

Performance Modeling and Prediction of Enterprise JavaBeans with

Layered Queuing Network Templates

Jing Xu1, Alexandre Oufimtsev2, Murray Woodside1, Liam Murphy2
1
 Dept. of Systems and Computer Engineering,

Carleton University, Ottawa K1S 5B6, Canada

Dept. of Computer Science, University

College Dublin, Belfield, D4, Ireland

xujing@sce.carleton.ca, alexu@ucd.ie, cmw@sce.carleton.ca, Liam.Murphy@ucd.ie

Abstract
Component technologies, such as Enterprise Java Beans (EJB)

and .NET, are used in enterprise servers with requirements for

high performance and scalability. This work considers

performance prediction from the design of an EJB system, based

on the modular structure of an application server and the

application components. It uses layered queueing models, which

are naturally structured around the software components. This

paper describes a framework for constructing such models, based

on layered queue templates for EJBs, and for their inclusion in the

server. The resulting model is calibrated and validated by

comparison with an actual system.

Keywords
Layered Queueing Network, template, Enterprise Java Bean,

performance modeling, model calibration, software profiling.

1. Introduction and motivation
The approach to designing application servers based on

component technologies such as Enterprise Java Beans and the

J2EE standards [1] [5] [6] provides rapid development and the

promise of scalability and good performance. J2EE and other

approaches such as .NET do this by providing many services

which applications require (such as support for concurrency,

security, and transaction control) within the platform. As a result

however the server platforms also have substantial overhead costs,

and performance is a significant concern. Predictive models of a

design can provide insight into potential problems and guidance

for solutions. The use of predictive modeling to analyze software

designs has been described extensively by Smith and Williams

(e.g. [10]) and others (see for example [2][17]).

To build predictive models efficiently, the description of the

platform should be separated from the components that implement

the business logic of the application, the web interface, and the

database. The infrastructure parts such as a J2EE platform can be

modeled in advance and reused, with embedded parameters to

describe possible deployments. When a specific application is

designed, its elements are modeled and plugged into the platform

sub-model. This provides a rapid model-building capability, in

parallel with the rapid development process.

The process of defining component-based performance

models, and of building models from components, was described

in [4][16].

This work is based on a layered queueing network (LQN)

formalism, which is defined in [9][13][14], and the introductory

tutorial [15]. Layered queueing is a strategic choice. Compared to

other formalisms surveyed in [2], it extends queueing networks to

include software resources, and it avoids the state explosion of

Markov models based on Petri Nets. Each software component is

a distinct model entity, and contention for logical resources such

as threads (which define the concurrency in the server platform) is

captured.

The central contribution of this work is to demonstrate a sound

procedure for modeling EJB applications using a template-based

framework, calibrating the model using profiling data and

validating it against measurement. Key issues include the

relationship between the EJB application components and the

platform (which are captured in submodel templates), the

feasibility of measuring the model parameters from execution

traces, and the accuracy with which the model predicts

performance of an implementation under load. The paper [18]

describes the design and use of the templates in greater detail.

2. LQN Evaluation
To demonstrate that the LQN model can be applied to this

class of system with reasonable accuracy, a simulation model of a

system with entity beans due to Llado and Harrison [7] was

compared to its LQN equivalent. Figure 1 shows this LQN

equivalent model.

The LQN notation is taken from [13][14][15]. Software

entities are modeled as tasks, offering services called entries. In

the Figure a task is a rectangle with a rectangular field at the right-

hand end for the task name and parameters, and a field for each

entry. The entries have parameters in the form “[demand]” for the

host (CPU) demand in ms, and have blocking requests to other

entries indicated by arrows with labels for the number of requests.

The parameters for the tasks are multiplicities, which limit the

number of concurrent instances. There are $N clients, $M bean

threads, 1 thread for each of $I identical bean instances, and no

limit (shown as inf) for the Container.

The part of the model within the large rectangle represents one

bean Container with its services and beans, and forms a

component that can be generated for each bean. The component

has input and output interfaces consistent with a component-based

model-building framework called CBML [16], which allows

complex interacting systems to be built up from modules like this.

The solid arrowheads on the request arcs indicate that the

requesting task is blocked (and its task-related resource is held)

while the serving task executes. The model captures resource

holding patterns, such as (1) the Container operation

“invokeMethod” requires a bean instance, and (2) startup

operations by the prepareBean entry of the critical section

psuedo-task ConServ (Container Services, with multiplicity 1),

represent mutual exclusion.

The bean instances (both active and passive) are represented

by a set of $I replicas of the task Instance (the shaded boxes in the

Figure). Each replica is a single threaded task, showing that

requests to the same instance must wait. They are shown as being

requested with equal probability (1/$I for each instance).

The probability that a requested entity bean instance must be

activated is represented by the probability (1-$p) on calls from the

prepareBean entry to the call back functions (activate, passivate,

load and store) on the active bean.

Client ($N) request
[$thinkTime] ClientCPU

invokeMethod

[$s_checkAccess]
Container

(inf)

AppServerCPU

instanceMethod
[0]

Instance
(1)

}$I replicas

(1/$I)

1

busiMethod
[$s_method]

Bean Thread Pool
($M)

1

ContServ
(1)

prepareBean
[$s_prepareBn]

(1-$p)

1

CallBack
(1)

PassivateStore/ActivateLoad
[$s_callback]

Figure 1 LQN model for the system with Entity Beans in [8]

 With the same parameter values as were used in [8], the LQN

model was solved with 20 instances ($I=20), pool size of 6

($M=6), negligible execution demand for invokeMethod, and

prepareBean ($s_checkAccess = 0.001, $s_prepareBn = 0.001)

and business method (busiMethod) time of 4.1 ($s_method = 4.1).

All the call back functions were aggregated to a single entry with a

total demand of 0.4 (i.e. $s_callback = 0.4).

Figure 2 compares the simulation results from [8] with the

LQN model. The results show approximately 6% differences

between the two models with the LQN being a little pessimistic.

Llado and Harrison describe an extended queueing model for

this system in [7], using decomposition and a custom-built

solution strategy, which provides an even closer match to the

simulation results. However the effort of creating such a model

must be repeated for every configuration, and becomes more

complex with multiple interacting beans. The current approach

tries to overcome this by the use of a standardized model

framework and a systematic model-building process based on

LQN templates for the different kinds of beans.

$M=6 $I=20

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 10 20 30 40 50 60

$No of Client

T
h
ro
u
g
h
p
u
t

SIM

LQN

Figure 2 LQN model predictions compared with Simulation

Results [8]

 Figure 3 shows another set of results, which compares the

throughput for different numbers of bean instances $I, with the

same pool size $M = 6. It can be noted that the number of bean

instances makes little difference since the system is saturated at

the small sized thread pool. This behavior corresponds to the

results obtained from [8].

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 10 20 30 40

No of Clients

T
h
ro
u
g
h
p
u
t

$I=20

$I=40

$I=100

Figure 3 Results for Different Numbers of Instances

3. LQN sub-model templates
This section describes a LQN model template for each type of

EJB. These templates follow the LQN component concept

described in [16]. They can be instantiated according to specific

function requirement in each scenario for system usage, and then

be assembled into a complete LQN model for the whole scenario.

An example on how to use these templates to build a complete

LQN model for a business scenario will be shown in section 4.

3.1 LQN template for an Entity Bean
Figure 4 shows a LQN template for an Entity Bean. The entry

busiMethod of the activebean is a placeholder for one or more

methods of the Bean, and the entries InvokeMethod,

InstanceMethod and getThread are placeholders for resource

requests on the calling path. All of these entries must be

instantiated for each business method of the Bean, with calls

between them as shown, connected to the interfaces.

Container
(inf)

invokeMethod
[$s_checkAccess]

Instance
(1)

instanceMethod
[0] }$I replicas

Bean Thread Pool
($M)

(1-$p)

prepareBean
[$s_prepareBn]

ContServ
(1)

1

(1/$I)

getThread
[$s_getThread]

1

busiMethod
[$s_method]

activebean
(inf)

passivate
[$s_passiv]

activate
[$s_activ]

load
[$s_load]

store
[$s_store]

(1-$p)

homeFinder
[$s_cfind]

homeCreate
[$s_ccreate]

homeRemove
[$s_cremove]

instanceRemove
[0]

getThreadForR
[$s_getThreadR]

getThreadForC
[$s_getThreadC]

1/$I

1

1

1 1

(1-$p)

remove
[$s_remove]

create
[$s_create]

1 1 1

store

serviceRequest

methodInvoke remove create find

updateDB

readDB

storeEntity
[$s_cstore]

1 1

Figure 4 Template for an Entity Bean

The upper interfaces define provided services, with the

placeholder methodInvoke for the Bean business methods. Store,

find, create and remove represent the Container Home Interfaces

of the Bean. The store interface is used when a request to update

the Entity state into the database is issued by another EJB

component, for instance during a transaction-committing step of a

Session Bean.

The lower interfaces define required services. ServiceRequest

is a placeholder for function requests issued by the entity bean

during its operation. The readDB and updateDB interfaces

represent database operations during service and bean-instance

context swapping.

When the template is instantiated, placeholders are instantiated

as required for different services.

3.2 LQN template for a Stateless Session Bean
Figure 5 shows a LQN template for Stateless Session Bean. As

it does not retain any state for a given client, each request can be

directed to any available bean thread. After a service is finished,

the bean thread is put back to the bean thread pool and ready for

serving next request immediately. There can be outgoing requests.

For Stateless Session Beans the creation and removing of bean

threads are controlled by the container. Clients do not create or

remove bean threads.

3.3 LQN Template for a Stateful Session Bean
Figure 6 shows the LQN template for a Stateful Session Bean,

which resembles that for an Entity Bean. However the passivation

and activation operations use local storage rather than a database.

The passivation and activation operations are aggregated and

shown as callback functions from container to bean, represented

by a pseudo-task CallBack whose workload is actually performed

by the bean instance that is executing in the ContServ critical

section. They inform the bean that the container is about to

passivate or activate the bean instance, so that the bean instance

can release or acquire corresponding resources such as sockets,

database connection, etc.

Container
(inf)

prepareBean
[$s_prepareBn]

Bean Thread Pool
($M)

1

getThread
[$s_getThread]

ContServ
(1)

invokeMethod
[$s_checkAccess]

1

activebean
(inf)

busiMethod
[$s_method]

1

methodInvoke

transactionService serviceRequest

1

Figure 5 Template for a Stateless Session Bean

Assuming that each client has its own session bean there is no

contention for a single bean instance, so the replica tasks for the

instances are not modeled here. The thread pool is modeled as

executing the bean methods directly, with instances activated as

necessary.

Passivate/Activate
[$s_callback]

1

(1-$p)

prepareBean
[$s_prepareBn]

ContServ
 (1)

CallBack
 (1)

1 1

Container
(i)

homeRemove
[$s_cremove]

busiMethod
[$s_method]

create
[$s_create]

remove
[$s_remove]

homeCreate
[$s_ccreate]

invokeMethod
[$s_checkAccess]

1 1 1

Bean Thread Pool
($M)

Figure 6 Template for a Stateful Session Bean

3.4 LQN Template for a Message Driven Bean

A message driven bean is similar to a stateless session bean,

but its incoming calls are asynchronous messages (denoted by an

arc with open arrowhead as shown in Figure 7).

Container
(inf)

prepareBean
[$s_prepareBn]

Bean Thread Pool
($M)

1

getThread
[$s_getThread]

ContServ
(1)

invokeMethod
[$s_checkAccess]

1

activebean
(inf)

busiMethod
[$s_method]

1

methodInvoke

transactionService serviceRequest

1

Figure 7 Template for a Message Driven Bean

4. Model Construction
A system is modeled by first modeling the beans as tasks with

estimated parameters, then instantiating the template to wrap each

class of beans in a container, and finally adding the execution

environment including the database. Calls between beans, and

calls to the database, are part of the final assembly. The model

may be calibrated from running data, or by combining

• knowledge of the operations of each bean

• pre-calibrated workload parameters for container and

database operations.

To illustrate this procedure, a simple system with a stateless

session bean class and an entity bean class is used; this model was

calibrated in the tests described in the next section.

The system chosen was based on the well-known Duke’s Bank

Application which is shipped with the J2EE documentation

provided by Sun Microsystems [3]. The “Update Customer

Information” Use Case was specialized to update e-mail

information for customers. Figure 8 shows the scenario. It follows

the EJB session façade pattern in which a Stateless Session Bean

CustomerControllerBean delegates service requests from clients

to an Entity Bean CustomerBean. The Session Bean first finds the

required Entity Bean instance by Primary Key (PK) and then

updates its email information.

Client
<<Stateless Session Bean>>

CustomerController
<<Entity Bean>>

Customer

setEmail(…)

findByPrimaryKey()

setEmail()

Figure 8 Update Customer Information Scenario

Figure 9 shows the completed LQN model for this scenario.

The CustomerControllerBean sub-model instantiates the Stateless

Session Bean template shown in Figure 5. The CustomerBean

sub-model instantiates the Entity Bean template shown in Figure

4. The entries related to business methods are instantiated by the

entries named InvokeSetEmail, InstanceSetEmail and SetEmail,

with their parameters such as execution demands. The

CustomerControllerBean requires two external services during the

SetEmail operation, to find the customer by its primary key and

update the email of the customer, giving two instances of the

serviceRequest outgoing interface which are connected to the

incoming interfaces of the CustomerBean.

This application uses Container Managed Persistence (CMP)

strategy in which transactions are managed by containers. A

transaction is started at the beginning of an invocation on the

session bean CustomerController and is committed and ended

right before the operation on session bean is completed. Any

change on entity data is updated into database during the

transaction committing stage. Therefore, the entity store operation

is actually invoked by the session bean during its critical section

for bean context swapping (represented by prepareBean in the

model).

Underlying services from execution environment including

DataBase and processing resource ApplicationCPU (AppCPU)

are finally added to complete the model structure. Unused services

such as bean creation/removal entries are omitted in the model.

The size for Bean Thread Pool $M can be obtained from

container configuration during system deployment. The replica

parameter $I represents the number of data records in the

database. Assuming that bean instances are accessed with equal

probability, the hit rate $p = $M/$I. Alternatively, $p can be

observed by measurement or benchmark. The experimental data

shows that the hit rate quickly approaches its limit even at initial

warmup phases when the number of replica tasks in the model is

substantially greater than $M. Therefore, its value was limited to

$I’ = 3*$M for simplicity of the model.

Container
(inf)

prepareBean
[$s_prepareBn]

Bean Thread Pool
($M)

1

getThread
[$s_getThread]

ContServ
(1)

InvokeSetEmail
[$s_checkAccess]

1

activebean
(inf)

SetEmail
[$s_setEmail]

1

Client
(1-20)

client
[ThinkTime]

ClientCPU

Container
(inf)

prepareBean
[$s_prepareBn]

Bean Thread Pool
($M)

1

getThread
[$s_getThread]

ContServ
(1)

invokeSetEmail
[$s_checkAccess]

1

activebean
(inf)

SetEmail
[$s_setEmail]

1

CustomerControllerBean

CustomerBean

findByPK
[$s_cfind]

Instance
(1)

instanceSetEmail
[0] }$I

1/$I

storeEntity
[$s_cstore]

activate
[$s_activate]

passivate
[$s_passivate]

Database read
[$read]

DBCPU

load
[$s_load]

store
[$s_store]

read
[$update]

AppCPU

Figure 9 Completed LQN model for Update Customer

Information Scenario

5. Application Profiling and Measurement
The Duke’s Bank application [3] was modified in two ways:

the Entity Beans were modified to use Container-Managed

Persistence (CMP), and support for multiple concurrent clients

was added.

5.1 Hardware platform
The testing environment includes three x86 machines

described in Table 1: one for the EJB server, one for the database

server, and one for client request generation. All the machines are

connected to a dedicated switched 100 Mbps network. The client

machine is more powerful than the servers to make sure that it

does not become a bottleneck when generating the test load.

Due to a limited number of database entries in the application,

the database server is lightly loaded.

Table 1. Testing Environment Specification

Machine

Type

Processor Memory HDD I/O

System

OS

App Server PIII-866

Mhz

512 Mb 20 Gb

IDE

Debian

Gnu/Linux

3.1 (Sarge)

Database

Server

PIII-800

Mhz

512 Mb 20 Gb

IDE

Debian

Gnu/Linux

3.1 (Sarge)

Client PIV-2.2 Ghz 512 Mb 80 Gb

IDE

Debian

Gnu/Linux

3.1 (Sarge)

5.2 The software environment
The following software was used for testing purposes:

• operating system: Debian GNU/Linux 3.1 “sarge”, kernel v

2.6.8-2

• database server: MySQL v. 4.0.23-7

• application server: JBoss v. 4.01sp1, connected to the

database with Mysql Connector/J v 3.0.16.

• JVM: Java2SDK 1.4.2_03 for the application server,

Java2SDK v5.0 for the client.

• client: a multithreaded testing suite developed in-house, that

calls EJBs in the application server via RMI.

The newer version of SDK introduced some problems to the

testbed, so SDK 5.0 was not used for the server setup.

Measurements on the container and program execution were

obtained by running JProbe 5.2.1 Freeware profiler for Linux.

Additional data, such as pool instance numbers and cache instance

numbers were obtained using XMBean examples from the JBoss

advanced tutorials. The UNIX sar utility was used to obtain

various data available on the performance of the operating

systems, including CPU, disk, and network usage.

The following options were used for JVM startup:

• the initial Java heap size was 384 MB to prevent performance

loss in variations of the java heap size, with option -

Xms384m,

• parameter -XX:+PrintCompilation was set to monitor the

runtime behavior of the JVM. Generally, compilation

messages suggest JVM is still adapting to certain type of

workload.

• parameter -XX:CompileThreshhold was used to monitor the

system’s behavior with no JVM runtime optimizations

5.3 Testing Scenarios
The following changes were made to the application to

emphasize contention for resources and to determine their

overhead costs:

• container-managed persistence (CMP) entity beans are used

instead of bean-managed persistence (BMP);

• multiple users are supported. The original Duke’s bank only

supports a single user;

• stateful session beans were converted to stateless session

beans;

• the deployment descriptors were modified to limit the size of

caches and pools for the beans to 10 to enforce

activation/passivation, and artificial congestion at the

pool/cache level.

• timeouts for bean passivation and removal was also

significantly decreased to 5 seconds to allow shorter waiting

time before next batch of client requests.

Two patterns of access to the data were followed by the

simulated users. In sequential access all the beans are accessed in

ascending order. In random access, the bean IDs are selected

randomly. For profiler measurements a single request was entered

and followed, once for each pattern.

For overall performance measurements the load was gradually

increased from 1 to 20 users, with step size 1. 20 users for 10

entity beans were necessary to create an artificial situation of

activation/passivation for a limited workload. To ensure that the

bottleneck remains at the application server, the number of

records in the database was kept to a low number of 300.

Every client performed the following loggable sequence in

between warm-up and cool-down periods:

1. Update each customer record in ascending order (300 records

in total);

2. Wait for other clients to finish.

3. Update a random customer record 300 times;

4. Wait for other clients to finish.

Average response time for each client thread was logged

separately for random and sequential calls. Each set of

measurements was carried out at least ten times after the warmup

to check the results consistency. The thread pool and the cache of

the entity beans were also monitored to ensure JBoss’s

compliance with imposed configuration restrictions. The database

host has been ‘warmed up’ to achieve a constant response time to

queries. The application server’s operating system was warmed up

to minimize its effect on the measurements. JBoss was restarted

before the system, so JVM runtime adaptations could be observed.

6. Model Calibration and Comparison with

Measurement Results
The measurement results are shown in Figures 10 and 11.

Figure 10 shows an average throughput of the system. It can be

seen that with 4 clients the system reaches the saturation point.

The results produced are very consistent, with standard deviation

(stdev) of 1.25 and 95% confidence intervals (CI95) of ±0.77.

Average response time is shown in Figure 11. Both random and

sequential access patterns are represented. For the random pattern,

CI95 = ±1.94, and for the sequential pattern CI95 = ±2.01.

Clearly the test system is bottlenecked for as few as two

customers, because the synthetic clients had zero “think time”

between requests. Thus the throughput levels out and the response

time becomes steadily greater as clients are added, due to waiting

for the saturated processor.

There is a slight decrease in response time in the neighborhood

of 4 users. This is due to the JVM adaptation (such as real-time

compilation) that takes place during the initial part of the test. By

the time the responses are recorded for 5 - 7 users the system has

stabilized and thereafter the response time grows linearly with the

number of users.

 Figure 10 Observed Throughput vs Number of Clients

In Figure 11 the random access times are lower, probably

because in sequential access every bean request requires an

activation, while for random access there is a probability that the

bean is already active.

Figure 11 Comparison of LQN results with measurement

results

6.1 Model Calibration

The model constructed in section 4 was calibrated from the

profiling data under a single-client workload. Two factors are used

to adjust the parameter values when doing the calibration.

First, because the JProbe profiling tool itself introduced

significant overhead on the execution, the execution demand

values extracted from profiling data are adjusted to remove the

contribution of overhead. This was done by using a Profiling

Ratio Factor (PFC) based on the assumption that the profiling

0

20

40

60

80

100

120

0 5 10 15 20 25

no of clients

re
s
p
o
n
s
e

ti
m
e
,

Measurement - Sequential access Measurement - Random access
LQN - Sequential access LQN - Random access

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No of Clients
T
h
ro
u
g
h
p
u
t,
 c
p
s

overhead is proportionally distributed across the operations within

some section of the scenario. The factor was obtained for each

section by measuring the service time with and without profiling

and taking the ratio. For Session Bean container services, PFC

was 2.18. For Entity Bean container services, two PFC values

were found. For finder operations, PFC was 3.78; for business

method related operations, PFC was 7.81. The reason for the

difference is that many more of the underlying methods are

profiled than business methods. For general container services,

such as security check operations, PFC was 2.98. For low-level

operations, in which no underlying services are profiled, PFC=1.

Second, during the measurements, the system warm up was

observed when the same operations are repeated a number of

times. JVM runtime optimizations are described in [11],[12]. For

the server type JVM used here these include, but are not limited

to, dead code elimination, loop invariant hoisting, common sub-

expression elimination, constant propagation, null and range

check eliminations, as well as full inlining and native code

compilation.

 The effect of JVM optimizations on the response time for the

customer information update scenario used in this study is shown

in Figure 12a. After initial volatility the response time stabilizes as

shown in Figure 12b. The sporadic delays of about 150 ms are due

to Garbage Collection. Setting the “CompileThreshold” parameter

of JVM sufficiently high effectively turns the optimizations off.

0

50

100

150

200

250

300

350

400

450

500

0 5000 10000 15000 20000 25000 30000

Number of Calls

R
e
s
p
o
n
s
e
 T
im

e
,
m
s

Figure 12a Response time Variation

mean = 5.38

stdev = 4.72

CI95 = 0.08

0
2
4

6
8
10
12
14

16
18
20

0 200 400 600 800 1000

Number of Calls

R
e
s
p
o
n
s
e
 T
im

e
,
m
s

Update Info Request Mean

Figure 12b Response time with an optimized JVM

 An unoptimized JVM becomes stable after just a couple dozen

calls with a mean of 15 ms and sporadic Garbage Collection

delays of approximately 220 ms. This initial delay is mainly

caused by lazy loading of classes at JVM. Additional possible

factors include OS processes, such as Virtual Memory Manager

(VMM) moving swapped out pages back to RAM, the process and

IO scheduler optimizing for the load, and connection

establishment to the machine that runs the MySQL database.

Since the performance results were obtained by repeatedly

invoking the same scenario, they are mostly warm system results.

However, the profiling was done for a “cold” state with a single

client in the system. A Warm System Factor (WSF) was

introduced to adjust the service time values extracted from the

profiling results, defined as the ratio of cold system state times

over warm system state times. Based on the way performance

measurements varied as the system warmed up, a factor of 3 is

used for WSF.

After applying these factors, the following parameters were

used in the model calibration:

• For CustomerControllerBean:

 $M = 10 $c_CheckAccess = 0.817ms

 $s_getThread = 0.002ms $s_prepareBn = 0.280ms

 $s_setEmail = 0.010ms

• For CustomerBean:

$M = 10 $I’ = 30 replicas

$s_cstore = 0.303 $s_cfind = 1.740ms

$s_checkAccess = 0.513ms $s_getThread = 0.003ms

$s_prepareBn = 0.257ms $s_store = 0.003ms

$s_load = 0.003ms $s_setEmail = 0.120ms

$s_passivate = 0.001ms $s_activate = 0.001ms

• For Database

 $update = 2ms $read = 0.4ms

For sequential access, the hit rate $p should be 0 since the

required bean instance is always in passive mode and needs

context swapping every time. For random access, $p should 0.033,

which is $M / $I = 10/300.

6.2 Model Predictions and Accuracy

Response time prediction results obtained from solving the

model calibrated with above parameters are also shown in Figure

11. LQN predictions are low for small $N and high for large $N,

which is due to progressive adaptation of the JVM during the

experiment. For large $N the differences are between 6.2% to

23.9% for the sequential access case and 2.1% to 24.5% for the

random access case.

The constant WSF for the impact of system warm-up is a

compromise between the colder states at the left and the warmer

states at the right. The greatest WSF that was observed in

measurement is about 5, but it was not stable.

Software running in JVM continuously goes through

optimizations by the VM. It is therefore proposed to use a range

of values for CPU demand prediction, corresponding to warm

system factor (WSF) values between 1 and 5. The value of 3 was

used as a compromise in the middle of the range.

The LQN model also predicts resource utilizations which can

be used to diagnose bottleneck. Model results show that with

parameters taken in a cold state, the application processor is the

bottleneck with 80%-95% utilization. With parameters that

adjusted by WSF = 3, the bottleneck moves to the Bean Thread

Pool of the Session Bean. Both these predictions are verified by

measurement results. For a few clients the thread pool is not

saturated, but for many clients it is. The saturated thread pool does

not slow down the system (or reduce the processor utilization)

since the database was artificially configured to be very fast

through a decrease of records in corresponding tables. This thread

pool just limits the number of beans which are actively being

processed at one time. However with a slower database, it could

limit performance severely.

7. Conclusions
A template-based framework has been described for rapidly

building predictive models of applications based on J2EE

middleware. Most of the model, representing the J2EE platform,

can be pre-calibrated, and the application description (in terms of

its use of services) can be dropped in. The paper shows a complete

procedure of constructing, calibrating, solving and analysis of the

model for a real system.

The approach here has been customized to Enterprise Java

Beans in a J2EE application server, but a similar approach can be

applied to other technologies such as .NET. The framework uses

Layered Queueing Network models, which can represent the

various types of resources.

The LQN correctly predicts resource saturation of processor

and thread resources. Predictions are affected by JVM adaptation,

which must be taken into account when calibrating a model. CPU

demand parameters measured on a cold system are up to 5 times

of those on a warm system.

Acknowledgement
The authors are grateful for the support of the Informatics

Research Initiative of Enterprise Ireland (Mr. Oufimtsev and Dr.

Murphy), and of Communications and Information Technology

Ontario (Ms. Xu and Prof. Woodside).

References
[1] E. Armstrong, J. Ball, S. Bodoff, D. Carson, I. Evans, D.

Green, K. Haase, E. Jendrock, The J2EE 1.4 Tutorial, on-line

document at java.sun.com/j2ee/1.4/docs/tutorial/doc, Sun

MicroSystems, Dec. 16, 2004.

[2] S. Balsamo, A. DiMarco, P. Inverardi, and M. Simeoni,

"Model-based Performance Prediction in Software

Development," IEEE Trans. on Software Eng., vol. 30, no. 5

pp. 295-310, May 2004.

[3] S. Bodoff, D. Green, E. Jendrock, M. Pawlan, The Dukes

Bank Application, on-line document at

java.sun.com/j2ee/tutorial/1_3-fcs/doc/E-bank.html, Sun

MicroSystems.

[4] V. Grassi, R. Mirandola, “Towards Automatic Compositional

Analysis of Component Based Systems”, Proc Fourth

Int.Workshop on Software and Performance, Redwood

Shores, CA, Jan. 2004, 00 59-63.

[5] Java Community Process, “J2EE 1.4 Specification”, on-line

document at http://java.sun.com/j2ee/1.4/download.

html#platformspec, Nov. 24, 2003

[6] R. Johnson, J2EE Design and Development, Wiley

Publishing Inc., Indianapolis.

[7] C.M. Llado, P.G. Harrison, “Performance Evaluation of an

Enterprise Java Bean Server Implementation”, Proc second

Int. Workshop on Software and Performance (WOSP 2000),

Ottawa, September 2000, pp 180-188.

[8] C.M. Llado, PhD thesis, Imperial College, London.

[9] J. A. Rolia and K. C. Sevcik, "The Method of Layers," IEEE

Trans. on Software Engineering, vol. 21, no. 8 pp. 689-700,

August 1995

[10] C. U. Smith and L. G. Williams, Performance Solutions.

Addison-Wesley, 2002.

[11] Toshio Suganuma, Takeshi Ogasawara, Kiyokuni

Kawachiya, Mikio Takeuchi, Kazuaki Ishizaki, Akira Koseki,

Tatsushi Inagaki, Toshiaki Yasue, Motohiro Kawahito,

Tamiya Onodera, Hideaki Komatsu, and Toshio Nakatani,

"Evolution of a Java just-in-time compiler for IA-32

platforms," IBM Journal of Research and Development, IBM

Research in Asia Issue, Vol. 48, No. 5/6, pp. 767-795, 2004.

[12] Sun Microsystems, “The Java Hotspot Virtual Machine,

v.1.4.1, d2”, online white paper at

http://java.sun.com/products/hotspot/docs/whitepaper/Java_

Hotspot_v1.4.1/JHS_141_WP_d2a.pdf, Sep 2002

[13] C.M. Woodside, E. Neron, E.D.S. Ho, and B. Mondoux, "An

``Active-Server'' Model for the Performance of Parallel

Programs Written Using Rendezvous," J. Systems and

Software, pp. 125-131, 1986

[14] C.M. Woodside, J.E. Neilson, D.C. Petriu and S. Majumdar,

"The Stochastic Rendezvous Network Model for

Performance of Synchronous Client-Server-Like Distributed

Software", IEEE Transactions on Computers, Vol. 44, No. 1,

January 1995, pp. 20-34

[15] M. Woodside, “Tutorial Introduction to Layered Modeling of

Software Performance”, Edition 3.0, May 2002 (Accessible

from http://www.sce.carleton.ca/rads/ lqn/lqn-

documentation/tutorialg.pdf)

[16] X.P. Wu and M. Woodside, "Performance Modeling from

Software Components," in Proc. 4th Int. Workshop on

Software and Performance (WOSP 04), Redwood Shores,

Calif., Jan 2004, pp. 290-301.

[17] J. Xu, M. Woodside, and D.C. Petriu, "Performance Analysis

of a Software Design using the UML Profile for

Schedulability, Performance and Time," in Proc. 13th

International Conference on Modelling Techniques and

Tools for Computer Performance Evaluation (TOOLS 03),

Urbana, USA, Sept. 2003.

[18] J. Xu, M. Woodside, “Template-Driven Performance

Modeling of Enterprise Java Beans”, to appear in Proc.

Workshop on Middleware for Web Services, Enschede,

Netherlands, Sept. 2005.

