption-commitment mechanism. WE is a predicate
transformer, in other words, a function from specifications
to specifications. Formally, for a specification X, WE.X is
defined as the weakest existential specification stronger than
X (which exists regardless of X).

It can be proved that WE.X characterizes those components
F such that specification X holds in any system that con-
tains F as a component [14]. As a consequence, the specifica-
tion X guarantees Y is actually equivalent to WE.(X ⇒ Y ).
In other words, guarantees is the weakest (the most abstract)
strengthening of logical implication that makes it compos-
able (for the existential form of composition). This, in some
sense, is a theoretical argument to claim that guarantees can
provide us with abstract, reusable specifications.

WE is the first of a series of predicate transformers that we
have started to study. Indeed, we can define SE.X as the
strongest existential property weaker than X. The corre-
sponding theorem states that SE.X characterizes those sys-
tems that contain at least one component that satisfies X.
In other words, when a component that satisfies X is used
in a system, this system satisfies SE.X. In the best case
(when X is an existential specification), the system satisfies
X (SE.X is equivalent to X); in the worst case (where all
of X is lost through composition), SE.X reduces to true. In
some sense, SE.X represents the part of specification X that
composes (existentially). Equivalently, SE.X characterizes
those systems that are (or can be) built using a component
that satisfies specification X [15].

Things are different in the case of universal composition. A
transformer SU can be defined (as the strongest universal
specification weaker than a given specification), but we are
still looking for a suitable WU. Such a transformer would
be useful to characterize what has to be proved on a com-
ponent instead of a (nonuniversal) specification X in order
to inherit the simplicity of universal composition. However,
it cannot be defined as the weakest universal specification
stronger than a given specification because such a weakest
element does not always exist, depending on the nonuni-
versal specification that is considered. We have started to
study several possible candidates for a WU operator but we
do not have a strong argument in favor of one of them yet.
As a guideline for that search of WU, we have also studied
the question of strengthening nonuniversal properties in a
more restricted context, namely a linear temporal logic (see
section 4.4).

Furthermore, by describing composition in terms of pred-
icate transformers, for which a large amount of literature
exists [22], we are able to reuse classic techniques such as
conjugates. Every predicate transformer T has a unique
conjugate T ∗ such that T ∗.X = ¬T .(¬X). The transform-
ers we have defined for existential and universal composition
also have conjugates, namely WE∗, SE∗ and SU∗. It should
be noted that, while WE, SE and SU describe composition
from components to systems (what has to be proved on
components, what can be deduced on systems), WE∗, SE∗

and SU∗ describe composition from systems to components



(what should be proved on systems, what can be deduced
on components). For instance, WE∗.X is true of any compo-
nent that is used to build a system that satisfies specification
X. This form of reasoning, from systems to components, is
sometimes neglected. We believe it to be extremely impor-
tant because it is the kind of reasoning that is involved when
system designers are looking for components. A designer
who is building a system to satisfy specification X knows
that only components that satisfy WE∗.X can be used and
that other components need not be considered. We find
conjugates to be a powerful and elegant way to switch from
bottom-up to top-down views on composition [13]. In par-
ticular, many properties of predicate transformers, such as
junctivity and monotonicity, are inherited from transformers
to conjugates. This allows us to avoid duplicating proofs.

4.4 Application to UNITY logic
In parallel with our work on predicate transformers and com-
position, we have started to apply our ideas to specifications
and proofs of concurrent and distributed systems. Theoret-
ical investigation is one way to claim the usefulness of op-
erators (for instance, by proving that they are the weakest
solution to some set of equations). Practical attempts at
writing specifications and proofs based on these operators
are another.

Two of these examples were fully developed and published.
One focuses on shared memory systems [11], while the other
deals with distributed systems [12, 5].

In the first example, universal specifications are used instead
of guarantees, which does not seem to fit this example well
enough. In this case, the correctness argument relies on the
fact that some dependency graph among processes remains
acyclic. Since each process only modifies the dependency
graph locally (by interacting with its neighbors), no single
process can guarantee that the graph remains acyclic, using
an existential property. However, there can be a property
that states that no process will ever create a cycle in the
graph. Such a property can be formulated in a universal
way so that, when it is satisfied by all processes, the global
system also satisfies it and cycles cannot be introduced in
the graph.

This raises a number of interesting questions. In this ex-
ample, it appears that universal specifications are required
to describe the behavior of shared variables (variables that
are written by several processes). However, there are other
examples with shared variables that can successfully be spec-
ified in terms of guarantees. There are also systems without
shared variables (distributed systems) but where a shared
virtual data structure (such as a graph among processes)
is used in the correctness proof. Should such a system be
specified in terms of guarantees (it usually can, from the
absence of shared variables) or in terms of universal specifi-
cations of the shared virtual data structure? And if guaran-
tees is used, should the correctness proof rely directly on it
or can we obtain a simpler proof by using an intermediate
(universal) specification that is deduced from the original
(existential) specification? These are the kind of fundamen-
tal questions we plan to explore through the development of
other examples.

Using universal specifications gives rise to other interesting
issues. For instance, the Unity logic (which was used in our
examples) exists in two forms: a weak form and a strong
form [31, 28, 27]. The Unity operator invariant leads to
universal specifications in its strong form but not in its weak
form. For the sake of simplicity, we used the strong form of
Unity logic in our example. However, this is not realis-
tic from a practical point of view (the strong form of the
logic is much too strong for a specification) and we have to
find ways of strengthening the weak form to make it univer-
sal. We have defined such a strengthening based on WE [9]
(the resulting universal form of the weak invariant resem-
bles a similar operator from [34]), but we cannot tell if this
is an optimal solution. In other words, we do not know if
the resulting operator is the weakest universal specification
stronger than the weak invariant (we do not even know if
such a weakest solution exists). Besides its practical inter-
est, this question also relates to the problem of finding a
suitable transformer WU, as explained earlier in section 4.3.

Our second example involves distributed systems. It makes
use of guarantees, mixed with techniques for abstract com-
munication description that were previously developed [16,
26, 8, 33, 17]. This abstract description of communication is
made possible by the ability of guarantees to involve liveness
specifications in its assumption part. Basically, a network
component guarantees that the sequence of received mes-
sages is always a prefix of the sequence of sent messages
(safety) and that any message that is sent is eventually re-
ceived (liveness).

There are other places in this example where our use of
liveness specifications combined with guarantees leads to
simpler proofs of composition by embedding larger proofs
in components verification (see the discussion in 2.2). For
instance, this example involves a resource allocator compo-
nent that satisfies a property of the form: clients return
resources in finite time (and other conditions) guarantees
any request for resources is eventually satisfied. The proof
of composition remains simple because the corresponding
client component property that states that clients actually
return resources in finite time can be plugged (through net-
work specifications) into the left-hand side of this guarantees
property to deduce that all requests are eventually granted.

If liveness properties cannot be used in the assumption part
of a composition operator 7→ (as in [1, 2, 18, 19, 20, 21]),
the resource allocator specification has to be of the form:
enough resources are available to satisfy the first pending
request 7→ the first pending request is eventually granted. In
this case, the fact that clients return resources in finite time
cannot be used directly as before. Instead, a first proof of
composition is required to show that enough resources will
eventually be available to satisfy the first pending request
and then a second proof to show that other requests are
eventually satisfied. When guarantees is used, these two
proofs (by induction) are inside the correctness proof of the
allocator component and can be reused when the allocator
component is reused. In the other case, they are in the
proof of composition and have to be redone every time a
new system is built from these components.



5. OUTLINE OF FUTURE RESEARCH
The work described above represents a first step towards our
exploration of composition issues in system design. Start-
ing with guarantees as a middle point, the research is now
developing both upstream (towards predicate transformers
and other fundamental composition-related operators) and
downstream (towards practical application to concurrent sys-
tems).

One of our goals is the definition of a formal calculus in
which specifications can be transformed to fit specific com-
position constraints. In other words, starting from require-
ments that are not compositional, we want to calculate a
suitable compositional specification. In the case of existen-
tial composition, for example, it is not enough to know that
WE.X is what needs to be proved on a component to ensure
that systems which use that component will satisfy speci-
fication X. We need to know how to prove WE.X given a
component description.

This can be achieved at different levels. At the most abstract
level, we can exhibit theorems about WE that allow us to re-
duce the calculation of WE.X using known WE.Y , where Y
is a part of X (for instance, using existential Y specifica-
tions). When this is possible, we can calculate WE.X inside
the logic in which X is expressed, which gives us the corre-
sponding component specification. We were able to achieve
such calculations on toy examples [14], but we need more
theorems and rules related to WE and our other transform-
ers to be able to conduct such calculations on examples from
more interesting domains. One difficulty when seeking such
properties of the transformers is to free ourselves from im-
plicit assumptions regarding the law of composition. For
instance, we sometimes use concurrent composition of pro-
cesses as a guideline to find general rules about the trans-
formers, but we must be careful not to use an hypothesis
such as symmetry or idempotency which we decided not to
include systematically in our model.

Another way to deal with the transformers is to first in-
stantiate our framework with a specification language and
then to derive rules about WE.X, when X is expressed in
the chosen logical language (instead of using general theo-
rems about WE). We have started this process with Unity

logic in order to build the necessary correctness proofs in
our examples with concurrent and distributed systems [9].
Furthermore, we also need to apply our approach to other
frameworks for the specification and verification of concur-
rent systems. This effort has already started, for instance
with CTL [32], but we want to consider other frameworks,
such as TLA or I/O-automata.

Recently, we have started to generalize our approach to sys-
tems in which several laws of composition are used at the
same time. An example of such a system is a software sys-
tem in which components are composed sequentially and in
parallel. According to preliminary results, it seems that our
approach can still be applied. In other words, we are still
able to define weakest and strongest transformers that repre-
sent specific views on composition (independently, this time,
from existential and universal specifications). Furthermore,
the resulting predicate transformers bear strong similarities
with Dijkstra’s wlp and sp transformers for program seman-

tics, from which we can draw new inspirations [10]. This
new set of transformers has now to be explored carefully.
Especially, relationships between transformer properties and
assumptions on the different laws of composition have to be
found.

6. SUMMARY
The lack of composition-based methods is a major factor
in the limited use of formal methods in actual designs. We
believe our project adopts a novel view on an old and im-
portant problem. Most work on composition has focused
on a specific form of composition (sequential, parallel with
shared variables, parallel with message passing, etc.) and a
specific type of component (namely, programs, either with
states or with so-called “open system computations”). By
choosing a much more general view, we hope to understand
fundamental aspects of composition that are independent
from the types of components and the way they interact.

Our ultimate goal is to build a calculus for composition. It
would be a formal framework that can be instantiated with
many form of compositions and many types of systems and
components. We hope this framework will include generic
rules and theorems about composition and logical specifi-
cations. The search for such fundamental rules, common
to any kind of composition, is an exciting problem. Then,
each instantiation enriches the framework with additional
rules that are specific to this instantiation, making it more
complete and more practically usable.

Besides this theoretical part of the project, we are experi-
menting with several notations for the specification and ver-
ification of concurrent systems to see how they can be ex-
tended through our approach into compositional notations.
We hope, by modifying and extending existing notations,
to develop an interesting framework to reason about con-
current composition of reactive systems. Another aspect of
the problem is related to mechanization. We are investigat-
ing the question of the mechanization of guarantees through
a collaboration with Larry Paulson from the University of
Cambridge. Larry is currently working on a mechanization
of Unity [29] extended with guarantees [30] in the higher-
order generic theorem prover Isabelle. His work is guided by
his attempts at mechanizing hand proofs from our example
involving distributed systems.

We are convinced that the future of software engineering is
tied to composition. Component-based designs and reuse of
generic components will be at the core of future software
systems. Composition involves a number of practical issues,
but also raises fundamental questions regarding component
specifications and compositional reasoning. We need to im-
prove our understanding of composition if we want to be
able to devise the tools and principles that will allow us to
use components reliably and efficiently in software engineer-
ing. Our project has started an exploration of some of the
fundamental questions inherent in compositional design.



7. REFERENCES
[1] Mart́ın Abadi and Leslie Lamport. Composing

specifications. ACM Transactions on Programming
Languages and Systems, 15(1):73–132, January 1993.

[2] Mart́ın Abadi and Leslie Lamport. Conjoining
specifications. ACM Transactions on Programming
Languages and Systems, 17(3):507–534, May 1995.

[3] Mart́ın Abadi and Stephan Merz. An abstract account
of composition. In Jivŕı Wiedermann and Petr Hajek,
editors, Mathematical Foundations of Computer
Science, volume 969 of Lecture Notes in Computer
Science, pages 499–508. Springer-Verlag, September
1995.

[4] Mart́ın Abadi and Gordon Plotkin. A logical view of
composition. Theoretical Computer Science,
114(1):3–30, June 1993.

[5] K. Mani Chandy and Michel Charpentier. An
experiment in program composition and proof. Formal
Methods in System Design, April 1999. Accepted for
publication.

[6] K. Mani Chandy and Michel Charpentier. Predicate
transformers for composition. In Jim Davies, Bill
Roscoe, and Jim Woodcock, editors, Millennial
Perspectives in Computer Science: proccedings of the
1999 Oxford-Microsoft symposium in honour of Sir
Tony Hoare, Cornerstones of Computing, pages 81–90.
Palgrave, 2000.

[7] K. Mani Chandy and Beverly Sanders. Reasoning
about program composition.
http://www.cise.ufl.edu/∼sanders/pubs/composition.ps.

[8] Michel Charpentier. Assistance à la Répartition de
Systèmes Réactifs. PhD thesis, Institut National
Polytechnique de Toulouse, France, November 1997.

[9] Michel Charpentier. Making Unity properties
compositional. Unpublished report, California
Institute of Technology, 1999.

[10] Michel Charpentier. A theory of composition
motivated by wp. Submitted for publication, August
2001.

[11] Michel Charpentier and K. Mani Chandy. Examples of
program composition illustrating the use of universal
properties. In J. Rolim, editor, International workshop
on Formal Methods for Parallel Programming: Theory
and Applications (FMPPTA’99), volume 1586 of
Lecture Notes in Computer Science, pages 1215–1227.
Springer-Verlag, April 1999.

[12] Michel Charpentier and K. Mani Chandy. Towards a
compositional approach to the design and verification
of distributed systems. In J. Wing, J. Woodcock, and
J. Davies, editors, World Congress on Formal Methods
in the Development of Computing Systems (FM’99),
(Vol. I), volume 1708 of Lecture Notes in Computer
Science, pages 570–589. Springer-Verlag, September
1999.

[13] Michel Charpentier and K. Mani Chandy. Reasoning
about composition using property transformers and
their conjugates. In J. van Leeuwen, O. Watanabe,
M. Hagiya, P.D. Mosses, and T. Ito, editors,
Theoretical Computer Science: Exploring New
Frontiers of Theoretical Informatics (IFIP-TCS’2000),
volume 1872 of Lecture Notes in Computer Science,
pages 580–595. Springer-Verlag, August 2000.

[14] Michel Charpentier and K. Mani Chandy. Theorems
about composition. In R. Backhouse and J. Nuno
Oliveira, editors, International Conference on
Mathematics of Program Construction (MPC’2000),
volume 1837 of Lecture Notes in Computer Science,
pages 167–186. Springer-Verlag, July 2000.

[15] Michel Charpentier and K. Mani Chandy.
Specification transformers: A predicate transformer
approach to composition. Submitted for publication,
July 2001.

[16] Michel Charpentier, Mamoun Filali, Philippe Mauran,
Gérard Padiou, and Philippe Quéinnec. Abstracting
communication to reason about distributed
algorithms. In Ö. Babaoğlu and K. Marzullo, editors,
Tenth International Workshop on Distributed
Algorithms (WDAG’96), volume 1151 of Lecture Notes
in Computer Science, pages 89–104. Springer-Verlag,
October 1996.

[17] Michel Charpentier, Mamoun Filali, Philippe Mauran,
Gérard Padiou, and Philippe Quéinnec. The
observation: an abstract communication mechanism.
Parallel Processing Letters, 9(3):437–450, September
1999.

[18] Pierre Collette. Design of Compositional Proof
Systems Based on Assumption-Commitment
Specifications. Application to Unity. Doctoral thesis,
Faculté des Sciences Appliquées, Université
Catholique de Louvain, June 1994.

[19] Pierre Collette. An explanatory presentation of
composition rules for assumption-commitment
specifications. Information Processing Letters,
50:31–35, 1994.

[20] Pierre Collette and Edgar Knapp. Logical foundations
for compositional verification and development of
concurrent programs in Unity. In International
Conference on Algebraic Methodology and Software
Technology, volume 936 of Lecture Notes in Computer
Science, pages 353–367. Springer-Verlag, 1995.

[21] Pierre Collette and Edgar Knapp. A foundation for
modular reasoning about safety and progress
properties of state-based concurrent programs.
Theoretical Computer Science, 183:253–279, 1997.

[22] Edsger W. Dijkstra and Carel S. Scholten. Predicate
calculus and program semantics. Texts and
monographs in computer science. Springer-Verlag,
1990.

[23] J.L. Fiadeiro and T. Maibaum. Verifying for reuse:
foundations of object-oriented system verification. In



I. Makie C. Hankin and R. Nagarajan, editors, Theory
and Formal Methods, pages 235–257. World Scientific
Publishing Company, 1995.

[24] Leslie Lamport. Composition: A way to make proofs
harder. In W.-P. de Roever, H. Langmaack, and
A. Pnueli, editors, Compositionality: The Significant
Difference (COMPOS’97), volume 1536 of Lecture
Notes in Computer Science, pages 402–423.
Springer-Verlag, September 1997.

[25] Zohar Manna and Amir Pnueli. The Temporal Logic of
Reactive and Concurrent Systems: Specification.
Springer-Verlag, 1992.

[26] R. Manohar and Paul Sivilotti. Composing processes
using modified rely-guarantee specifications. Technical
Report CS-TR-96-22, California Institute of
Technology, 1996.

[27] Jayadev Misra. A logic for concurrent programming:
Progress. Journal of Computer and Software
Engineering, 3(2):273–300, 1995.

[28] Jayadev Misra. A logic for concurrent programming:
Safety. Journal of Computer and Software
Engineering, 3(2):239–272, 1995.

[29] Lawrence C. Paulson. Mechanizing Unity in Isabelle.
ACM Transactions on Computational Logic, 1(1), July
2000.

[30] Lawrence C. Paulson. Mechanizing a theory of
program composition for Unity. ACM Transactions
on Computational Logic, 2001. To appear.

[31] Beverly A. Sanders. Eliminating the substitution
axiom from Unity logic. Formal Aspects of
Computing, 3(2):189–205, April–June 1991.

[32] Beverly A. Sanders and Hector Andrade. Model
checking for open systems. Submitted for publication,
2000.

[33] Paolo A. G. Sivilotti. A Method for the Specification,
Composition, and Testing of Distributed Object
Systems. PhD thesis, California Institute of
Technology, 256-80 Caltech, Pasadena, California
91125, December 1997.

[34] Rob T. Udink. Program Refinement in Unity-like
Environments. PhD thesis, Utrecht University,
September 1995.


