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Abstract 
Component technologies, such as Enterprise Java Beans (EJB) 

and .NET, are used in enterprise servers with requirements for 

high performance and scalability. This work considers 

performance prediction from the design of an EJB system, based 

on the modular structure of an application server and the 

application components. It uses layered queueing models, which 

are naturally structured around the software components. This 

paper describes a framework for constructing such models, based 

on layered queue templates for EJBs, and for their inclusion in the 

server. The resulting model is calibrated and validated by 

comparison with an actual system. 
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1. Introduction and motivation 
The approach to designing application servers based on 

component technologies such as Enterprise Java Beans and the 

J2EE standards [1] [5] [6] provides rapid development and the 

promise of scalability and good performance. J2EE and other 

approaches such as .NET do this by providing many services 

which applications require (such as support for concurrency, 

security, and transaction control) within the platform. As a result 

however the server platforms also have substantial overhead costs, 

and performance is a significant concern. Predictive models of a 

design can provide insight into potential problems and guidance 

for solutions. The use of predictive modeling to analyze software 

designs has been described extensively by Smith and Williams 

(e.g. [10]) and others (see for example [2][17]). 

To build predictive models efficiently, the description of the 

platform should be separated from the components that implement 

the business logic of the application, the web interface, and the 

database. The infrastructure parts such as a J2EE platform can be 

modeled in advance and reused, with embedded parameters to 

describe possible deployments. When a specific application is 

designed, its elements are modeled and plugged into the platform 

sub-model. This provides a rapid model-building capability, in 

parallel with the rapid development process. 

The process of defining component-based performance 

models, and of building models from components, was described 

in [4][16]. 

This work is based on a layered queueing network (LQN) 

formalism, which is defined in [9][13][14], and the introductory 

tutorial [15]. Layered queueing is a strategic choice. Compared to 

other formalisms surveyed in [2], it extends queueing networks to 

include software resources, and it avoids the state explosion of 

Markov models based on Petri Nets. Each software component is 

a distinct model entity, and contention for logical resources such 

as threads (which define the concurrency in the server platform) is 

captured. 

The central contribution of this work is to demonstrate a sound 

procedure for modeling EJB applications using a template-based 

framework, calibrating the model using profiling data and 

validating it against measurement. Key issues include the 

relationship between the EJB application components and the 

platform (which are captured in submodel templates), the 

feasibility of measuring the model parameters from execution 

traces, and the accuracy with which the model predicts 

performance of an implementation under load. The paper [18] 

describes the design and use of the templates in greater detail. 

 

2. LQN Evaluation 
To demonstrate that the LQN model can be applied to this 

class of system with reasonable accuracy, a simulation model of a 

system with entity beans due to Llado and Harrison [7] was 

compared to its LQN equivalent. Figure 1 shows this LQN 

equivalent model.  

The LQN notation is taken from [13][14][15]. Software 

entities are modeled as tasks, offering services called entries. In 

the Figure a task is a rectangle with a rectangular field at the right-

hand end for the task name and parameters, and a field for each 

entry. The entries have parameters in the form “[demand]” for the 

host (CPU) demand in ms, and have blocking requests to other 

entries indicated by arrows with labels for the number of requests. 

The parameters for the tasks are multiplicities, which limit the 

number of concurrent instances. There are $N clients, $M bean 

threads, 1 thread for each of $I identical bean instances, and no 

limit (shown as inf) for the Container.  

The part of the model within the large rectangle represents one 

bean Container with its services and beans, and forms a 

component that can be generated for each bean. The component 

has input and output interfaces consistent with a component-based 

model-building framework called CBML [16], which allows 

complex interacting systems to be built up from modules like this.  

The solid arrowheads on the request arcs indicate that the 

requesting task is blocked (and its task-related resource is held) 

while the serving task executes. The model captures resource 

holding patterns, such as (1) the Container operation 

“invokeMethod” requires a bean instance, and (2) startup 

operations by the prepareBean entry of the critical section 



 

psuedo-task ConServ (Container Services, with multiplicity 1), 

represent mutual exclusion. 

The bean instances (both active and passive) are represented 

by a set of $I replicas of the task Instance (the shaded boxes in the 

Figure). Each replica is a single threaded task, showing that 

requests to the same instance must wait. They are shown as being 

requested with equal probability (1/$I for each instance). 

The probability that a requested entity bean instance must be 

activated is represented by the probability (1-$p) on calls from the 

prepareBean entry to the call back functions (activate, passivate, 

load and store) on the active bean.   
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Figure 1 LQN model for the system with Entity Beans in [8] 

  

 With the same parameter values as were used in [8], the LQN 

model was solved with 20 instances ($I=20), pool size of 6 

($M=6), negligible execution demand for invokeMethod, and 

prepareBean ($s_checkAccess = 0.001, $s_prepareBn = 0.001) 

and business method (busiMethod) time of 4.1 ($s_method = 4.1). 

All the call back functions were aggregated to a single entry with a 

total demand of 0.4 (i.e. $s_callback = 0.4). 

Figure 2 compares the simulation results from [8] with the 

LQN model. The results show approximately 6% differences 

between the two models with the LQN being a little pessimistic.  

Llado and Harrison describe an extended queueing model for 

this system in [7], using decomposition and a custom-built 

solution strategy, which provides an even closer match to the 

simulation results. However the effort of creating such a model 

must be repeated for every configuration, and becomes more 

complex with multiple interacting beans. The current approach 

tries to overcome this by the use of a standardized model 

framework and a systematic model-building process based on 

LQN templates for the different kinds of beans. 
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Figure 2 LQN model predictions compared with Simulation 

Results [8]  

 

 Figure 3 shows another set of results, which compares the 

throughput for different numbers of bean instances $I, with the 

same pool size $M = 6. It can be noted that the number of bean 

instances makes little difference since the system is saturated at 

the small sized thread pool. This behavior corresponds to the 

results obtained from [8]. 
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3. LQN sub-model templates  
This section describes a LQN model template for each type of 

EJB. These templates follow the LQN component concept 

described in [16]. They can be instantiated according to specific 

function requirement in each scenario for system usage, and then 

be assembled into a complete LQN model for the whole scenario. 

An example on how to use these templates to build a complete 

LQN model for a business scenario will be shown in section 4. 

 

3.1 LQN template for an Entity Bean 
Figure 4 shows a LQN template for an Entity Bean. The entry 

busiMethod of the activebean is a placeholder for one or more 

methods of the Bean, and the entries InvokeMethod, 



 

InstanceMethod and getThread are placeholders for resource 

requests on the calling path. All of these entries must be 

instantiated for each business method of the Bean, with calls 

between them as shown, connected to the interfaces. 
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Figure 4 Template for an Entity Bean 

 

 

The upper interfaces define provided services, with the 

placeholder methodInvoke for the Bean business methods. Store, 

find, create and remove represent the Container Home Interfaces 

of the Bean. The store interface is used when a request to update 

the Entity state into the database is issued by another EJB 

component, for instance during a transaction-committing step of a 

Session Bean.  

The lower interfaces define required services. ServiceRequest 

is a placeholder for function requests issued by the entity bean 

during its operation. The readDB and updateDB interfaces 

represent database operations during service and bean-instance 

context swapping. 

When the template is instantiated, placeholders are instantiated 

as required for different services.  

 

3.2 LQN template for a Stateless Session Bean 
Figure 5 shows a LQN template for Stateless Session Bean. As 

it does not retain any state for a given client, each request can be 

directed to any available bean thread. After a service is finished, 

the bean thread is put back to the bean thread pool and ready for 

serving next request immediately. There can be outgoing requests. 

For Stateless Session Beans the creation and removing of bean 

threads are controlled by the container. Clients do not create or 

remove bean threads. 

 

3.3 LQN Template for a Stateful Session Bean 
Figure 6 shows the LQN template for a Stateful Session Bean, 

which resembles that for an Entity Bean. However the passivation 

and activation operations use local storage rather than a database. 

The passivation and activation operations are aggregated and 

shown as callback functions from container to bean, represented 

by a pseudo-task CallBack whose workload is actually performed 

by the bean instance that is executing in the ContServ critical 

section. They inform the bean that the container is about to 

passivate or activate the bean instance, so that the bean instance 

can release or acquire corresponding resources such as sockets, 

database connection, etc.  
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Figure 5 Template for a Stateless Session Bean 

 

Assuming that each client has its own session bean there is no 

contention for a single bean instance, so the replica tasks for the 

instances are not modeled here. The thread pool is modeled as 



 

executing the bean methods directly, with instances activated as 

necessary.  
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Figure 6 Template for a Stateful Session Bean 

 

 

3.4 LQN Template for a Message Driven Bean 

A message driven bean is similar to a stateless session bean, 

but its incoming calls are asynchronous messages (denoted by an 

arc with open arrowhead as shown in Figure 7).  
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Figure 7 Template for a Message Driven Bean 

 

 

4. Model Construction 
A system is modeled by first modeling the beans as tasks with 

estimated parameters, then instantiating the template to wrap each 

class of beans in a container, and finally adding the execution 

environment including the database. Calls between beans, and 

calls to the database, are part of the final assembly. The model 

may be calibrated from running data, or by combining 

• knowledge of the operations of each bean 

• pre-calibrated workload parameters for container and 

database operations. 

To illustrate this procedure, a simple system with a stateless 

session bean class and an entity bean class is used; this model was 

calibrated in the tests described in the next section. 

The system chosen was based on the well-known Duke’s Bank 

Application which is shipped with the J2EE documentation 

provided by Sun Microsystems [3].  The “Update Customer 

Information” Use Case was specialized to update e-mail 

information for customers. Figure 8 shows the scenario. It follows 

the EJB session façade pattern in which a Stateless Session Bean 

CustomerControllerBean delegates service requests from clients 

to an Entity Bean CustomerBean. The Session Bean first finds the 

required Entity Bean instance by Primary Key (PK) and then 

updates its email information. 
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<<Stateless Session Bean>> 

CustomerController 
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setEmail(…) 

findByPrimaryKey() 
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Figure 8 Update Customer Information Scenario 
 

Figure 9 shows the completed LQN model for this scenario. 

The CustomerControllerBean sub-model instantiates the Stateless 

Session Bean template shown in Figure 5. The CustomerBean 

sub-model instantiates the Entity Bean template shown in Figure 

4. The entries related to business methods are instantiated by the 

entries named InvokeSetEmail, InstanceSetEmail and SetEmail, 

with their parameters such as execution demands. The 

CustomerControllerBean requires two external services during the 

SetEmail operation, to find the customer by its primary key and 

update the email of the customer, giving two instances of the 

serviceRequest outgoing interface which are connected to the 

incoming interfaces of the CustomerBean.  

This application uses Container Managed Persistence (CMP) 

strategy in which transactions are managed by containers. A 

transaction is started at the beginning of an invocation on the 

session bean CustomerController and is committed and ended 

right before the operation on session bean is completed. Any 

change on entity data is updated into database during the 

transaction committing stage. Therefore, the entity store operation 

is actually invoked by the session bean during its critical section 

for bean context swapping (represented by prepareBean in the 

model).  

Underlying services from execution environment including 

DataBase and processing resource ApplicationCPU (AppCPU) 

are finally added to complete the model structure. Unused services 

such as bean creation/removal entries are omitted in the model.  

The size for Bean Thread Pool $M can be obtained from 

container configuration during system deployment. The replica 

parameter $I represents the number of data records in the 



 

database. Assuming that bean instances are accessed with equal 

probability, the hit rate $p = $M/$I. Alternatively, $p can be 

observed by measurement or benchmark. The experimental data 

shows that the hit rate quickly approaches its limit even at initial 

warmup phases when the number of replica tasks in the model is 

substantially greater than $M. Therefore, its value was limited to  

$I’ =  3*$M for simplicity of the model. 
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Figure 9 Completed LQN model for Update Customer 

Information Scenario 

 

 

5. Application Profiling and Measurement 
The Duke’s Bank application [3] was modified in two ways: 

the Entity Beans were modified to use Container-Managed 

Persistence (CMP), and support for multiple concurrent clients 

was added. 

 

5.1 Hardware platform 
The testing environment includes three x86 machines 

described in Table 1: one for the EJB server, one for the database 

server, and one for client request generation. All the machines are 

connected to a dedicated switched 100 Mbps network. The client 

machine is more powerful than the servers to make sure that it 

does not become a bottleneck when generating the test load. 

Due to a limited number of database entries in the application, 

the database server is lightly loaded. 

 

Table 1. Testing Environment Specification 

Machine 

Type 

Processor Memory HDD I/O 

System 

OS 

App Server PIII-866 

Mhz 

512 Mb 20 Gb 

IDE 

Debian 

Gnu/Linux 

3.1 (Sarge) 

Database 

Server 

PIII-800 

Mhz 

512 Mb 20 Gb 

IDE 

Debian 

Gnu/Linux 

3.1 (Sarge) 

Client PIV-2.2 Ghz 512 Mb 80 Gb 

IDE 

Debian 

Gnu/Linux 

3.1 (Sarge) 

 

5.2 The software environment 
The following software was used for testing purposes: 

• operating system: Debian GNU/Linux 3.1 “sarge”, kernel v 

2.6.8-2  

• database server: MySQL v. 4.0.23-7 

• application server: JBoss v. 4.01sp1, connected to the 

database with Mysql Connector/J v 3.0.16.  

• JVM: Java2SDK 1.4.2_03 for the application server, 

Java2SDK v5.0 for the client.  

• client: a multithreaded testing suite developed in-house, that 

calls EJBs in the application server via RMI.  

 

The newer version of SDK introduced some problems to the 

testbed, so SDK 5.0 was not used for the server setup.  

Measurements on the container and program execution were 

obtained by running JProbe 5.2.1 Freeware profiler for Linux. 

Additional data, such as pool instance numbers and cache instance 

numbers were obtained using XMBean examples from the JBoss 

advanced tutorials. The UNIX sar utility was used to obtain 

various data available on the performance of the operating 

systems, including CPU, disk, and network usage. 

The following options were used for JVM startup: 

• the initial Java heap size was 384 MB to prevent performance 

loss in variations of the java heap size, with option -

Xms384m, 

• parameter -XX:+PrintCompilation was set to monitor the 

runtime behavior of the JVM. Generally, compilation 

messages suggest JVM is still adapting to certain type of 

workload. 



 

• parameter -XX:CompileThreshhold was used to monitor the 

system’s behavior with no JVM runtime optimizations 

 

5.3 Testing Scenarios 
The following changes were made to the application to 

emphasize contention for resources and to determine their 

overhead costs: 

• container-managed persistence (CMP) entity beans are used 

instead of bean-managed persistence (BMP); 

• multiple users are supported. The original Duke’s bank only 

supports a single user; 

• stateful session beans were converted to stateless session 

beans; 

• the deployment descriptors were modified to limit the size of 

caches and pools for the beans to 10 to enforce 

activation/passivation, and artificial congestion at the 

pool/cache level. 

• timeouts for bean passivation and removal was also 

significantly decreased to 5 seconds to allow shorter waiting 

time before next batch of client requests. 

Two patterns of access to the data were followed by the 

simulated users. In sequential access all the beans are accessed in 

ascending order. In random access, the bean IDs are selected 

randomly. For profiler measurements a single request was entered 

and followed, once for each pattern. 

For overall performance measurements the load was gradually 

increased from 1 to 20 users, with step size 1. 20 users for 10 

entity beans were necessary to create an artificial situation of 

activation/passivation for a limited workload. To ensure that the 

bottleneck remains at the application server, the number of 

records in the database was kept to a low number of 300.  

Every client performed the following loggable sequence in 

between warm-up and cool-down periods: 

1. Update each customer record in ascending order (300 records 

in total); 

2. Wait for other clients to finish. 

3. Update a random customer record 300 times; 

4. Wait for other clients to finish. 

Average response time for each client thread was logged 

separately for random and sequential calls. Each set of 

measurements was carried out at least ten times after the warmup 

to check the results consistency. The thread pool and the cache of 

the entity beans were also monitored to ensure JBoss’s 

compliance with imposed configuration restrictions.  The database 

host has been ‘warmed up’ to achieve a constant response time to 

queries. The application server’s operating system was warmed up 

to minimize its effect on the measurements. JBoss was restarted 

before the system, so JVM runtime adaptations could be observed. 

 

 

6. Model Calibration and Comparison with 

Measurement Results 
The measurement results are shown in Figures 10 and 11. 

Figure 10 shows an average throughput of the system. It can be 

seen that with 4 clients the system reaches the saturation point. 

The results produced are very consistent, with standard deviation 

(stdev) of 1.25 and 95% confidence intervals (CI95) of ±0.77. 

Average response time is shown in Figure 11. Both random and 

sequential access patterns are represented. For the random pattern, 

CI95 = ±1.94, and for the sequential pattern CI95 = ±2.01. 

Clearly the test system is bottlenecked for as few as two 

customers, because the synthetic clients had zero “think time” 

between requests. Thus the throughput levels out and the response 

time becomes steadily greater as clients are added, due to waiting 

for the saturated processor. 

There is a slight decrease in response time in the neighborhood 

of 4 users. This is due to the JVM adaptation (such as real-time 

compilation) that takes place during the initial part of the test. By 

the time the responses are recorded for 5 - 7 users the system has 

stabilized and thereafter the response time grows linearly with the 

number of users. 

 

 Figure 10 Observed Throughput vs Number of Clients 
 

In Figure 11 the random access times are lower, probably 

because in sequential access every bean request requires an 

activation, while for random access there is a probability that the 

bean is already active. 

 

 
Figure 11 Comparison of LQN results with measurement 

results 

 

 

6.1 Model Calibration 

The model constructed in section 4 was calibrated from the 

profiling data under a single-client workload. Two factors are used 

to adjust the parameter values when doing the calibration. 

First, because the JProbe profiling tool itself introduced 

significant overhead on the execution, the execution demand 

values extracted from profiling data are adjusted to remove the 

contribution of overhead. This was done by using a Profiling 

Ratio Factor (PFC) based on the assumption that the profiling 
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overhead is proportionally distributed across the operations within 

some section of the scenario. The factor was obtained for each 

section by measuring the service time with and without profiling 

and taking the ratio. For Session Bean container services, PFC 

was 2.18. For Entity Bean container services, two PFC values 

were found. For finder operations, PFC was 3.78; for business 

method related operations, PFC was 7.81. The reason for the 

difference is that many more of the underlying methods are 

profiled than business methods. For general container services, 

such as security check operations, PFC was 2.98. For low-level 

operations, in which no underlying services are profiled, PFC=1. 

Second, during the measurements, the system warm up was 

observed when the same operations are repeated a number of 

times. JVM runtime optimizations are described in [11],[12]. For 

the server type JVM used here these include, but are not limited 

to, dead code elimination, loop invariant hoisting, common sub-

expression elimination, constant propagation, null and range 

check eliminations, as well as full inlining and native code 

compilation.  

 The effect of JVM optimizations on the response time for the 

customer information update scenario used in this study is shown 

in Figure 12a. After initial volatility the response time stabilizes as 

shown in Figure 12b. The sporadic delays of about 150 ms are due 

to Garbage Collection. Setting the “CompileThreshold” parameter 

of JVM sufficiently high effectively turns the optimizations off. 
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Figure 12a Response time Variation 
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Figure 12b Response time with an optimized JVM 

 

 An unoptimized JVM becomes stable after just a couple dozen 

calls with a mean of 15 ms and sporadic Garbage Collection 

delays of approximately 220 ms. This initial delay is mainly 

caused by lazy loading of classes at JVM. Additional possible 

factors include OS processes, such as Virtual Memory Manager 

(VMM) moving swapped out pages back to RAM, the process and 

IO scheduler optimizing for the load, and connection 

establishment to the machine that runs the MySQL database. 

Since the performance results were obtained by repeatedly 

invoking the same scenario, they are mostly warm system results. 

However, the profiling was done for a “cold” state with a single 

client in the system. A Warm System Factor (WSF) was 

introduced to adjust the service time values extracted from the 

profiling results, defined as the ratio of cold system state times 

over warm system state times. Based on the way performance 

measurements varied as the system warmed up, a factor of 3 is 

used for WSF. 

After applying these factors, the following parameters were 

used in the model calibration: 

• For CustomerControllerBean: 

 $M = 10 $c_CheckAccess = 0.817ms 

 $s_getThread = 0.002ms $s_prepareBn = 0.280ms 

 $s_setEmail = 0.010ms 

 

• For CustomerBean: 

$M = 10 $I’ = 30 replicas 

$s_cstore = 0.303 $s_cfind = 1.740ms 

$s_checkAccess = 0.513ms $s_getThread = 0.003ms 

$s_prepareBn = 0.257ms $s_store = 0.003ms 

$s_load = 0.003ms $s_setEmail = 0.120ms 

$s_passivate = 0.001ms $s_activate = 0.001ms 

 

• For Database 

 $update = 2ms $read = 0.4ms 

 

For sequential access, the hit rate $p should be 0 since the 

required bean instance is always in passive mode and needs 

context swapping every time. For random access, $p should 0.033, 

which is $M / $I = 10/300. 

 

6.2 Model Predictions and Accuracy 

Response time prediction results obtained from solving the 

model calibrated with above parameters are also shown in Figure 

11. LQN predictions are low for small $N and high for large $N, 

which is due to progressive adaptation of the JVM during the 

experiment. For large $N the differences are between 6.2% to 

23.9% for the sequential access case and 2.1% to 24.5% for the 

random access case.  

The constant WSF for the impact of system warm-up is a 

compromise between the colder states at the left and the warmer 

states at the right. The greatest WSF that was observed in 

measurement is about 5, but it was not stable.  

Software running in JVM continuously goes through 

optimizations by the VM. It is therefore proposed to use a range 

of values for CPU demand prediction, corresponding to warm 

system factor (WSF) values between 1 and 5. The value of 3 was 

used as a compromise in the middle of the range. 

The LQN model also predicts resource utilizations which can 

be used to diagnose bottleneck. Model results show that with 

parameters taken in a cold state, the application processor is the 

bottleneck with 80%-95% utilization. With parameters that 

adjusted by WSF = 3, the bottleneck moves to the Bean Thread 

Pool of the Session Bean. Both these predictions are verified by 

measurement results. For a few clients the thread pool is not 



 

saturated, but for many clients it is. The saturated thread pool does 

not slow down the system (or reduce the processor utilization) 

since the database was artificially configured to be very fast 

through a decrease of records in corresponding tables. This thread 

pool just limits the number of beans which are actively being 

processed at one time.  However with a slower database, it could 

limit performance severely. 

 

7. Conclusions 
A template-based framework has been described for rapidly 

building predictive models of applications based on J2EE 

middleware. Most of the model, representing the J2EE platform, 

can be pre-calibrated, and the application description (in terms of 

its use of services) can be dropped in. The paper shows a complete 

procedure of constructing, calibrating, solving and analysis of the 

model for a real system. 

The approach here has been customized to Enterprise Java 

Beans in a J2EE application server, but a similar approach can be 

applied to other technologies such as .NET. The framework uses 

Layered Queueing Network models, which can represent the 

various types of resources.  

The LQN correctly predicts resource saturation of processor 

and thread resources. Predictions are affected by JVM adaptation, 

which must be taken into account when calibrating a model. CPU 

demand parameters measured on a cold system are up to 5 times 

of those on a warm system. 
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