
A Component-Based Specification Approach
for Embedded Systems using FDTs

Abdelaziz Guerrouat
Clausthal University of Technology
Department of Computer Science

Julius-Albert-Str. 4
D-38678 Clausthal-Zellerfeld
Phone: +49-5323-72-7172

aguerrou@in.tu-clausthal.de

Harald Richter
Clausthal University of Technology
Department of Computer Science

Julius-Albert-Str. 4
D-38678 Clausthal-Zellerfeld
Phone: +49-5323-72-7170

richter@in.tu-clausthal.de

ABSTRACT
This paper presents a framework for specification and testing of
component-based embedded systems using formal description
techniques (FDTs). We deal with embedded systems from the
point of view of communication and thus we propose a
communication model for them. We further explain the
meaning of component-based embedded systems and how these
can be specified using FDTs. FDTs such as Estelle and SDL are
based on EFSMs (Extended finite State Machines) and have
been widely used in the automation of the development process
of protocols and communicating systems, i.e. for specification,
analysis and validation purposes. The main goal of this work is
to demonstrate the reusability of FDTs for component-based
systems.

Keywords
Formal description techniques, component-based systems,
embedded system, specification, testing

1. INTRODCTION
Embedded systems are becoming more and more the key
technology of any kind of complex technical systems, ranging
from telecommunications devices to automobiles and aircrafts.
An embedded computer system is a computer system that
represents a part of a larger system and performs some
requirements of that system.

The growing amount and complexity of requirements on
embedded systems regarding properties like safety and real-
time behaviour make the software development process a costly
and error-prone activity. The cost factor plays, however, a
central role in today’s industrial competition, for instance,
between car manufacturers. The development of competitive
and efficient products is imposing more and more constraints to
the design of embedded systems. One of the means to reach this
goal are formal methods to support the different phases of
system development, i.e. specification, synthesis and validation.
There are several requirements for those methods that should be
among others qualities abstract, understandable, analyzable,
scalable and unambiguous specification formalisms.

Component-based development represents an attractive
approach in the embedded system area, in particular for the
development of many variants of products [10]. While in the
last few years component-based software development gained
much more attention from both researchers and practitioners,
testing such software systems is still however to be more
studied [11]. Because one believes that once a component is
sufficiently tested, it is not needed to test it again when reused.
But, this is generally not true, since components may satisfy a
certain application domain and fails in a new environment [11].

Formal description techniques have demonstrated their
effectiveness in testing complex requirements like those for
communicating systems [1] [2]. They provide a solid mean for
unambiguous specification and rigorous analysis and are based
on EFSMs (extended finite state machines). They differ from
conventional programming languages by providing not only a
formal syntax but also a formal semantic. The application of
formal specifications increases the confidence in the software
and the system. Especially in the area of safety-critical systems,
the use of formal techniques is highly recommended [3] [8].

Testing of communication systems based on FDTs mainly
concerns conformance testing. The later corresponds to a black
box test. But this type of test is the most dominant and
important one in component-based systems due to the nature of
the constituents and properties of component-based systems.
Indeed, components are independent and replaceable parts of a
system and should be conform to and provide a set of interfaces.
They also consist usually of special components, called COTS
(commercial-off-the-shelf) that can be purchased on a
component market. These are often delivered without their
source code which makes other types of tests like white or grey
tests less appropriate.

Actually, the mostly used formalisms to specify requirements
for embedded systems are Statecharts and also UML
(Statecharts are converted in UML) as semi-formal models.
Although Statecharts and UML provide graphical facilities, they
might lack formal and unambiguous semantics. Therefore,
detecting bugs, incompleteness and inconsistencies becomes a
difficult task. To alleviate these lacks many authors try to
combine formal notations like Z with state-transition models
[5]. Z is based on set theory and first order predicate logic and
used for data structuring and abstracting. However, approaches
developed around this model do not clearly address test data
generation methods for analysis and validation purposes [6] [7]
and/or do not deal with component-based systems.

Finite state machines are very popular in the control flow
specification of state/transition-based systems and many related
analysis methods have been developed [6] [7]. These support a
formal test derivation which is used for validation and testing
purposes. However, finite state machines lack to deal with the
data flow. This shortcoming can be alleviated by using the

extended finite state machine model on which formal
description techniques are based.

In this paper, we present a framework for testing component-
based embedded systems by using formal description
techniques (FDTs). We first identify the main components an
embedded system consisting of and then show how these can be
linked together to constitute the whole embedded system by
using the FDT Estelle. The principle of testing such obtained
embedded systems is explained, i.e. fault model, test derivation
and test execution.

The rest of the paper is organized as follows. Section 2 give the
basic structure of embedded systems and explains their basic
communication model. The specification and testing framework
for component-based embedded systems using the FDT Estelle
is presented in Section 3. Finally, Section 4 concludes the
paper.

2. BACKGROUNDS
2.1 Embedded System Components
An embedded system (ES) is any computer system or
computing device that performs a dedicated function or is
designed for use with a specific embedded software application,
e.g. PDA (Personal Data Assistant), Mobile Phone, E-Book
(Electronic Book), Robot, etc. That is, an embedded system is a
special-purpose system built into a larger device. It is embedded
as a subsystem in a larger system which may or may not be a
computer system. An embedded system is typically required to
meet specific requirements.

Embedded systems must usually be dependable, efficient and
must meet real-time constraints. Be ‘dependable’ means that an
embedded system must be reliable, available and safe. The
efficiency mostly concerns properties like energy, code-size,
run-time, weight and cost. An embedded system is dedicated for
a certain application and characterized also by a dedicated user
interface. Thus, knowledge about future behavior at design time
can be used to minimize resources and to maximize robustness.
Many embedded systems must meet real-time constraints. A
real-time system must react to stimuli from the controlled object
(or the operator) within the time interval dedicated by the
environment.

external process

embedded
system

controller

sensors actuators

user-machine-
interface

Figure 1. Main components of an embedded system

Embedded systems are frequently connected to a physical
environment through sensors and actuators. They are typically
reactive systems. A reactive system is in continuous interaction
with its environment and executes at a pace determined by that

environment. The behavior depends on input and current state
for which the automata model is often most appropriate.

Figure 1 illustrates the main constituents of an embedded
system comprising an external process, sensors, actuators, and
a controller:
 The external process is a process that can be of physical,

mechanical, or electrical nature.
 Sensors provide information about the current state of the

external process by means of so-called monitoring events.
They are communicated to the controller. For the
controller, they represent input events. They are
considered as stimuli for the controller.

 The controller must react to each received event, i.e. input
event. Events originate usually from sensors. Depending
on the received events from sensors, corresponding states
of the external process will be determined.

 Actuators receive the results determined by the controller
which are communicated to the external process by means
of so-called controlling events.

The external process is usually given in advance. In contrast,
the controller is often implemented by real-time hardware and
software. This should allow each modification of the controller
algorithm in a straightforward way each time this is needed.
The controller’s behavior is depending on that of the external
process. The controller commands the behavior of the external
process taking into consideration requirements on the process
and its characteristics, such as physical laws, real time and other
constraints.

2.2 Component-Based Embedded System
Development

In the component-based approach for embedded systems one
distinguishes a component repository, a composition
environment and a run-time environment. The component
repository consists of single specifications of the above
indicated components of an embedded system: sensors,
controller and actuators. These correspond to EFSMs and for
each component build functional modules with respect to the
used FDT. The composition environment is the embedded
system specification which consists of the specification of its
environment and its controller. This takes places by linking the
single modules to each other by means of channels via
interfaces, called interaction points (Figure 2). These modules
interact with each other via broadcasting events via these
interaction points. However, a sequence has to be respected in
this communication. For instance, the direct communication of
a module of an actuator with a sensor is not allowed. Run-time
environment consists of the instantiated embedded system
specification issued from the former step, i.e. the composition.
Assuming the FDT Estelle, this builds a tree of linked tasks
from which the system is composed. Each subtree rooted in a
so-called system process or system activity task represents a
subsystem [2]. The number of subsystems and the links between
them are fixed once the specification is initialized.

 Sensor’s behaviour
modules

controller behaviour
modules

EFSMs

Actuator’s behaviour
modules

EFSMs

monitoring
signals

controlling
signals

channel channel EFSMs EFSM EFSM EFSM

interface

Figure 2. Overview of the composition environment for embedded system based on EFSMs

The most important component of an embedded system consists
of the controller which communicates with its environment, i.e.
sensors and actuators, via signals (i.e. events). To be recognized
by all components, these events have to be declared as global
variables for adjacent EFSMs. The output events of sensors
represent input events for the controller. The events from the
controller to the actuators are output events and represent input
events for the actuators. They result from new computations
performed by the controller that is triggered by the received
input events.

Depending on the nature of sensor events (e.g. indicating the
power on/of state for an electrical unit, the speed of a mobile
object such as a car, etc.) the corresponding EFSM of this
component is triggered and the concerned transition(s) are
performed. This triggers the EFSMs of the controller whose
states change. Depending on the received events, transitions in
the FSMs are executed. Note, that transitions in the controller
can spontaneously be triggered by other events, e.g. time out.
The modeled subsequent state of the external process is
computed and communicated as output events via the actuators.

To provide an intermediate specification model which better fits
the behaviour part of the considered FDT, i.e. Estelle, we
introduce a new EFSM, called p-EFSM (p stands for
‘predicated’). This is defined as follows:

Definition 1 A predicated extended finite state machine (p-
EFSM) is an 8-tuple <S, C, I, P, O, T, s0, c0> where S is a non-
empty set of main states, C=dom(v1) x … x dom(vn) a non-
empty countable set of contexts with vi∈V, V a non-empty finite
set of variables, and dom(vi) a non-empty countable set referred
to as the domain of vi, P a countable set of predicates (possibly
empty), I a non-empty finite set of inputs, O a non-empty finite
set of outputs, T⊆ S x C x I x P x O x S x C a set of transition
relations, s0∈S the initial main state, and c0∈C the initial
context of the p-EFSM.

p-EFSM extends the conventional EFSMs for FDT mapping
purposes as we will see later. p-EFSM is similar to EFSM
except that in a p-EFSM the conditions on transitions are
explicitly specified. This is just a notation facility and
functionally and conceptually there is no difference between
both models. In the rest of the paper, we indifferently address
both models.

This, a transition t∈T of a p-EFSM is a 7-tuple <s, c, I, p, o, s’,
c’> where s∈S is a current main state, c∈C a current context,
i∈I an input, p∈P a enabling predicate which depends on the
context c, o∈O an output, s’∈S a next main state, and c’∈C a
next context.

We consider one or more p-EFSMs for each component of the
system and denote them with indices s, c and a for sensors,
controller, and actuators.

Interdependencies between these components are described as
follows:
 Let be given a transition

ts∈Ts: ts =<ss, cs, is, ps, os, s´s, c´s> with
ss∈Ss, cs∈Cs, is∈Is, ps∈Ps, os∈Os, s´s∈Ss, c´s∈Cs ⇒ ∃ tc∈Tc
| os ≡ ic
That is, each output event generated by sensors must
trigger a transition of the controller. This event represents
an input event for the triggered transition. We assume here
that the predicates related to the transitions are satisfied by
the actual context.

 Let be given a transition tc∈Tc with sc∈Sc, cc∈Cc, ic∈Ic,
pc∈Pc, oc∈Oc, s´c∈Sc, c´c∈Cc,
if ic∈Os ⇒ ∃ ts∈Ts and ic ≡ os.
This means that if there exists a transition of the controller
whose input event belongs to the set of output events of the
sensors then it must exist a transition of the sensors whose
output event is identified with the given event.

 Let be given a transition ta∈Ta: ta =<sa, ca, ia, pa, oa, s´a,
c´a> with sa∈Sa, ca∈Ca, ia∈Ia, pa∈Pa, oa∈Oa, s´a∈Sa,
c´a∈Ca ⇒ ∃ tc∈Tc: tc=<sc, cc, ic, pc, oc, s´c, c´c> and oc ≡ ia.
Each transition of actuators must be only triggered by the
controller and must match the output event of the
triggering transition of the controller.

Estelle is a standardized formal description technique
(International Standard ISO 9074) based on concepts of
structured communicating extended state automata and Pascal.
It is oriented towards the specification of complex distributed
systems, in particular communicating systems. A specified
system is presented as a tree of tasks where each task has a
fixed number of input/output access points (interaction points).
Within a specified system it exists a fixed structure of
subsystems (sub-trees of tasks) and communication links
between subsystems.

SDL (Specification and Description Language) is an object-
oriented, formal language defined by The International
Telecommunications Union Telecommunications
Standardization Sector (ITU) (formerly Comité Consultatif
International Télégraphique et Téléphonique [CCITT]) as
recommendation Z.100. The language is intended for the
specification of complex event-driven real-time, and interactive
applications involving many concurrent activities that
communicate using discrete signals.

Indeed, EFSMs can functionally describe system components
that may be blocks or modules depending on the used formal
description technique1.

3. SPECIFICATION AND TESTING
BASED ON Estelle

3.1 Specification
A specified embedded system is a tree of tasks (p-EFSMs)
which can be categorized in three classes corresponding to
controller, sensor and actuator modules. They are organized in
an hierarchical structure (parent-son-relationship). Each task
has a fixed number of Input/Output access points (interaction
points) which can be associated to controller, sensors or
actuator modules. Bidirectional communication links may exist
between tasks (between their interaction points). Within a
specified embedded system exists a fixed structure of
subsystems (sub-trees of tasks), corresponding to controller,
sensors or actuators, and of communications links (between
them) (s. Figure 3). Within a subsystem both structures (of tasks
and communication links) may change dynamically. Tasks
exchange interactions:

1 SDL uses the ‘block’ concept whereas Estelle ‘module’.

 ES

C- Component

E
F
S
M

E
F
S
M

S-
Components

E
F
S
M

A - Components

E
F
S
M

E
F
S
M

interface (interaction point)

Figure 3. Structuring and communication in an ES-

component-based specification
• A task may send an interaction through its interaction point

to a task linked to it, e.g. from C to A via the interaction
points in C and A which are linked to each other (Figure
3).

• An interaction received by a task, as its interaction points,
is appended to a FIFO queue associated to this interaction
point. A FIFO queue may be either associated to one
interaction point (individual queue) or to many interaction
points (common queue)

A task may export variables towards its parent which can access
them (read and write).

Parallelism: Two kinds of parallelism can be expressed in a ES
specification:
• Asynchronous parallelism: only between (actions of) tasks

of different subsystems
• Synchronous parallelism: only between different (actions

of) tasks of the same subsystem. Synchronous parallelism
between actions means that all actions have to complete
their parallel execution before other actions can be
executed in parallel.

Time notion:
• Execution time of tasks (actions) is assumed unknown

because it is implementation dependent.
• Some actions can be specified in such a way that their

execution will be delayed. There are two delay values (min
and max) which may be specified. The values of these
delays are supposed to be modified by an independent
process.

3.2 Syntax Overview
3.2.1 Channel Definition
channel NAME (IP1, IP2)
 by IP1:
 interactionName1 (typed parameters);
 …;
 by IP2:
 interactionName1 (typed parameters);
 …;
 by IP1, IP2:
 interactionName1 (typed parameters);
 …;

A channel determines two channel types: Channel_NAME
(IP1) type and Channel_NAME (IP2) type. A channel type
defines two sets of interactions: those which can be sent through
an interaction point (interface) of this type and those which can
be received through an interaction point of this type (Figure 4).

 ES

C S

Receive_Req

Send_Resp, DATA IPC IPS

Channel CS (IPC, IPS);
 by IPC: Receive_Req;
 by IPS: Send_Resp (a:boolean);
 DATA;
 by IPC: DATA;

p: CS (IPS)
p: CS (IPC)

CONNECT C.p to S.p

Figure 4. Interactions via a channel in an ES-component-

based specification

3.2.2 Module Definition
The module definition consists of three main parts:
declaration part, initialization part and transition part. The
declaration part defines the manipulated objects like
constants, types, variables, functions or procedures, state,
stateset, channels, (sub) module headers and bodies,
module variables etc. The initialization part initializes
and controls variables and state variables, creates
subtasks (sub-module instances) and establishes
communication links. The transition part is the most
important because it specifies the embedded system
behaviour.

3.2.3 Transition Part
The transition part is composed of a set of transitions. Each
transition has two parts: conditions and actions. Conditions are
formed by the following clauses: when, from,
provided, delay, priority. The actions are defined
by the clause TO and PASCAL-Program with some extensions
and restrictions:

WHEN clause
 when

raction_point_id.interaction_name inte
FROM clause
 from state
 f
PROVIDED clause

rom stateset

DELAY clause

provided Boolean expression

 delay (integer_expression)

TO clause

delay (integer_expr1, integer_expr2)

 to state
 to same
 output

It is easy to map a p-EFSM specification onto the behavioral
part (transition part) of an Estelle module. The when clause
corresponds to input events in p-EFSM, from to edge state,
provided to predicate, delay is a timing special input event, to to
the tail state and output to output event.

If the formal specification is provided in form of p-EFSMs
(corresponding to a module) or in FDT many properties
(completeness, correctness, consistency, safety, reachability
etc.) of an embedded system can be automatically checked. In
addition, different phases of the development process (analysis,
implementation derivation, test data generation, diagnosis) can
be unambiguisly and effectively supported [6] [7] [9].

3.3 Test Generation Methods
There exist many test generation methods that are based on
FSMs and which can be under some assumptions adapted to

EFSMs [6] [7] [8]. Some of them are able to detect only certain
errors classes, whereas other allow to cover all errors classes.
All these methods based on FSMs have a common basic idea. A
test sequence is a preferably short sequence of consecutive
transitions that contains every transition of the FSM at least
once and allows to check whether every transition is
implemented as defined. To test a transition, one has to apply
the input for the transition in the starting state of the transition,
to check whether the correct output occurs, and to check
whether the correct next state has been reached after the
transition. Checking the next state might be omitted (transition
tour method) or be carried out by means of distinguishing
sequences (checking experiments method), characterizing
sequences (W-method), or unique input/output sequences (UIO
methods). Some of these methods were also extended to
nondeterministic FSMs [7].

4. CONCLUSION
In this paper we presented an approach based on formal
description techniques for specification of component-based
embedded systems. The intermediate model EFSM allows to
specify a system component independently of a given FDT,
however, easily translatable in a preferred FDT, i.e. Estelle or
SDL. We described the basic structure of embedded systems
and demonstrate how a component-based approach can be
applied for them using Estelle as FDT example. The main goal
is to reuse the many well-known methods (automatic analysis,
test data generation, validation, diagnosis, formal fault models)
that have been since decades developed around state/transition-
based models because formal approaches are very
recommended in the today’s growing complexity of embedded
system requirements, especially regarding safety real-time
property.

In a future work, we plan to specify a real-life embedded system
from the automotive area by using FDTs.

REFERENCES
[1] Specification and Description Language SDL ’92. ITU-T

Recommendation Z.100, 1992.

[2] Information processing systems – Open Systems
Interconnection – Estelle: A formal description technique
based on an extended state transition model. International
Standard ISO 9074, 1989.

[3] Buessow, R., Geisler, R. and Klar, M. Specifying safety-
critical embedded systems with statecharts and Z: A case
study. In Proceedings of Fundamental Approaches to
Software Engineering (FASE’98), Lisbon, 1998.

[4] Mendler, M. and Luettgen, G. Statecharts: From Visual
Syntax to Model-Theoretic Semantics. In K. Bauknecht,
W. Brauer, and Th. Mück (editors), Workshop on
Integrating Diagrammatic and Formal Specification
Techniques (IDFST 2001), pages 615-621, Vienna, 2001.

[5] Potter, B., Sinclair, J. and Till, D. Introduction to Formal
Specification and Z (2nd Ed.). Prentice Hall PTR; 1996.

[6] Aho, A. V. et al. An optimisation technique for protocol
conformance test generation based on UIO sequences and
Rural Chinese Postman Tours. In S. Aggarwal and K.
Sabnani, editors, Protocol Specification, Testing, and
Verification, New Jersey, 1988.

[7] Fujiwara, S. et al. Test selection based on finite state
models. IEEE transaction on Software Engineering 17(6):
591-603, 1991.

[8] Richter, H., et al. A Concept For a Reliable, Cost-
Effective, Real-Time Local-Area Network for
Automobiles. In Proceedings of Joint conference
Embedded in Munich and Embedded Systems, Munich,
2004.

[9] Henniger, O., Ulrich, A. and König, H. Transformation of
Estelle modules aiming at test case derivation. In A.
Cavalli and S. Budkowski (eds.), 8th International
Workshop on Protocol Test systems, Chapmann & Hall,
1995.

[10] Crnkovic, I. Component-based approach for embedded
systems. Ninth International Workshop on Component-
Oriented Programming, Oslo, 2000.

[11] Beydeda, S. and Gruhn, V. Testing Component-Based
Systems Using FSMs. In Beydeda and Gruhn (Eds.),
Springer-Verlag, 263-280, 2004.

	ABSTRACT
	INTRODCTION
	BACKGROUNDS
	Embedded System Components
	SPECIFICATION AND TESTING BASED ON Estelle
	Syntax Overview
	3.2.1 Channel Definition
	3.2.2 Module Definition
	3.2.3 Transition Part

	CONCLUSION
	REFERENCES

