A Framework for Formal Component-Based

Software Architecting
M.R.V. Chaudron, E.M. Eskenazi, A.V. Fioukov, D.K. Hammer
Department of Mathematics and Computing Science, Technische Universiteit Eindhoven,
Postbox 513, 5600 MB Eindhoven, The Netherlands

+31 (0)40 — 247 4416
{m.r.v.chaudron, e.m.eskenazi, a.v.fioukov, d.k.hammer}@tue.nl

ABSTRACT

The assessment of quality attributes of software-intensive systems
is a challenging issue. This paper outlines a method aimed at
quantitative evaluation of certain quality attributes that are
important for embedded systems: timeliness, performance and
memory consumption.

The paper sketches out the key principles for building a formal
model for evaluating quality attributes: (1) Dependability
constraints are specified in an end-to-end fashion; (2)
Components are attributed with resource demands; (3)
Specification of component interaction is separated from
specification of component behavior.

The method is aimed to be applicable in practice. Therefore we
investigate combining widely used software modeling notations
with existing formal methods. In particular, the proposed
approach combines Message Sequence Charts and Timed
Automata. We illustrate the approach with an example.

Categories and Subject Descriptors
D.2.11 Software Architectures; D.2.4 Software / Program
Verification

General Terms
Performance, Design, Reliability, Verification.

Keywords
Component-based software, software architecture, quality
attributes, architecture evaluation, timeliness, memory

consumption, formal methods.

1. INTRODUCTION

Nowadays, more and more “intelligent” devices contain
sophisticated embedded software to fulfill a broad scope of
functions. As more devices are developed, the scope of functions
to be implemented must be broader. This growing complexity
complicates the development of embedded software. Thus, new
approaches for software development are heavily needed.

To reduce development cost and development time, the reuse of

existing solutions is vital. For this purpose, the construction of
software with reusable components is highly desirable. This
method of software development requires techniques for assessing
the composability of components. This assessment can be done
reasonably well for the functional aspects of components, but no
adequate techniques exists for analyzing composability of non-
functional ones.

The possibility to estimate relevant quality attributes in the early
development phase is crucial. These kinds of predictions will
reduce the risk of developing non-competitive, infeasible or
flawed products. Thus, for quantitative software architecting a
formal mathematical basis is needed.

Most contemporary architecting approaches deal only with the
functional aspects of software. But, there are also non-functional
quality attributes, a typical example being dependability quality
attributes: performance, timeliness, reliability, availability, safety,
and security. These attributes emerge as a result of collaborative
functioning of all parts, which a system is built from, and they can
make a significant impact on the entire architecture.
Consequently, one of the most important issues in software
architecting is dealing with quality attributes.

Many modern techniques for software evaluation use expert-based
approaches (e.g. ATAM [4], SAAM [1]) which evaluate overall
quality of the architecture. The quantitative methods used in these
approaches are applied in an ad-hoc manner and, in many cases,
are too context-oriented to be generalized. As a consequence, it is
difficult to make the architecting process reliable, predictable,
and repeatable.

For the time being, architecting is still more an art than an
engineering discipline. Substantial efforts have to be invested in
making the architecting process more rationalized and precise.
One of the ways to make the architecting process more precise is
the use of formal methods. However, formal methods are not a
silver bullet; they have their own drawbacks. One should be aware
that the application of formal methods usually requires precise
and complete specification. In many cases, an architect does not
have this information. He or she may not even be interested in a
very detailed design at the early stages of design, but prefer to
postpone design decisions to later stages. Thus, a balance between
the architect's freedom of design and the precision of analysis and
specification should be found. Note, accuracy of a specification is
not always a drawback, as it also stimulates one to think more
accurately and systematically.

Support by automatic tools could be very helpful for architects.
However, tooling usually requires strict non-ambiguous semantics
of the models being processed; thus, formal methods are also
essential here.

There exist no general approaches for evaluating non-functional
properties of a system at the architectural level. The interesting
approach combining structural description of architecture (Darwin
Architecture Description Language) with behavioral description
of components (Labeled Transition System) was proposed in [8].
However, this approach only allows checking safety and liveness
properties, but it does not model timing aspects which are needed
for the analysis of quality attributes like timeliness and
performance. Also, the existing methods for quantitative
evaluation focus on one quality attribute only.

We aim to integrally model multiple quality attributes—timeliness,
performance, and memory consumption—to support the making of
architectural design trade-offs.

1.1 Requirements on the Method

The aim is to develop a method for supporting software architects
during early stages of component-based software architecting of
resource-constrained systems. It is necessary to find suitable
techniques for architecture description and methods for quality
attributes evaluation and to merge them into an integrated
framework.

The requirements on the method are the following:

1. Compositionality of resource-constraint systems. The
methodology should be compositional. This means that quality
attributes of a composite system can be calculated from the
constituents components and composition mechanisms. In
particular, the method should focus on predicting quality
attributes based on resource consumption of the components.

Even if the functional interfaces and the interaction mechanisms
of components are precisely specified, component composition
may not function properly because non-functional properties of
the entire system were not considered beforehand. Typical
instances of this problem are resource conflicts (e.g., race
conditions, conflicts on access to shared resources etc). These
conflicts make it difficult to ensure the proper and predictable
behavior of a system in advance.

2. Dependability assessment during the early development
phases. The dependability attributes (timeliness, performance,
reliability, availability, safety and security) of component-based
systems cannot be evaluated by the current approaches. So, the
method must help architects to estimate the dependability
attributes and ensure a certain level of estimation accuracy. As a
simple example, the results can be described in terms of worst-
case and best-case estimations.

Also, there are non-technical requirements on the method. In
order to be easily comprehensible and easy to learn by software
engineers, the method should be based on widely accepted
software specification and design techniques. These techniques
should make engineer’s work more efficient after the engineer has
gained some experience with them.

2. KEY PRINCIPLES FOR COMPONENT-

BASED ARCHITECTING

Component-based architecting (e.g., see [15] and [21]) is one of
the most promising approaches for managing complexity and
boosting reuse. However, current component-based approaches do
not address the behavioral and non-functional aspects of software.
Therefore, we propose the following extensions.

Explicit specification of component behavior and interaction. A
formal specification of the dynamic aspects of components and
their interaction is necessary for reasoning about the behavior of
their composition and its non-functional properties.

Support of hierarchical component description. A component can
be either atomic or compound. The atomic component cannot be
further subdivided, but the compound component can consist of
atomic and(or) other compound components. As a result, one has
more flexibility in choosing the unit of the reuse: either a single
atomic component or an entire package. Another advantage is the
possibility to apply compositional design approach at the different
levels of hierarchy: a system is composed from subsystems;
subsystems are composed from compound components etc.

Separation of component interaction from component behavior.
The description of behavioral aspects is structured in separate
parts. There are specifications of component behavior and
specifications of component interaction. A rationale for
independent specification of the interaction relationships is
presented in [2]. We identified the following additional reasons
for this separation:

1. Genericity/Tailorability: The interaction specification
may be used to tailor the behavior of generic
components to particular context. This helps to avoid
coding of context-driven aspects within components
and, hence, allows more general component designs.

2. Specifying constraints end-to-end: Dependability
constraints are often concerned with the end-to-end
interaction between components. Having a separate
specification of the interaction constitutes a better
means for structuring the specification than the
alternatives: (1) placing constraints at one of the
components involved or (2) dividing up an end-to-end
timing constraint over multiple components.

3. Loose coupling: In existing component models the way
that a component is intended to interact with other
components is programmed into a component
(endogenous binding). This has to change if the
behavior of other components changes. Hence, it
constitutes a dependency on the behavior of other
components. By specifying interaction separately
(exogenously), this dependency is avoided.

Explicit specification of the resource requirements of components.
The dependability of a system is related to the amount of
resources consumed by the components and provided by the
execution platform. There are three types of resources:
computation resources, communication resources and storage. The
definition of component resource requirements in a platform-
independent way broadens the scope of component application.

Specification of dependability constraints in an end-to-end
fashion. The basic idea is that timing and dependability

constraints should not be component attributes, because this
would jeopardize reusability. They are rather considered as
constraints on the dynamics of the system, i.e. on the component
interaction.

Distinguish resource constraints and resource consumption. The
former are described at the overall system level in an end-to-end
fashion, and the latter is associated with a component description.
This separation enables the development of reusable components
and gives designers freedom in the satisfaction of the resource
constraints.

All the aforementioned aspects have to be properly elaborated in
order to constitute a practical method.

3. ARCHITECTING ENVIRONMENT

To reconcile the goals of using accepted software engineering
notations and automated analysis tools, we aim for a framework
that consists of three parts (see Figure 1).

Extensions e N RPVAN T = . fix:izzi?q:g
for specifying) . Regular Temporal | i L Timed ST 1yl

behaviour | ‘Expressions’ Logic { OCL (| Automata . msc ; interactions
constraints | . R g - L - and timing
constraints

T

Timed Automata Basic

(UPPAAL notation +extensions) formalism
Analysis Verification Simulation Evaluation

Figure 1. Architecting environment

The architecting environment provides engineers the possibility to
use a combination of notations for describing architectures. For
the time being, we focus on Message Sequence Charts (MSC)
[20] and Timed Automata (TA) [3]. Also, the architecting
environment is to be extendible with other notations, such as the
Object Constraint Language (OCL) [24] or temporal logic.

For analyzing architectural designs, the different notations need to
be related. To this end, we devise mappings of notations onto a
basic formalism. In our approach, Timed Automata are used as
basic formalism. We do not expect to find mappings of all
constructs of all modeling notations onto a single basic modeling
formalism. In co-operation with engineers, we have to select
subsets of the notations that comprise the most important
modeling constructs, yet also provide the information needed for
automatic analysis.

To support different types of analyses we envisage a collection of
analysis tools such as schedulability-, simulation- or verification-
tools. These tools operate on the representation of the
architectural design in terms of the basic formalism.

4. ARCHITECTURE DESCRIPTION
TECHNIQUES

This section enumerates the requirements on architecture
description techniques and outlines the framework. Also, it
contains an example to illustrate the method proposed.

4.1 Requirements for description techniques
For specifying component behavior, a number of formal
description techniques were inspected and compared. Before the
actual comparison, essential requirements on the description
techniques were identified. These requirements and their rationale
follow below. The requirements are marked as compulsory (C) or
optional (O).

1. The description techniques should support quantitative
models for timeliness analysis. (C)

Rationale: to enable timeliness assessment at the early
architecting phase, before system implementation.

2. The description techniques should support quantitative
evaluation of memory consumption. (C)

Rationale: to enable memory consumption estimation at the
early architecting phase.

3. The description techniques should support specification of
timing constraints in an end-to-end fashion. (C)

Rationale: to avoid unnecessary reduction of design space
(caused by artificial subdivision of the initial deadlines).

4. The description techniques should support the possibility to
specify interaction behavior exogenously (C).

Rationale: to increase reusability of the components and to
build flexible architectures.

5. The description techniques should allow one to reason about
the properties of a component composition, based on the
properties of the components. (C)

Rationale: To enable effective (automated) formal reasoning.

6. The description techniques should support the specification
of resource requirements (processing, storage and
communication. (C)

Rationale: to enable analysis of effects of resource conflicts.
7. The specifications must be comprehensible for engineers (C).
Rationale: reduce efforts for education of engineers.
8. Support for automatic code generation (O).

A description technique should enable creating of tools that
can generate code for a given specification.

Rationale: to enable efficient development.

9. Use of existing design, simulation and verification tools (O).
It is preferable to use the existing tools instead of developing
new ones.

Rationale: to design the software quickly and easily.

4.2 Basic formal framework

In this section we explain the architecting approach by listing the
models that should be constructed for describing an architecture.
We motivate the choices of the formal description techniques for
these models.

4.2.1 General view

A general overview of the approach to modeling architectures is
given in Figure 2. Three essential architecting models are
considered.

The “Structural model” represents the static configuration of a
system through the dependencies and connections between
components.

The “Behavioral Model” is used to describe the dynamic aspects
of the components, component interaction and resource
constraints (e.g. end-to-end deadlines). A component description
specifies resource requirements in terms of the “Resource Model”.

The “Resource model” describes the available resources. This
model also defines a sharing strategy for each resource.

Structural model Behavioural model

Specify end-to-end constraints

Resource
model

Resource 1 Resource 2

Figure 2. Overview of the approach

4.2.2 Choice of appropriate formalisms

For structural description we consider one of the existing
component models supporting the notions of provided and
required interfaces (e.g. Koala [19] and Darwin [18]). Since we
aim to the evaluation of timing properties, the proper behavioral
description formalisms are to be found.

After comparing several formalisms, the extended notion of State
Machines (Timed Automata, [3]) was chosen for the specification
of component behavior. Basic Message Sequence Charts [20]
were chosen for specifying component interaction. This section
motivates this choice.

4.2.2.1 Timed Automata
Timed Automata are supported by a wide scope of existing tools
for modeling and simulation (e.g. UPPAAL, for details see [6]).
Furthermore, their graphical description makes them
comprehensible for engineers.

The theory on Timed Automata describes constructions for
obtaining an automaton that describes the behavior of the parallel
composition of timed automata. For the simplest cases, it is
possible to use the Cartesian product.

However, when using timed automata, certain principles must be
followed in order to be able to reason compositionally. For
example, one should not use global clock variables to define
constrains on the behavior of multiple components.

4.2.2.2 Message Sequence Charts

As mentioned before, component interaction is specified
separately from component behavior. For that, a specification
language is required that can address the following issues:

e It should enable restricting the behavior of generic
components

e [t should support the specification of timing constraints
in an end-to-end fashion.

The MSC notation allows one to vividly express timing
constraints between stimulus and response events at a single place
in a specification. This is in contrast to timed automata, where
timing constraints are specified by means of two (or more)
constraints on shared clock variables that are distributed over
separate states or transitions of the model (this will be illustrated
later by an example). This reduces the intelligibility of a
specification.

MSC are a well-accepted software notation that is easy to learn
and understand. Also, they have formal semantics in terms of
automata (see e.g. [14]) that makes it possible to relate them to
timed automata (which we use as basic formalism).

Because of the above advantage, MSC were preferred to Timed
Automata for specifying the timing constraints.

4.3 Example

To give a flavor of our approach, we will demonstrate some of the
description principles (analysis is not included) with an example
of an “Automatic Teller Machine™.

The structural model of the architecture is depicted in Figure 3.

User ATM Bank

Figure 3. Key components

The system consists of the following components: User, ATM
(modeling a cash dispenser), and Bank (modeling some aspects of
bank operation). User and Bank interact only with ATM, but not
with each other.

The behavioral model consists of a specification of the behavior
of the individual components using UPPAAL and a specification
of their interaction using MSCs.

We briefly explain the UPPAAL notation [6]. In UPPAAL, time
is modeled using clock variables: timing constrains are
expressions over clock variables. These constraints can be
attached both to transitions and states. A condition on a state is an
invariant; the system is allowed to be in a state only if its
invariant holds. A condition on a transition is a guard; the
transition can only be taken if the guard holds.

The labels on transitions denote events. Labels with a question
mark “?” define input events; labels with an exclamation mark “!”
define output events.

Returning to the example, Figure 4 describes the behavior of
User.

Idle u.insert card! _ u.enter PIN!

Authorization

u.PIN
invalid? validated?

u.withdraw! CS

u.enter
amount!

\fu.accept\s Checking

u.success? amount? amount

Figure 4. Behavior of User

The specification of User describes the behavior of an individual
who wants to withdraw cash from an ATM. The automaton
defines an order on the events for the withdrawal process.

The behavior of ATM and Bank is illustrated in Figure 5 and
Figure 6, respectively.

Il a.insert a.enter
e@ card? _/ ™\ PIN? f) t<s
</ =07\l
a.eject card! {11 &-validate
PIN!

g» Y 25
a.PINinvaIiMnon- \

authorized?| a.authorized?

a.withdraw? CS
g? a.fail! a.PIN
a.cancel? .
a.success! validated!

t2>=3 5.1y a.enter

:.at;?nk amount?
2>=3

Perform @ 2> Checking

transaction— a.bank a.accept amount

transaction! amount! (2<6

Figure 5. Behavior of ATM

For the specification of Bank we use two automata. The semantics
of this is that they operate in parallel. This allows further
enhancing of the specifications to support more than one User and
one ATM: the unnecessary serialization of the authorization and
transaction requests from different cash dispensers, which would
be enforced by modeling the behavior as a single automata, is
avoided.

b.non-authorized!

x>=1 x>=1

Validating
Idle
b.bank veto! b.bank fiat!
y>=2 y>=2

Transaction

y<4

Figure 6. Behavior of Bank

We use clock variables x and y to specify the resource
consumption of Bank. The specification states that the time of
processing authorization requests (by a hypothetical CPU) is at
least one time unit and at most two time units. The former is
indicated with the guards (x>=1/) on both transitions, and the
latter is specified with the invariant (x<2) of the “Validating”
state. Likewise, the time necessary for performing a transaction is
at least two time units but at most four time units. Similarly, one
can specify consumption of CPU capacity for other components.

Finally, we demonstrate the specification of end-to-end timing
constraints and the interaction between the components User,
ATM, and Bank with the Message Sequence Chart in Figure 7.

On the one hand, the message sequence chart in Figure 7 specifies
through which transitions all the three automata interact. For
example, to indicate that the actions “u.insert card” and “a.insert
card” of User and ATM, respectively, need to synchronize, we use
an ampersand symbol “&”. Likewise, the other labels of all the
three automata are bound. This type of specification technique
allows one to bind components in an exogenous manner.

Additionally, this message sequence chart indicates that the time
between the occurrence of “enter PIN” and the occurrence of
“PIN validated” must not exceed five time units. At the same
time, it indicates that time between “enter amount” and
“transaction success” must not exceed six time units. In a similar
way, message sequence charts can be used to specify other
dependability constraints in an end-to-end manner for relevant
execution scenarios.

msc Cash_withdrawal_scenario
User ATM Bank
\ \ \ \ \
u.insert card&
a.insert card >
[0,5] u.enter PIN&)
’ a.enter PIN a.validate PIN&
A > b.validate PINV
§ Validating D
| u.PIN validated&
! a.PIN validated « -
\ 2D a.authorized&
] b.authorized
u.enter amount&
[0.6] a.enter amoun
‘ Ll
D Checking
amount
faccept amount&
a.accept amount d
u.bank transaction&
b.bank transaction
Transaction D
Y la - .
u.success& abb;::kﬁf?;f‘
a.success :
" u.withdraw&
. a.withdraw
h u.eject card&
a.eject card
I I]

Figure 7. Specification of deadlines and component interaction

5. TECHNIQUES FOR EVALUATION OF
QUALITY ATTRIBUTES

This section summarizes our evaluation of methods for the
assessment of timeliness and memory consumption and interprets
their use for the software architecting.

5.1 Timeliness evaluation

As already mentioned, timeliness is an important quality attribute.
Timeliness can be reasoned about either (analytically) through a
schedulability test, a typical example being Rate Monotonic
Analysis (RMA) (see [17], [16], [11], and [12]), or through the
construction of an explicit schedule (e.g. in [23]).

Both approaches model the scheduling policy adopted for the
system. Depending on whether the priority assignment strategy of
the scheduling policy is fixed or dynamic, different models have
to be used.

For the fixed-priority scheduling policy, RMA is usually applied.
This method is based on the analysis of a so-called critical instant,
when all tasks in the task set are released simultaneously. It is
proven that the worst-case response time appears for each task
during the critical instant. The RMA method calculates response
time for each task (for a given real-time situation describing a set

of tasks being analyzed [12]), based on the specified worst-case
execution time and deadline. In addition, if the tasks share some
resources, the blocking time induced by the ones with lower
priority should be given. Finally, the periodicity information (for a
simple case, in a form of task inter-arrival periods) has to be
provided to enable the application of RMA.

However, RMA can only be used with some, rather strict,
assumptions on the tasks of the system. The main restriction is the
assumption that the arrival pattern of a stimulus has some form of
periodicity. Early versions of RMA have dealt only with strictly
periodic events; however, later extensions have incorporated a-
periodic tasks and sporadic servers. Another drawback of RMA is
that it does not allow interaction between the tasks. The only
allowed interaction is mutual access to shared resources.

New schedulability modeling approaches have emerged as a result
of the substantial progress in the development of model checking
techniques both for ordinary and hybrid timed automata. These
approaches partially address the drawbacks of RMA-like
techniques, as they take interaction between the tasks into
account.

The main principle on which these techniques are built is the
replacement of the initial schedulability problem with the
reachability problem for a timed automaton encompassing all
peculiarities of a concrete schedulability policy. The automaton
modeling the scheduler, combined with automata modeling inter-
task communication, is analyzed for reachability of the state
corresponding to a non-schedulable situation [23].

In general, automata-based methods cover a broader scope of
possible scheduling policies, than RMA-like methods do, as they
also take into account task interactions. However, the automata-
based methods have two disadvantages. The first is that these
methods only indicate whether a task set is schedulable or not:
they do not provide the response time of the tasks, which would
be very useful for architects. The second drawback is that these
methods, being based on the construction of an automaton
modeling the scheduler, suffer from the state explosion problem.
Fortunately, during the last three years, a number of successful
accounts about the application of automata-based techniques have
been published [5], [7], and [13]. Because of the flexibility of
these kinds of techniques, their application is feasible at the
architecting level, especially in the cases when standard
techniques like RMA are not applicable.

Both types of techniques require information about the worst-case
execution time of tasks. Unfortunately, most contemporary
methods for the estimation of worst-case execution time cannot be
directly applied to architecting, as they are based on already
existing code. But at the architectural level, some estimations are
often needed before the code is written. Furthermore, there are
two problems with traditional approaches:

e Predictions are over-pessimistic due to excluding effects of
the acceleration facilities of modern CPU’s (pipelines,
branch prediction blocks, caches etc). These effects are
excluded from the analysis because of unpredictable
behavior of the acceleration facilities.

e Variation in behavior due to different input parameters is
difficult to account for. This requires analysis of all possible
paths of control flow, which is not possible for many
situations without providing additional information

describing the relation between input data and program
behavior.

It is foreseen that these problems of traditional approaches must
also be solved for performing worst-case execution time
estimation at the architectural level.

5.2 Memory consumption evaluation.

In many cases, analysis of memory consumption is needed to
reason about the feasibility of an embedded system. The
allocation of memory can be dynamic or static. Static memory
allocation is performed at compile- or load-time, while dynamic
memory allocation is performed during run-time. For most real-
time operating systems, the memory layout of an application can
be presented as follows:

1. Statically allocated memory: the image of program code,
static data, stack, and heap

2. Dynamically allocated memory: stacks (for different threads),
data objects allocated in the heap.

Analysis of memory availability for the static allocation
mechanism is trivial in most cases. It is enough just to summate
the sizes of all memory blocks needed for all tasks and compare
the result with the amount of available system memory. However,
this holds only for binary components.

The situation worsens when dealing with the mechanisms for
dynamic memory allocation. In this case, the phenomenon of
fragmentation can be observed. Usually, the fragmentation is
caused by interleaved sequence of memory block allocations and
de-allocations with greatly varying block size. It is rather difficult
to evaluate the impact on memory allocation induced by the
fragmentation. Moreover, having the memory shared between
different tasks results in additional interference that makes the
memory behavior even less predictable.

The most common practice for hard real-time systems is to avoid
the use of dynamic memory management to increase the
predictability and efficiency. Instead, data is allocated statically.
Nevertheless, some research on the evaluation of dynamic
memory allocation has been done, e.g. in [25] by Zorn et al. Their
method employs synthetic allocation traces: the allocation trace of
an actual program is modeled with a stochastic process. This
method is reported to provide results with 80% accuracy. Thus, it
might be applicable for the early analysis of worst-case dynamic
memory consumption, as more precise estimations are not needed
during the architecting phase. Another approach is based on the
abstract interpretation theory; this method automatically
transforms a high-level language program into a function
calculating the worst-case usage of stack and heap space (see
[22]). This approach might also be applicable during the
architecting.

6. CONCLUSION

The foreseen framework for component-based software
architecting is supposed to address the following: (1) reasoning
about composability of behavior, (2) the early assessment of
quality attributes.

For the specification of component behavior, timed automata are
suggested, while the specification of component interaction is
described with Message Sequence Charts (MSC) which allow to
vividly represent timing constraints in the end-to-end manner.

For the assessment of timeliness, two alternative classes of
techniques were considered: analytic and constructive techniques.
The applicability of these techniques in the context of component-
based software architecture is being validated with industrial case
studies.

Currently, we are working on the integration of the proposed
architecture description techniques with the evaluation techniques
for the analysis of timeliness and memory consumption. Here,
timed-automata-based techniques are especially promising, as
they have the same formal basis both for the evaluation of quality
attributes and the description of component behavior.

There are a number of challenging topics for further research:

= To find an appropriate level of abstraction for component
behavior description. There should be a balance between the
accuracy of the description (relevant parts of behavior are not
omitted) and the complexity of the evaluation

= To elaborate a method for the specification of resource
consumption. It is important to be able to integrate the
specification of resource consumption in the description of
components to enable the evaluation of quality attributes

= To develop a formal methodology for the evaluation of
worst-case memory consumption.

= To develop a method for relating MSC-based descriptions to
timed-automata-based ones.

7. REFERENCES

[1] G. Abowd, L. Bass, R. Kazman, M. Webb, "SAAM: A
Method for Analyzing the Properties of Software
Architecture," in Proceedings of the 16th International
Conference on Software Engineering, Italy, May 1994

[2] R. Allen and D. Garlan: A Formal Basis for Architectural
Connection, ACM Transactions on Software Engineering
and Methodology, 6(3):213---249, July 1997.

[3] R. Alur, D.L. Dill. A4 Theory of Timed Automata. in:
Theoretical Computer Science Vol. 126, No. 2, April 1994,
pp. 183-236.

[4] M. Barbacci, S. J. Carriere, P. Feiler, R. Kazman, M. Klein,
H. Lipson, T. Longstaff, and C. Weinstock, "Steps in an
Architecture Tradeoff Analysis Method: Quality Attribute
Models and Analysis", Technical Report CMU/SEI-97-TR-
029, 1998

[5S] A. Burns. How to Verify a Safe Real-Time System. The
Application of Model Checking and a Timed Automata to
the Production Cell Case Study. Technical report, Real-Time
System Research Group, Department of Computer Science,
University of York, 1998

[6] A. David, UPPALL 2k: Small
http://www.docs.uu.se/docs/rtmv/uppaal/tutorial.pdf

Tutorial,

[7] A. Fehnker. Scheduling a steel plant with timed automata. In
Proceedings of the 6th International Conference on Real-
Time Computing Systems and Applications (RTCSA99),
pages 280-286. IEEE Computer Society, 1999

[8] D. Giannakopoulou, J. Kramer and S. Cheung, Analysing the
Behaviour of Distributed Systems using Tracta. Journal of
Automated Software Engineering, special issue on

Automated Analysis of Software. Vol. 6(1) pp. 7-35.,
January 1999

[9] D. K. Hammer and M.R.V. Chaudron, Component Models
for Resource-Constraint Systems: What are the Needs?, Proc.
6th Int. Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS), Rome, January 2001.

[10] D.K. Hammer, Component-based architecting for distributed
real-time systems: How to achieve composability?, Int.
Symposium on Software Architectures and Component
Technology (SACT), Enschede, Netherlands, January 2000,
to be published by Kluwer.

[11] D. L. Katcher, S. S. Sathaye, J. K. Strosnider. Fixed priority
scheduling with limited priority levels. IEEE Transactions on
Computers, 44(9):1140--1144, 1995

[12] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, H. Gonzalez, 4
Practitioners Handbook for Real-Time Analysis: Guide to
Rate Monotonic Analysis for Real-Time Systems. Boston,
MA: Kluwer Academic Publishers, 1993

[13] K. J. Kristoffersen, K. G. Larsen, P. Pettersson, and C.
Weise, Experimental Batch Plant - VHS Case Study 1 Using
Timed Automata and UPPAAL, Deliverable of EPRIT-LTR
Project 26270 VHS (Verification of Hybrid Systems), 1999

[14] P.B. Ladkin, S. Leue, Interpreting message flow graphs,
Formal Aspects of Computing, 7(5):473-509, 1995

[15] G.T. Leavens, M. Sitaraman, Foundations of component-
based systems, Cambridge University Press, 2000.

[16] J. Lehoczky, L. Sha, Y. Ding, "The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior," IEEE Real Time Systems symposium, 1989

[171 C. Liu, J. Layland, "Scheduling Algorithms for
Multiprogramming in Hard Real Time FEnvironment",
JACM, 1973

[18] J. Magee, N. Dulay, S. Eisenbach, J. Kramer. Specifying
Distributed Software Architectures. In Proceedings of 5th
European Software Engineering Conference, Spain, 1994

[19] R. van Ommering, F. van der Linden and J. Kramer and J.
Magee, The Koala Component Model for Consumer
Electronics Software. Computer 33, 3 (2000), pp 33-85,
2000

[20] M.A. Reniers, Message Sequence Chart, Syntax and
Semantics, Ph.D. thesis, TUE, 1999

[21] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, 1998.

[22] L. Unnikrishnan, S. D. Stoller, Y. A. Liu. Automatic
accurate stack space and heap space analysis for high-level
languages. Technical Report TR 538, Computer Science
Department, Indiana University, Feb. 2000

[23] A. Wall, C. Ericsson, and W. Yi. Timed Automata as Task
Models for Event-Driven systems. In Proceedings of RTSCA
99. IEEE Press, 1999.

[24] J. Warner, A. Kleppe, "The Object Constraint Language",
Addison Wesley, 1999.

[25] B. Zorn, D. Grunwald. Evaluating models of memory
allocation. ACM Transactions on Modeling and Computer
Simulation, 1(4):107--131, 1994.

