
Using Message Sequence Charts for Component-Based
Formal Verification�

Bernd Finkbeiner
Computer Science Department

Stanford University
Stanford, CA 94305, USA

finkbein@cs.stanford.edu

Ingolf Krüger
Department of Informatics

Technical University of Munich
80290 Munich, Germany

kruegeri@in.tum.de

ABSTRACT
Message sequence charts (MSCs) are are a popular tool to in-
formally explain the behavioral embedding of a component
in its environment. In this paper we investigate if MSCs
can also serve as a speci�cation and reasoning technique
for the composition of systems from components. We iden-
tify three challenges: (1) Semantic Duality: MSCs express
global coordination properties as well as requirements on
individual components for their correct participation in an
interaction pattern. We show that the two semantics do
not always agree and suggest syntactic constraints that en-
sure the represented property can be decomposed. (2) Com-
pleteness: we de�ne a decompositional proof rule based on
MSCs. We show that the rule is incomplete and discuss rea-
sons and possible improvements. (3) Compositionality: in
component-oriented system development, the di�erent parts
of the system are designed independently of each other. We
suggest a composition operator for MSC speci�cations of
such components and outline di�erences to operators used
for the composition of scenarios.

1. INTRODUCTION
Component-based software development shortens the de-

sign process by allowing the software engineer to use black-
box components. A prerequisite for the composition of sys-
tems from components is adequate information about their
interface.
Here, with the notion of interface we associate not only

the signatures of the operations a component o�ers to its
environment; although popular, this interface notion o�ers
much too little information to be of value in a more rigor-

�This research was supported in part by NSF grant
CCR-99-00984-001, by ARO grants DAAG55-98-1-0471
and DAAD19-01-1-0723, by ARPA/AF contracts F33615-
00-C-1693 and F33615-99-C-3014 and by the Deutsche
Forschungsgemeinschaft within the priority program \Soft-
Spez" (SPP 1064) under project name InTime.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA 2001 Workshop on Specification and Verification of Component-
Based Systems Oct. 2001 Tampa, FL, USA
Copyright 2001 Bernd Finkbeiner and Ingolf Krüger.

ous approach to software development. Instead, we add the
component's observable behaviors as part of our interface
notion. Approaches at component-oriented system develop-
ment, such as ROOM [32] and UML-RT [33], have a similar
but more informal interface notion. Our goal is to exploit
the extra information our interface notion o�ers during sys-
tem veri�cation in the context of pragmatic and industrially
accepted engineering approaches.
It is easy to describe the signature part of a component's

interface. But how to capture, represent, and systemati-
cally develop the behavioral aspects of an interface? Mes-
sage Sequence Charts (MSCs) have gained wide acceptance
for scenario-based speci�cations of component interaction
behavior (see, for instance, [20, 8, 31, 6, 29]). Due to their
intuitive notation MSCs have proven useful as a communica-
tion tool between customers and developers, thus helping to
reduce misunderstandings from the very early development
stages.
In this paper we investigate if MSCs can also serve as a

speci�cation and reasoning technique for the composition
of systems from components. When used in a formal set-
ting, MSCs could provide the link between the veri�cation
of individual components and the correctness proof for the
complete system.
MSCs capture the communication or collaboration among

a set of components. Typically, an MSC consists of a set of
axes, each labeled with the name of a component. An axis
represents part of the existence of its corresponding com-
ponent. Arrows in MSCs denote communication. An arrow
starts at the axis of the sender or initiator of the communica-
tion; the axis at which the head of the arrow ends designates
the communication's recipient or destination. Intuitively,
the order in which the arrows occur within an MSC de�nes
sequences of interaction among the depicted components.
Figure 1 shows an MSC that displays a sequence of interac-
tions among three components in a simple communication
protocol.
The information that an MSC captures includes several

structural and behavioral aspects. The separate axes indi-
cate logical or physical component distribution. The pres-
ence of an arrow between two axes indicates the existence
of a communication link between the corresponding com-
ponents, as well as the occurrence of interaction itself. Fi-
nally, some MSC dialects, such as [31, 22, 10], allow the
developer also to indicate state changes of individual com-
ponents contained in an MSC. Composite MSCs (C-MSCs)
extend the MSC language with additional structure, such as

Sender Medium Receiver

msgSM
msgMR
ackRM

ackMS

msc Communication Protocol

Figure 1: Basic MSC specifying a communication
protocol.

loops, alternatives, or sequential composition. The example
in Figure 2 shows a communication protocol with two alter-
native outcomes: the \Receiver" process may report success
(\ack") or failure (\fail").

Sender Medium Receiver

msgSM
msgMR

ackRM
ackMS

failRM
failMS

alt

msc Communication Protocol With Failure

Figure 2: C-MSC specifying a communication pro-
tocol with failure.

MSCs describe the embedding of individual components
into their environments, i.e., how components cooperate to
achieve a certain task in a distributed system. They hide
most of the details of local state changes of individual com-
ponents and, instead, convey the \big picture" of the collab-
orations among the referenced components. This abstract,
and integrated view on system behavior has resulted in the
application of MSCs for use case speci�cations, particularly
in object-oriented analysis and design, as well as for test-
case speci�cations and simulation-run visualizations, espe-
cially in tools for telecommunication and embedded systems.
In a sense, MSCs represent projections of the overall system
behavior onto particular services or tasks of the system; au-
tomata, another popular description technique for behav-

ioral aspects, typically represent projections of the overall
system behavior onto individual components.
Of increasing importance is the use of MSCs as a descrip-

tion technique for complete behavior patterns, instead of
for mere exemplary interaction scenarios, because this fa-
cilitates the MSC's seamless integration into an overall de-
velopment process for distributed systems (cf. [24, 22], and
the references contained therein). This is a particularly use-
ful approach for the speci�cation for component interfaces
(as opposed to complete component behavior), because of
the typically limited size of the corresponding interaction
protocols.
An MSC describes both the global system behavior, and

how each individual component should perform to establish
the desired result. In this paper we explore how this du-
ality can be used in the veri�cation of distributed systems.
Formally, MSCs here assume the role of a decompositional
proof rule. They decompose a global speci�cation into local
speci�cations which are satis�ed by the individual compo-
nents. In the veri�cation literature, this technique is known
as the assumption-commitment paradigm (cf. [12, 7]): the
environment of a component is speci�ed only to the extent
that is necessary so that the component can guarantee its
correct operation; any implementation details about the en-
vironment are left unspeci�ed at this point. Assumption-
commitment reasoning shifts the burden of formal veri�ca-
tion from the system-level down to the component-level.
While the motivation for MSC-based descriptions and

assumption-commitment speci�cations is similar, there is a
gap in the degree of formalization o�ered that must be closed
before MSCs can be used as a formal reasoning tool. In the
following sections we will discuss three challenges.

1. Semantic Duality: MSCs express global coordination
properties as well as requirements on individual com-
ponents for their correct participation in an interac-
tion pattern. We say an MSC has the decomposition
property if the two semantics agree. The decomposi-
tion property is necessary for MSCs used in compo-
nent oriented proofs, since we infer the validity of a
global property from the validity of local properties.
Unfortunately, not all MSCs have the decomposition
property. We suggest syntactic constraints that ensure
the represented property can be decomposed.

2. Completeness: For MSCs that have the decomposition
property, we can formulate a decompositional proof
rule that reduces the proof of a global property to the
veri�cation of local component properties. The rule is
incomplete: not all valid system properties can actu-
ally be proven with the rule. We discuss reasons for
the incompleteness and possible improvements.

3. Compositionality: In component-oriented system de-
velopment, the di�erent parts of the system are de-
signed independently of each other. Correspondingly,
their MSC speci�cations are unlikely to be identical
and we need a process to resolve di�erences. We sug-
gest such a composition operator and discuss di�er-
ences to operators used for the composition of scenar-
ios.

In the following section we introduce MSCs formally, and
give a simple semantics based on !-automata; we address
the three challenges in Sections 3, 4 and 5.

2. MESSAGE SEQUENCE CHARTS
MSCs have a wide spectrum of applications in the devel-

opment process, ranging from analysis to implementation
support. Correspondingly, many di�erent interpretations
have been proposed in the literature. An MSC language
supporting requirements capture and analysis of interaction
patterns requires a very liberal underlying semantics de�-
nition; it should, for instance, not exclude other possible
interaction patterns too early in the development process.
In this paper, we focus on the veri�cation of universal

properties. Correspondingly, we are interested in the exclu-
sion of undesired behaviors. In this section we describe a
semantics that achieves this by identifying all possible in-
teraction patterns: behaviors other than the ones that are
explicitly depicted will be excluded.
We base our semantics on !-automata. The !-regular

languages form a particularly useful class since it is closed
under complementation and intersection, it is decidable and
in fact well-supported by veri�cation algorithms (cf. [13,
18]). We will work with a simpli�ed de�nition of basic mes-
sage sequence charts. Similar de�nitions appear in [2, 3]; a
semantics for a richer dialect is given in [22].

Definition 1 (Message sequence charts). A (ba-
sic) message sequence chart (MSC) M = hP;M; E;C;Oi
is a labeled graph with the following components:

� processes: a �nite set P of processes or components;

� messages: a �nite set M of messages, we assume
that the messages can be partitioned according to their
sender M =

S
p2P Sp and according to their recipient

M =
S
p2P Rp; let Mp denote the union Sp [Rp;

� events: a �nite set E of events, each process p 2 P has
a single initial event ep;

� interprocess edges: a set of directed edges connecting
events, labeled by messages between processes C � E�
M�E; we assume that each event appears on exactly
one edge;

� intraprocess edges: a function O : E ! E [f?g con-
necting events in the order in which they are displayed.
? indicates that there is no subsequent event.

The !-regular languages are recognized by !-automata.
Di�erent types of !-automata are distinguished according to
their acceptance conditions, in the following we will use the
fairly simple B�uchi acceptance condition on the transitions
(for a survey on !-automata see [36]).

Definition 2 (B�uchi automaton). A B�uchi au-
tomaton is a tuple A = hN;�; I; T;Fi with

� nodes: a �nite set N of nodes,

� input alphabet: a �nite set � of input symbols,

� initial nodes: a subset I � N ,

� transitions: a �nite set T � N���N of labeled edges
connecting nodes,

� acceptance condition: a subset F � T .

Acceptance of an input sequence is determined as follows.

Definition 3 (Accepting paths). For an in�nite se-
quence of input symbols � : s0; s1; s2; : : : an in�nite sequence
of transitions � = (n0; s0; n1); (n1; s1; n2); : : : is a path of
A on � if n0 2 I. A path � is accepting if some edge in F
occurs in�nitely often in �.

Definition 4 (Language). The language L(A) of an
automaton A is the set of all in�nite sequences � of input
symbols that have an accepting path in A.

We represent an MSC as an automaton by using sets of
\simultaneously active" events as states. There is a transi-
tion for each interprocess edge and an additional � -transition
that simulates an internal computation step. We assume
zero-delay communication: the transitions respect the par-
tial order on the intraprocess edges as well as the synchro-
nization introduced by the interprocess edges.

Definition 5 (Global semantics). Given a basic
MSC M = hP;M; E; C;Oi the global semantics is given as
the associated global automaton A = hN;�; I; T;Fi with

� N = 2E[f?g,

� � =M[f�g,

� I = f fep j p 2 Pg g,

� T contains a set of self-loops f(n; �; n) j n 2 Ng and
a set of transitions reacting to messages: f(n1; s; n2)g
such that

{ for each e1 2 n1 one of the following holds:

� e1 2 n2 and there is no event e0 with
(e1; s; e

0) 2 C or (e0; s; e1) 2 C,

� O(e1) 2 n2 and there is an event e0 2 n1 with
(e1; s; e

0) 2 C or (e0; s; e1) 2 C, and

{ for each e2 2 n2 one of the following holds:

� e2 2 n1 and there is no event e0 2 E with
(e1; s; e

0) 2 C or (e0; s; e1) 2 C

� there is an event e1 2 n1 such that e2 = O(e1)
and there is an event e0 with (e1; s; e

0) 2 C or
(e0; s; e1) 2 C,

� F = f(f?g; �; f?g)g.

Figure 3a shows the automaton associated with the MSC
from Figure 1. Accepting transitions are depicted with
double edges. The semantics of C-MSC constructs can be
described as the corresponding transformations on the au-
tomata. Here we restrict ourselves to sequential compo-
sition, nondeterministic alternatives, and �nite as well as
in�nite loops; these language constructs suÆce for the pur-
poses of this paper. We refer the reader to [22] for similar
constructions for almost all of the MSC-96 standard [20].

Definition 6 (Automata transformations).
For two B�uchi automata A1 = hN1;�; I1; T1;F1i
and A2 = hN2;�; I2; T2;F2i we de�ne the result
hN 0;�; I 0; T 0;F 0i of the following transformations:

� sequential composition A1;A2:

{ N 0 = N1 [N2,

{ I 0 = I1,

1

2

3

4

5

(a)

msgSM

msgMR

ackRM

ackMS

�

�

�

�

�

1

2

3

4

5

6

7

8

(b)

msgSM

msgMR msgMR

ackRM

ackMS

failRM

failMS

�

�

� �

�

�

�

�

Figure 3: Automata associated with (a) the MSC
from Figure 1 and (b) the C-MSC from Figure 2.

{ T 0 = T1 � f(n1; s; f?g) 2 T1g
[f(n1; s; n2) j (n1; s; f?g) 2 T1; n2 2 I2g
[T2

{ F 0 = F1 [F2,

� alternative alt(A1;A2):

{ N 0 = N1 [N2,

{ I 0 = I1 [I2,

{ T 0 = T1 [T2,

{ F 0 = F1 [F2,

� �nite loop loop(A�
1):

{ N 0 = N1,

{ I 0 = I1 [ff?gg,

{ T 0 = T1 [f(n; s;m) j (n; s; f?g) 2 T1;m 2 I1g,

{ F 0 = F1,

� in�nite loop loop(A!
1):

{ N 0 = N1,

{ I 0 = I1,

{ T 0 = f(n; s;m) j (n; s;m) 2 T1;m 6= f?gg
[f(n; s;m) j (n; s; f?g) 2 T1;m 2 I1g,

{ F 0 = f(n; s;m) j (n; s;m) 2 F1;m 6= f?gg
[f(n; s;m) j (n; s; f?g) 2 T1;m 2 I1g.

As an example consider again the C-MSC from Figure 2:
its associated automaton is shown in Figure 3b. Note that
both the paths that stay in node 5, and the paths that stay
in node 8 are accepting.

Definition 7 (Global Language). A (�nite or in�-
nite) sequence of messages � is accepted by an MSC M if
there is an in�nite sequence �0 of symbols in M[f�g such
that �0 with all occurrences of � removed is equal to � and
�0 is accepted by the automaton associated with M .

3. CHALLENGE 1: SEMANTIC DUALITY
MSCs describe both the system behavior and how each

individual component should perform to establish the de-
sired result. A semantics reecting this duality thus has
both a global language and a local language for each process
involved in the depicted collaboration.
In this section we study the relationship between the two

languages. In a �rst step we distinguish the messages in
whose sending or receipt a certain process is directly in-
volved, and those that are sent and received in the process's
environment. The local semantics reects the fact that all
messages that are not either sent or received by a given
process are hidden: the process behavior is independent of
hidden messages.
For each transition (n; s;m) in the global automaton with

a hidden message s we add all transitions (n; s0; m) with
s0 2 (M�Mp) [ff�gg: from the process's point of view
it is indistinguishable if it was message s that was sent, or
some other hidden message, or even no message at all.

Definition 8 (Local semantics). For an MSC with
processes P and global automaton A = hN;�; I; T;Fi, the
local semantics for a process p 2 P is given as the associated
local automaton Ap = hN;�; I; T 0;F 0i with

� T 0 = f(n; s; n0) j (n; s; n0) 2 T and s 2 Mp [f�gg
[f(n; s0; n0) j (n; s; n0) 2 T and

s 2 ��Mp � f�g and s0 2 ��Mpg

� F 0 = f(n; s; n0) j (n; s; n0) 2 F and s 2 Mp [f�gg
[f(n; s0; n0) j (n; s; n0) 2 F and

s 2 ��Mp � f�g and s0 2 ��Mpg

In component-oriented proofs, we infer the validity of a
global property from the validity of local properties. Hence,
we require that the global and local semantics are in agree-
ment. However, not all MSCs have this property.
More formally, we say that an MSC has the decomposition

property if the following equation holds for the global au-
tomaton A, processes P and the local automata Ap, p 2 P :

\

p2P

L(Ap) = L(A)

Figure 4 shows an MSC that does not have the decom-
position property: consider an implementation in which
process \A" �rst sends message \A1" and process \C" then
sends message \C2": this interaction is not allowed by
the global semantics. It is, however, accepted by all local
automata.

Since equivalence between B�uchi automata can be checked
with standard veri�cation techniques (cf. [13]), a practical
solution is to check the decomposition property whenever
the MSC is intended to be used in a decompositional proof.
An alternative solution is to restrict the MSC syntax so

that the decomposition property is guaranteed. Causality is
such a restriction. Consider again the example in Figure 4.
There is an implicit causal relationship between messages
\A1" and \C1," and \A2" and \C2," respectively. If the
causalities were made explicit (for example with an extra
message between process \A" and and process \C" in one
of the alternatives), the decomposition property would hold.
We now give a syntactic characterization of a class of

causal MSCs. We introduce a few auxiliary notions: the

A B C D

A1 C1

A2 C2

alt

msc Non-Causal

Figure 4: Non-causal MSC.

initial events init(M) of an MSC M are those events that
do not causally depend on any other event inM ; dually, the
terminal events term(M) are those events that do not cause
any other events inM . These sets of events serve as the ba-
sis for determining whether all message sequences expressed
by an MSC are causally connected. Moreover, our aim is to
distinguish clearly between di�erent alternatives within a C-
MSC by considering only the �rst message occurring within
such an alternative; therefore, we also introduce a formal
characterization for the set of �rst messages exchanged be-
tween two processes of an MSC.
We start by de�ning a causal order for the messages de-

picted in an MSC M . This serves as the basis for de�ning
the sets init(M) and term(M), below.

Definition 9 (Causal Ancestor). Let an MSC
M = hP;M; E; C;Oi be given. We de�ne an order
�� E �E on M 's events as follows. Let e; f 2 E, then

e � f � (e = f) _ (9m 2M : (e;m; f) 2 C) _ (f = O(e))

If we have e � f , we call e direct causal ancestor of f . By
�� we denote the reexive, transitive closure of �. If we
have e �� f , we call e causal ancestor of f .

Thus, e 2 E is a direct causal ancestor of f 2 E, if either
e and f coincide, or e and f are the send and corresponding
receive event of the same message transmission, or e occurs
immediately before f on the axis of the same process in the
corresponding MSC M = hP;M; E;C;Oi. The causal order
�� captures indirect causal dependencies. This allows us to
de�ne initial and terminal events by structural induction on
the MSC syntax.

Definition 10 (Initial and terminal events).
For a basic MSC M = hP;M; E; C;Oi and its associ-
ated causal order �� we call an event e 2 E initial, if
8f 2 E : e �� f holds; similarly, we call e terminal, if
we have 8f 2 E : f �� e. If e is M 's initial event, we
set init(M) = feg; if M has no initial event we de�ne
init(M) = ;. Similarly, we set term(M) = feg if e is M 's
terminal event, and term(M) = ; if no terminal event
exists in M .

For a C-MSC M the initial and terminal events are given
as follows:

� init(M1;M2) = init(M1);
term(M1;M2) = term(M2);

� init(alt(M1;M2)) = init(M1) [init(M2);
term(alt(M1;M2)) = term(M1) [term(M2);

� init(loop(M�
1);M2) = init(M1) [init(M2);

term(M1;loop(M
�
2)) = term(M1) [term(M2);

� init(loop(M�
1)) = init(M1);

term(loop(M�
1)) = term(M1)

� init(loop(M!
1)) = init(M1);

term(loop(M!
1)) = ;.

In the de�nition of causal MSCs we will also constrain
what messages may occur as a �rst message between two
processes. We denote the set of �rst messages between pro-
cess p and process q in the MSCM as fm(M; p; q). Formally,
let edges(p; q) denote the set of interprocess edges between
two processes p and q in a basic MSC:

edges(p; q) = f(e1; s; e2) 2 C; e1; e2 2 Ep [Eqg:

The set of �rst messages is then de�ned as follows.

Definition 11 (First messages). For a basic MSC
M and two processes p; q with no interprocess edges between
p and q, edges(p; q) = ;, the set of �rst messages is empty:
fm(M; p; q) = ;. For non-empty edges(p; q), we call the edge
(e1; s; e2) 2 edges(p; q) where e1 is a causal ancestor to all
other send events e01 with (e01; s

0; e02) 2 edges(p; q) the �rst
interprocess edge and the message s the �rst message be-
tween p and q: fm(M; p; q) = fsg. For C-MSCs the �rst
messages are the following sets:

� fm(M1;M2; p; q) = fm(M1; p; q) if fm(M1; p; q) 6= ; and
fm(M2; p; q) otherwise;

� fm(alt(M1;M2); p; q) = fm(M1; p; q) [fm(M1; p; q)

� fm(loop(M�
1);M2; p; q) = fm(M1; p; q) [fm(M1; p; q)

� fm(loop(M�
1); p; q) = fm(M1; p; q)

� fm(loop(M!
1); p; q) = fm(M1; p; q)

Intuitively, each process in a causal MSC should always be
able to infer which branch of the MSC is currently executed.
This is ensured with the following syntactic constraints.

Definition 12 (Causal MSC). An MSC M is a
causal MSC if one of the following conditions holds.

� M is a basic MSC and has an initial event;

� M is a sequential composition M =M1;M2, M1 has a
terminal event e1, M2 has an initial event e2 and e1
and e2 belong to the same process;

� M is an alternative between two causal MSCs,
M = alt(M1;M2), and for all processes p and q,
fm(M1; p; q) \ fm(M2; p; q) = ;

� M is a �nite loop loop(M�
1) or an in�nite loop

loop(M!
1) of a causal MSC M1.

The MSC in Figure 4 is not causal, because the send-
events for messages \A1" and \C1" do not have a common
causal ancestor. In fact, the MSC would remain non-causal
if were to remove the second alternative, even though
the decomposition property holds for the resulting MSC.
Causality is hence a suÆcient but not necessary condition
for the decomposition property.

Related work. The diÆculty in mapping global prop-
erties to responsibilities of individual components has been
considered in the literature (cf. [25, 26, 1] among others),
sometimes under the keyword \nonlocal choice." Besides
syntactic constraints as done for causal MSCs here, the prob-
lem can also be solved by partial or total distribution of an
automaton representing the global property to all or part
of the component implementation [19]; this ensures that all
components synchronize their actions via the global automa-
ton. This comes at the cost of increasing the complexity of
the individual components considerably.

4. CHALLENGE 2: COMPLETENESS
In formal veri�cation, we prove that a system satis�es its

speci�cation. If the system is the composition of a set of
components S = fCp j p 2 Pg and the speci�cation is given
as an MSC M , verifying S j= M corresponds to checking
the language inclusion

\

p2P

L(Cp) � L(A)

where L(Cp) is the language accepted by the component
implementing process p and A is the global automaton as-
sociated with M .
Analysis techniques for this problem are computationally

expensive; the complexity of model checking [9], for instance,
is exponential in n. It has therefore long been recognized
that veri�cation must be based on the decomposition of the
system into its components.
We now discuss a decompositional proof rule for MSCs.

Following the assumption-commitment paradigm, such a
rule supplies two automata for each component: the as-
sumption on the component's environment, represented by

1

2

3

4

5

(a)

msgSM

msgMR

ackRM

ackMS

�

�

�

�

�

ackRM

ackRM
msgSM

msgSM

ackRM
msgSM

ackRM
msgSM �

1

2

3

4

5

(b)

msgSM

msgMR

ackRM

ackMS

�

�

�

�

�

1

2

3

4

5

(c)

msgSM

msgMR

ackRM

ackMS

�

�

�

�

�

ackMS

msgMR
ackMS

ackMS

msgMR
ackMS

msgMR

msgMR
ackMS �

Figure 5: (a) environment-safety automaton, (b)
environment-liveness automaton, (c) environment
automaton for the \Medium" process from Figure 1.

an environment automaton Ep, and the commitment, repre-
sented by the associated local automaton from the previous
section. To prove S j= M for a system S = fCp j p 2 Pg
and an MSC M with global automaton A we �nd a second
MSC M 0 that has the decomposition property. Let A0 be
the global automaton associated with M 0, and A0

p and E 0p,
the local automata and environment automata, respectively,
for processes p 2 P . The following rule reduces the global
property to local proof obligations for each component:

Decompositional proof rule

if (1) for all p 2 P , L(Ep) \ L(Cp) � L(A0
p)

and (2) L(A
0) � L(A)

then
\

p2P

L(Cp) � L(A)

Since the component can rely on the environment to co-
operate, we can exclude behaviors from the environment
automaton in which the environment either illegaly sends
a message (safety violation) or in which the component is
kept waiting for the next message in�nitely (liveness viola-
tion). We construct two automata, the environment-safety
automaton S that recognizes all behaviors where the envi-
ronment violates safety, and the environment-liveness au-
tomaton L, that recognizes all behaviors where the envi-
ronment violates liveness. Behaviors accepted by either au-
tomaton need not be considered in the veri�cation of the
component.
Safety violations can be recognized by considering �nite

pre�xes of input sequences. Let A = hN;�; I; T;Fi be the
global automaton associated with an MSC M . The set of
all �nite pre�xes of sequences in L(A), the pre�x language
ofM , is accepted by the automaton hN;�; I; T; T i. Because
of the trivial acceptance condition it is possible to construct
a deterministic B�uchi automaton PA that accepts the pre�x
language (cf. [36]).

Definition 13 (Environment-safety). Let the au-
tomaton PA = hN;�; I; T;Fi be a deterministic B�uchi au-
tomaton that accepts the pre�x language of an MSC. The
environment-safety automaton for process p is the automa-
ton Sp = hN 0;�; I; T 0;F 0i with

� N 0 = N [f
g

� T 0 = T [f(n; s;
) j s 2 M� Sp and
@n0 2 N : (n; s; n0) 2 T g

[f(
; s;
) j s 2 �g

� F 0 = f(
; s;
) j s 2 �g

Figure 5a shows the environment-safety automaton for the
\Medium" process from the communication protocol exam-
ple. Note that the accepting paths stay in node
; a tran-
sition to
 occurs whenever the environment illegally sends
a message.
Figure 5b shows the environment-liveness automaton for

the \Medium" process. The accepting paths stay in nodes
1 and 3: in node 1, the \Medium" process can count on
the \Sender" process to eventually send a message; in node
3, the \Medium" process awaits the acknowledgement from
the \Receiver" process.

Definition 14 (Environment-liveness). Let the au-
tomaton PA = hN;�; I; T;Fi be a deterministic B�uchi au-
tomaton that accepts the pre�x language of an MSC. The
environment-liveness automaton for process p is the automa-
ton Lp = hN;�; I; T;F 0i with

F 0 = f(n; �; n) j @n0 2 N; s 2 Sp : (n; s; n
0) 2 T and

9n0 2 N; s 2 (M� Sp) : (n; s; n
0) 2 Tg

Finally, the environment automaton Ep contains all be-
haviors in which the environment commits neither a safety
nor a liveness violation. In the example, this combination
results in the environment automaton shown in Figure 5c.

Definition 15 (Environment automaton). Let
Sp be the environment-safety automaton and Lp the
environment-liveness automaton for a process p. The
environment automaton Ep accepts the language

L(Ep) = L(Sp) [L(Lp)

We can now analyze the completeness of our rule. The
decompositional proof rule is complete if for any system S
and MSC M with S j= M , there is an MSC M 0 such that
the conditions of the rule hold. So far, we have made no
assumptions about the components allowed in the system
composition. In this generality, the decompositional proof
rule is clearly incomplete.
In Figure 6, the speci�cation is satis�ed if the two

processes \A" and \B" exchange exactly one message.
Now consider the following implementation: component
\A" chooses at each point nondeterministically whether
or not to send its message to \B" (unless it receives a
message from \B" �rst). \B," on the other hand, applies
a timeout-mechanism that guarantees that eventually a
message is sent. There is no MSC M 0 such that the
conditions of the decompositional proof rule hold: none of
the two alternatives in Figure 6 can be removed since either
message may occur.

A B

tickAB

tickBA

alt

msc Incompleteness

Figure 6: Incompleteness example.

The incompleteness of the proof rule stems from the dif-
ference in expressiveness of the MSCs we have considered so
far, and the components implementing individual processes.
This leaves us with two options for achieving completeness:
one is to restrict our attention to a smaller class of systems,
the other is to add to the expressiveness of MSCs.
Examples for restrictions are regularity: the language ac-

cepted by each component is !-regular, reactivity: every
component exchanges in�nitely many messages with its en-
vironment, and I/O directedness: a component has control
only over its output messages. If such restrictions are inad-
equate, it is certainly possible to make MSCs more expres-
sive, for example with an explicit assignment of progress
responsibilities: the property in Figure 6 could be proven
for the described implementation by indicating in Figure 6
that process \B" is responsible for the progress beyond the
interprocess edge (resulting in an appropriately modi�ed en-
vironment automaton for process \A").
In practice, components often accept a non-regular

language. Suggestions in the literature to extend MSCs to
non-regular languages include extensions with data states
[6, 22], as well as performance and real-time constraints
(cf. [16, 17, 31]). However, any extension to the MSC's
expressiveness comes at the price of increased complexity:
many extended MSCs are undecidable. Care is also re-
quired to avoid syntactic clutter and to maintain the MSCs'
intuitive appearance.

Related work. Decompositional proofs have been stud-
ied for a long time, starting with the rely-guarantee formal-
ism [21] and proofs for networks of processes [27]. Since
then, many assumption-commitment rules have been pro-
posed, see [12] for an overview and [30] for a discussion of
their completeness. Our decomposition of MSC properties
into an assumption-commitment speci�cation for individual
components is similar to the one in [7]; the semantic frame-
work used there includes the reactivity and I/O directed-
ness requirements mentioned above. We are not aware of
any work that formally analyzes the completeness of MSC
languages. A closely related topic, however, is the \reverse
engineering" of MSCs from systems; this is studied in [28].

5. CHALLENGE 3: COMPOSITIONALITY
In the preceding sections we have addressed the proper-

ties expressed by individual MSCs with respect to a cer-
tain system under consideration. Now we turn our atten-
tion to the composition of speci�cations from several, pos-
sibly non-orthogonal MSCs. Intuitively, two MSCs are non-
orthogonal, if one contains a segment of an interaction pat-
tern depicted by the other. We deal with this problem from
two perspectives. First, we study the composition of \o�-
the-shelf" components speci�cally in the context of veri�ca-
tion; here, the basic problem is to relate the already �xed
interface speci�cations of already existing components. Sec-
ond, we consider MSC composition in the more general con-
text of scenario speci�cations.
In component-oriented system development, the di�erent

parts of a system are designed independently of each other;
components may be retrieved from a database that was put
together long before the system's conception. It is therefore
unrealistic to expect that the MSCs documenting the di�er-
ent components will agree, and we need a process to resolve
any di�erences.
In our communication protocol example, assume the

\Sender" component is described by the simple MSC from
Figure 1, and the \Medium" component has the richer func-
tionality depicted in Figure 2. Which MSC describes the
embedding of the composition of the two components in the
system? Or should this combination of components be re-
jected altogether?
In assumption-commitment reasoning, the environment of

a component is expected to show at most the behavior al-
lowed by the environment assumption (cf. [12]). Hence, the
combination of \Sender" and \Medium" component in our
communication protocol example would be rejected, since
the \Medium" component may send a \fail" message which
is not allowed in the MSC of the \Sender" component. Se-
mantically, this analysis corresponds to a pessimistic view
of the environment [11]: The combination of two compo-
nents is rejected because an environment exists that would
violate the speci�cation of one of the components. In this
example, there is an implementation of the (so far not an-
alyzed) \Receiver" process that corresponds to the MSC of
the \Medium" component, but that would cause a violation
of the MSC of the \Sender" component. A more liberal op-
timistic view allows the combination of two components as
long as an implementation for the remaining environment
exists that would allow all speci�cations to be satis�ed.
The optimistic point of view can be implemented in a pro-

cess for the composition of component MSCs. Given a sys-
tem S and an MSC MA specifying the behavior of a subset
of the components A � S, and an MSC MB specifying the
components B � S, we construct an MSC MA[B specifying
A[B. In this chart only those behaviors of S� (A[B) are
allowed that do not cause the components in A to violate
environment assumptions of the components in B, or, vice
versa, cause the components in B to violate environment
assumptions of components in A.
There are automata-based solutions for optimistic com-

position (cf. [11]). It would be desirable to have purely syn-
tactic combination operations for MSCs that implement this
semantic construction and combinations for more expressive
MSC languages. This would constitute a �rst step towards
a thorough, seamless usage of MSCs as a speci�cation and
veri�cation aid in the context of component composition.

We now turn to questions of MSC composition in a more
general setting including analysis and design in addition to
veri�cation. As we have argued in the preceding sections we
need a very strict MSC interpretation for promising MSC
application in the veri�cation task. The well-established
usage of MSCs for capturing scenarios, on the other hand,
is an example of a very liberal MSC interpretation. A
scenario captures one possible segment of an overall system
execution, projected onto the components referenced in
the MSC. Because scenarios describe usually very speci�c
instances of behavior, a corresponding composition operator
must be very permissive; it cannot exclude alternative or
even interleaved behaviors prematurely. [22] contains a
composition operator, called \join", which matches the
messages shared by the two operand MSCs; the resulting
MSC's semantics contains only behaviors where this match
is possible. This form of composition explicitly supports
the combination of overlapping speci�cations; it is easily
transferred into the semantic framework we have established
in this paper.

Related work. The distinction between \optimistic"
and \pessimistic" compositionality has been made in the
veri�cation literature, for example in lazy compositional ver-
i�cation [34] and, more recently, within the formalism of in-
terface automata [11]. In the MSC literature certain dialects
can be seen as closer to the pessimistic or optimistic point of
view. [22] discusses MSC interpretations in the range from
scenarios to exact component behavior; the latter excludes
behaviors other than the explicitly depicted ones.

6. CONCLUSIONS AND OUTLOOK
Message sequence charts have been used for quite some

time to informally describe the embedding of a component
in its environment. In this paper we have formulated crite-
ria the MSC language should satisfy so that the embedding
furthermore quali�es as a formal proof: if this is achieved,
then the correctness of the system is guaranteed once each
individual component is veri�ed.
Certain compromises must be made when choosing an

MSC language. The simple MSCs described in Section 2
are attractive because their semantics is well-supported by
veri�cation methods; however, they do not provide a com-
plete proof technique as discussed in Section 4. More ex-
pressive languages, such as the ones mentioned at the end
of Section 4, on the other hand, are hard to analyze or even
undecidable. For a given system and component model, a
good compromise would be to �rst select a language on the
basis of its completeness and then identify fragments accord-
ing to their expressiveness.
Using MSCs as a veri�cation tool as suggested in this

paper should feel natural to designers familiar with MSC-
based scenario descriptions. There is also a close resem-
blance to veri�cation tools such as generalized veri�cation
diagrams [4, 5]: veri�cation diagrams are similarly based
on !-automata, and they can also be used for component-
oriented proofs [14]. MSCs and veri�cation diagrams work,
however, on di�erent levels: veri�cation diagrams are com-
plete proofs of a certain property. MSCs, on the other hand,
do not constitute complete proofs by themselves, since they
are constructed independently of implementation details.
Instead, they integrate the veri�cation of individual prop-
erties in the correctness proof of the overall system.

Compositionality may be the hardest remaining challenge
for a practical application of MSCs in component-based ver-
i�cation. In this paper we have addressed the composition of
MSC speci�cations referencing concrete components of the
system under consideration. Often, however, similar inter-
action patterns occur over and over again within the same
system among di�erent sets of components, and also within
other systems. We can also identify and describe these in-
teraction patterns by means of MSCs: we only have to inter-
pret the axes of the MSCs more liberally. By parameterizing
MSCs with respect to their axis labelings, i.e., the compo-
nents they reference, we obtain a exible language for such
recurring interaction patterns. Instead of a single concrete
component of a particular system under consideration, an
axis then represents the \role" of a participant in the in-
teraction pattern. The resulting MSCs describe interaction
patterns abstractly, without references to concrete partic-
ipants of a collaboration. We also speak of \connectors",
when referencing abstract interaction protocols (cf. also [37,
33, 35, 7, 6]).
To use MSCs successfully in describing connectors (cf. [6,

7, 23, 15]) we need a way to relate abstract connectors and
concrete component interfaces. One way to do so is to in-
stantiate the roles in connectors by concrete components,
whose interfaces are also speci�ed by MSCs; in a second
step we then have to match the behaviors allowed by the
connector with those of the instantiating components.
Exploiting the information contained in a connector dur-

ing component-oriented veri�cation displays much potential
for reducing the overall veri�cation complexity, and is a
promising area of future research.

Acknowledgments
The authors are grateful to Manfred Broy, C�esar S�anchez,
Bernhard Sch�atz and Henny Sipma for helpful discussions
and comments on causality and MSCs in general.

7. REFERENCES
[1] R. Alur, K. Etessami, and M. Yannakakis. Inference of

Message Sequence Charts. In Proceedings of 22nd
International Conference on Software Engineering,
pages 304{313, 2000.

[2] R. Alur, K. Etessami, and M. Yannakakis.
Realizability and veri�cation of MSC graphs. In 28th
International Colloquium on Automata, Languages
and Programming, LNCS. Springer-Verlag, 2001.

[3] R. Alur, G. J. Holzmann, and D. Peled. An analyzer
for message sequence charts. Software | Concepts
and Tools, 17:70 { 77, 1996.

[4] A. Browne, Z. Manna, and H. B. Sipma. Generalized
temporal veri�cation diagrams. In 15th Conference on
the Foundations of Software Technology and
Theoretical Computer Science, volume 1026 of LNCS,
pages 484{498. Springer-Verlag, 1995.

[5] A. Browne, Z. Manna, and H. B. Sipma. Hierarchical
veri�cation using veri�cation diagrams. In 2nd Asian
Computing Science Conf., volume 1179 of LNCS,
pages 276{286. Springer-Verlag, Dec. 1996.

[6] M. Broy, C. Hofmann, I. Kr�uger, and M. Schmidt. A
graphical description technique for communication in
software architectures. Technical Report TUM-I9705,
Technische Universit�at M�unchen, 1997.

[7] M. Broy and I. Kr�uger. Interaction Interfaces {
Towards a scienti�c foundation of a methodological
usage of Message Sequence Charts. In J. Staples,
M. G. Hinchey, and S. Liu, editors, Formal
Engineering Methods (ICFEM'98), pages 2{15. IEEE
Computer Society, 1998.

[8] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. A System of Patterns.
Pattern-Oriented Software Architecture. Wiley, 1996.

[9] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[10] W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. In FMOODS'99 IFIP
TC6/WG6.1 Third International Conference on
Formal Methods for Open Object-Based Distributed
Systems, 1999.

[11] L. de Alfaro and T. Henzinger. Interface automata. In
Proceedings of the Ninth Annual Symposium on
Foundations of Software Engineering. ACM Press,
2001.

[12] W.-P. de Roever, H. Langmaack, and A. Pnueli,
editors. Compositionality: The Signi�cant Di�erence.
COMPOS'97, volume 1536 of LNCS. Springer-Verlag,
1998.

[13] B. Finkbeiner. Language containment checking using
nondeterministic bdds. In Tools and Algorithms for
the Construction and Analysis of Systems, volume
2031 of LNCS. Springer-Verlag, 2001.

[14] B. Finkbeiner, Z. Manna, and H. B. Sipma. Deductive
veri�cation of modular systems. In de Roever et al.
[12], pages 239{275.

[15] J. Grabowski, P. Graubmann, and E. Rudolph.
HyperMSCs with Connectors for Advanced Visual
System Modelling and Testing. In SDL Forum 2001,
pages 129{147. Springer, 2001.

[16] R. Grosu, I. Kr�uger, and T. Stauner. Hybrid sequence
charts. Technical Report TUM-I9914, Technische
Univerit�at M�unchen, 1999.

[17] R. Grosu, I. Kr�uger, and T. Stauner. Requirements
Speci�cation of an Automotive System with Hybrid
Sequence Charts. In WORDS'99F, Fifth International
Workshop on Object-oriented Real-time Dependable
Systems. IEEE, 1999.

[18] R. Hardin, Z. Har'El, and R. Kurshan. COSPAN. In
R. Alur and T. A. Henzinger, editors, Proc. 8th Intl.
Conference on Computer Aided Veri�cation, volume
1102 of LNCS, pages 423{427. Springer-Verlag, July
1996.

[19] D. Harel and H. Kugler. Synthesizing object systems
from lcs speci�cations, 1999. (submitted).

[20] ITU-TS. Recommendation Z.120 : Message Sequence
Chart (MSC). Geneva, 1996.

[21] C. Jones. Tentative steps toward a development
method for interfering programs. ACM TOPLAS,
5(4):596{619, 1983.

[22] I. Kr�uger. Distributed System Design with Message
Sequence Charts. PhD thesis, Technische Universit�at
M�unchen, 2000.

[23] I. Kr�uger. Notational and Methodical Issues in
Forward Engineering with MSCs. In T. Syst�a, editor,
Proceedings of OOPSLA 2000 Workshop:

Scenario-based round trip engineering. Tampere
University of Technology, Software Systems
Laboratory, Report 20, 2000.

[24] I. Kr�uger, R. Grosu, P. Scholz, and M. Broy. From
MSCs to Statecharts. In DIPES'98. Kluwer, 1999.

[25] P. B. Ladkin and S. Leue. Interpreting Message Flow
Graphs. Formal Aspects of Computing, (5):473{509,
1995.

[26] S. Leue. Methods and Semantics for
Telecommunications Systems Engineering. PhD thesis,
Universit�at Bern, 1995.

[27] J. Misra and K. M. Chandy. Proofs of networks of
processes. IEEE Transactions on Software
Engineering, SE-7(4):417{426, 1981.

[28] A. Muscholl and D. Peled. From �nite state
communication protocols to high level message
sequence charts. In 28th Int. Col. on Automata
Languages and Programming (ICALP'2001), volume
2076 of LNCS, pages 720{731. Springer-Verlag, 2001.

[29] R. Nahm. Designing and documenting componentware
with message sequence charts. In T. Jell, editor,
Component-based Software Engineering, pages
111{116. Cambridge University Press, 1998.

[30] K. S. Namjoshi and R. J. Treer. On the completeness
of compositional reasoning. In 12th International
Conference on Computer Aided Veri�cation, volume
1855 of LNCS, pages 139{153. Springer-Verlag, 2000.

[31] Uni�ed modeling language, version 1.1. Rational
Software Corporation, 1997.

[32] B. Selic, G. Gullekson, and P. T. Ward. Real-Time
Object-Oriented Modeling. Wiley, 1994.

[33] B. Selic and J. Rumbaugh. Using UML for modeling
complex real-time systems.
http://www.objectime.com/otl/technical, April
1998.

[34] N. Shankar. Lazy compositional veri�cation. In
de Roever et al. [12].

[35] M. Shaw and D. Garlan. Software architectures.
perspectives on an emerging discipline, 1996.

[36] W. Thomas. Automata on in�nite objects. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B, pages 133{191. Elsevier Science
Publishers (North-Holland), 1990.

[37] A. C. Wills and D. D'Souza. Objects, Components,
and Frameworks with UML{ The Catalysis Approach.
Addison Wesley, 1998.

