
Motivations
DREAM types

Use case
Conclusion

DREAM Types
A Domain Specific Type System for

Component-Based Message-Oriented Middleware

Philippe Bidinger1, Matthieu Leclercq1, Vivien Quéma1,2,
Alan Schmitt1, Jean-Bernard Stefani1

1INRIA, France

2Institut National Polytechnique de Grenoble, France

SAVCBS 2005

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Outline

1 Motivations
Component-based programming
The DREAM framework
Problem statement

2 DREAM types
Overview
Message types
Component types
Checking a configuration

3 Use case

4 Conclusion

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Component-based programming
The DREAM framework
Problem statement

Outline

1 Motivations
Component-based programming
The DREAM framework
Problem statement

2 DREAM types
Overview
Message types
Component types
Checking a configuration

3 Use case

4 Conclusion

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Component-based programming
The DREAM framework
Problem statement

Component-based programming

Component-based frameworks have emerged in the past
two decades:

applications (EJB, CCM)
middleware (dynamicTAO, OpenORB)
operating systems (OSKit, THINK)

A component:
is independently deployable
is configurable (attributes)
has interfaces (client, server)
communicate through bindings between interfaces

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Component-based programming
The DREAM framework
Problem statement

Outline

1 Motivations
Component-based programming
The DREAM framework
Problem statement

2 DREAM types
Overview
Message types
Component types
Checking a configuration

3 Use case

4 Conclusion

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Component-based programming
The DREAM framework
Problem statement

The DREAM framework

Component framework for constructing message-oriented
middleware (MOM)

General component model
Component library

Message queues, serializer, channels, routers, . . .

Tools for the description, configuration and deployment of
MOMs

Various MOMs can be built:
Publish/Subscribe, Event/Reaction, Group communication
protocols, . . .

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Component-based programming
The DREAM framework
Problem statement

A simplistic DREAM MOM

producer

serializer

addIP

channelOut

consumer

deserializer

removeIP

channelIn

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Component-based programming
The DREAM framework
Problem statement

DREAM messages

DREAM components exchange messages
Messages are Java objets that encapsulate named chunks
Each chunk implements an interface that defines its type

Basic operations over messages
read, add, remove, or update a chunk of a given name

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Component-based programming
The DREAM framework
Problem statement

Outline

1 Motivations
Component-based programming
The DREAM framework
Problem statement

2 DREAM types
Overview
Message types
Component types
Checking a configuration

3 Use case

4 Conclusion

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Component-based programming
The DREAM framework
Problem statement

Problem statement

Three kinds of run-time errors
A chunk is absent when it should be present
A chunk is present when it should be absent
A chunk does not have the expected type

But... all messages in DREAM have the same type: the
Message Java interface

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Component-based programming
The DREAM framework
Problem statement

Example

Message Message

i o

readTS

Message Message

i o

addTS

Message

Message

i

o1

duplicator

o2

Message

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Outline

1 Motivations
Component-based programming
The DREAM framework
Problem statement

2 DREAM types
Overview
Message types
Component types
Checking a configuration

3 Use case

4 Conclusion

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Overview

Goals

Catching configurations errors early on, when writing the
architecture description of a DREAM MOM

How?

By defining a richer type system allowing the description of:

the internal structure of messages

the behavior of components

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Overview

Goals

Catching configurations errors early on, when writing the
architecture description of a DREAM MOM

How?

By defining a richer type system allowing the description of:

the internal structure of messages

the behavior of components

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Type system

Adaption of existing work on type systems for extensible
records for ML (D. Rémy, 1993)

Definition

An extensible record is a finite set of associations, called fields,
between labels and values

DREAM messages can be seen as records, where each
chunk correspond to a field of the record

DREAM components can be seen as polymorphic functions

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Type system

Adaption of existing work on type systems for extensible
records for ML (D. Rémy, 1993)

Definition

An extensible record is a finite set of associations, called fields,
between labels and values

DREAM messages can be seen as records, where each
chunk correspond to a field of the record

DREAM components can be seen as polymorphic functions

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Type system

Adaption of existing work on type systems for extensible
records for ML (D. Rémy, 1993)

Definition

An extensible record is a finite set of associations, called fields,
between labels and values

DREAM messages can be seen as records, where each
chunk correspond to a field of the record

DREAM components can be seen as polymorphic functions

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Outline

1 Motivations
Component-based programming
The DREAM framework
Problem statement

2 DREAM types
Overview
Message types
Component types
Checking a configuration

3 Use case

4 Conclusion

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Message types

A message type consists of:
a list of pairwise distinct labels together with

the type of the corresponding value
a special tag abs if the message does not contain the given
label

Includes type, field, and row (record) variables

ser, an ad-hoc type constructor
if τ is an arbitrary type, ser(τ) is the type of serialized
values of type τ

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Examples

µ1 = {a : pre(A); b : pre(B);abs}

µ2 = {a : pre(A); b : pre(B); c : abs;abs}

µ3 = {a : pre(X);abs}

µ4 = {a : Y ;abs}

µ5 = {a : pre(A); Z}

µ6 = {a : pre(A); b : Z ′; Z ′′}

µ7 = {a : pre(A); a : pre(B);abs}

µ8 = {a : X ; b : abs; X}

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Outline

1 Motivations
Component-based programming
The DREAM framework
Problem statement

2 DREAM types
Overview
Message types
Component types
Checking a configuration

3 Use case

4 Conclusion

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Component types

A component has a set of server ports and client ports

Each port is characterized by:
its name
the type of the values it can carry

The type of a component is polymorphic, mapping client
port types to server port types

Polymorphism is important for two reasons:
the same component can be used in different contexts with
different types
it expresses explicit dependencies between client and
server port types

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Examples

id : ∀X .{i : {X}} → {o : {X}}

dup : ∀X .{i : {X}} → {o1 : {X}; o2 : {X}}

adda : ∀X .{i : {a : abs; X}} → {o : {a : pre(A); X}}

removea : ∀X , Y .{i : {a : Y ; X}} → {o : {a : abs; X}}

reset : ∀X .{i : {a : pre(A); X}} → {o : {a : pre(A); X}}

serialize :∀X .{i : {X}} → {o : {s : ser({X});abs}}

deserialize :∀X .{i : {s : ser({X});abs}} → {o : {X}}

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Outline

1 Motivations
Component-based programming
The DREAM framework
Problem statement

2 DREAM types
Overview
Message types
Component types
Checking a configuration

3 Use case

4 Conclusion

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Overview
Message types
Component types
Checking a configuration

Checking a configuration

Type checking using equational theory and unification
algorithm (D. Rémy, 1993)

{ts : pre(A) ; Y}

{ts : pre(A) ; Y}

i

o

readTS

{ts : abs ; Z} {ts : pre(A) ; Z}

i o

addTS

{X}

{X}

i

o1

duplicator

o2

{X}

Configuration well-typed iff we can solve the equations:

{X} = {ts : pre(A); Y}

{X} = {ts : abs; Z}

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Use case

{X}

{tc:pre(TestChunk); abs}

producer

{sc:pre(ser(X)); abs}

serializer

{ipc:abs; X}

{ipc:pre(IPChunk); X}

addIP

{ipc:pre(IPChunk); X}

{ipc:pre(IPChunk); X}

channelOut

{X}

{tc:pre(TestChunk); abs}

consumer

{sc:pre(ser(X)); abs}

deserializer

{ipc:abs; X}

{ipc:pre(IPChunk); X}

removeIP

{X}

{X}

channelIn

i

o

i

o

i

o

io

o

i

o

i

o

i

(a)

{X}

{tc:pre(TestChunk); abs}

producer

{sc:pre(ser(X)); abs}

serializer

{ipc:abs; X}

{ipc:pre(IPChunk); X}

addIP

{ipc:pre(IPChunk); X}

{ipc:pre(IPChunk); X}

channelOut

{ipc:abs; X}

{tc:pre(TestChunk); abs}

consumer

removeIP

{X}

{X}

channelIn

i

o

i

o

i

o

io

o

i

i

o

{ipc:pre(IPChunk); X}

(b)

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Use case

From bindings, we deduce the following equations:

{tc : pre(TestChunk);abs} = {U} (1)

{sc : pre(ser(U));abs} = {ipc : abs; Z} (2)

{ipc : pre(IPChunk); T} = {ipc : pre(IPChunk); Z} (3)

{ipc : pre(IPChunk); Z} = {Y} (4)

{Y} = {ipc : pre(IPChunk); X} (5)

{ipc : abs; X} = {tc : pre(TestChunk);abs} (6)

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Use case

From 6, we deduce that

X = {tc : pre(TestChunk);abs}

Then from 5, we have

Y = {ipc : pre(IPChunk); tc : pre(TestChunk);abs}

It follows from 4 and 3 that

T = Z = {tc : pre(TestChunk);abs}

Besides, we deduce from 2 that

Z = {sc : pre(ser(U));abs}

tc : pre(TestChunk);abs and sc : pre(ser(U));abs are not
unifiable ⇒ the configuration is not correct

P. Bidinger et al. DREAM types



Motivations
DREAM types

Use case
Conclusion

Conclusion

Domain specific type system for messages and
components

Based on existing work on extensible records
Rich enough to address component assemblages such as
protocol stacks

FFS: type system is too restrictive to type DREAM
components that exhibit different behavior depending on
the presence of a given label in a message (e.g. routers)

DREAM operational semantics
Intersection types

P. Bidinger et al. DREAM types



Appendix For Further Reading

For Further Reading I

M. Leclercq, V. Quéma and J.-B. Stefani.

DREAM: a Component Framework for Constructing
Resource-Aware, Configurable Middleware.

IEEE Distributed Systems Online, vol. 6 no. 9, 2005.

E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma and J.-B.
Stefani.

FRACTAL: an Open Component Model and its Support in Java.

Proceedings of the International Symposium on
Component-based Software Engineering (CBSE), 2004.

P. Bidinger et al. DREAM types



Appendix For Further Reading

For Further Reading II

P. Bidinger, A. Schmitt and Jean-Bernard Stefani.

An Abstract Machine for the Kell Calculus.

Proceedings of the International Conference on Formal Methods
for Object-Based Distributed Systems (FMOODS), 2005.

D. Hirschkoff, T. Hirschowitz, D. Pous, A. Schmitt and J.-B.
Stefani.

Component-Oriented Programming with Sharing: Containment is
not Ownership.

Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), 2005.

P. Bidinger et al. DREAM types



Appendix For Further Reading

Questions

http://dream.objectweb.org – DREAM

implementation and documentation

http://sardes.inrialpes.fr/kells – Kell calculus
papers and implementation

P. Bidinger et al. DREAM types


	Motivations
	Component-based programming
	The Dream framework
	Problem statement

	Dream types
	Overview
	Message types
	Component types
	Checking a configuration

	Use case
	Conclusion
	Appendix
	For Further Reading


