DREAM Types

A Domain Specific Type System for
Component-Based Message-Oriented Middleware

Philippe Bidinger!, Matthieu Leclercg?, Vivien Quémat-?,
Alan Schmitt!, Jean-Bernard Stefanit

1INRIA, France

2|nstitut National Polytechnique de Grenoble, France

SAVCBS 2005

P. Bidinger et al. DREAM types

Q Motivations
@ Component-based programming
@ The DREAM framework
@ Problem statement

9 DREAM types
@ Overview

@ Message types
@ Component types
@ Checking a configuration

e Use case
@ Conclusion

P. Bidinger et al. DREAM types

Motivations

Component-based programming
The DREAM framework
Problem statement

Q Motivations
@ Component-based programming

P. Bidinger et al. DREAM types

Motivations Component-based programming

The DREAM framework
Problem statement

Component-based programming

@ Component-based frameworks have emerged in the past
two decades:
@ applications (EJB, CCM)
@ middleware (dynamicTAO, OpenORB)
@ operating systems (OSKit, THINK)

@ A component:
@ is independently deployable
@ is configurable (attributes)
@ has interfaces (client, server)
@ communicate through bindings between interfaces

P. Bidinger et al. DREAM types

Motivations

Component-based programming
The DREAM framework
Problem statement

Q Motivations

@ The DREAM framework

P. Bidinger et al. DREAM types

Motivations _ o .
Component-based programming

The DREAM framework
Problem statement

The DREAM framework

@ Component framework for constructing message-oriented
middleware (MOM)

@ General component model
@ Component library

@ Message queues, serializer, channels, routers, ...

@ Tools for the description, configuration and deployment of
MOMs

@ Various MOMs can be built:

@ Publish/Subscribe, Event/Reaction, Group communication
protocals, ...

P. Bidinger et al. DREAM types

Motivations ey Mo . -
Component-based programming

The DREAM framework
Problem statement

A simplistic DREAM MOM

producer consumer
L
| |
+
serializer deserializer
£
l I
+
addIP removelP
L
| |
+
channelOut channelln
£

]

nger et al DREAM types

Motivations _ o .
Component-based programming

The DREAM framework
Problem statement

DREAM messages

@ DREAM components exchange messages

@ Messages are Java objets that encapsulate named chunks
@ Each chunk implements an interface that defines its type

@ Basic operations over messages
@ read, add, remove, or update a chunk of a given name

P. Bidinger et al. DREAM types

Motivations

Component-based programming
The DREAM framework
Problem statement

Q Motivations

@ Problem statement

P. Bidinger et al. DREAM types

Motivations _ o .
Component-based programming

The DREAM framework
Problem statement

Problem statement

@ Three kinds of run-time errors

@ A chunk is absent when it should be present
@ A chunk is present when it should be absent
@ A chunk does not have the expected type

@ But... all messages in DREAM have the same type: the
Message Java interface

P. Bidinger et al. DREAM types

Motivations I, . . -
Component-based programming

The DREAM frame k
Problem statement

Example

i o
Message Message
ol readTS
Message
i
Message
02
duplicator Message
i o
Message Message
addTS

idinger et al DREAM types

DREAM types

9 DREAM types
@ Overview

idinger et al

Overview
Message types
Component types

Checking a configuration

DREAM types

Overview
DREAM types Message types
Component types

Checking a configuration

Overview

Catching configurations errors early on, when writing the
architecture description of a DREAM MOM

P. Bidinger et al. DREAM types

Overview
DREAM types Message types
Component types

Checking a configuration

Overview

Catching configurations errors early on, when writing the
architecture description of a DREAM MOM

By defining a richer type system allowing the description of:

@ the internal structure of messages
@ the behavior of components

P. Bidinger et al. DREAM types

Overview

DREAM types Message types
Component types
Checking a configuration

Type system

@ Adaption of existing work on type systems for extensible
records for ML (D. Rémy, 1993)

P. Bidinger et al. DREAM types

Overview
DREAM types Message types
Component types

Checking a configuration

Type system

@ Adaption of existing work on type systems for extensible
records for ML (D. Rémy, 1993)

Definition

An extensible record is a finite set of associations, called fields,
between labels and values

P. Bidinger et al. DREAM types

Overview
DREAM types Message types
Component types

Checking a configuration

Type system

@ Adaption of existing work on type systems for extensible
records for ML (D. Rémy, 1993)

Definition

An extensible record is a finite set of associations, called fields,
between labels and values

@ DREAM messages can be seen as records, where each
chunk correspond to a field of the record

@ DREAM components can be seen as polymorphic functions

P. Bidinger et al. DREAM types

Overview
DREAM types Message types
Component types

Checking a configuration

9 DREAM types

@ Message types

P. Bidinger et al. DREAM types

Overview

DREAM types Message types
Component types
Checking a configuration

Message types

@ A message type consists of:
@ a list of pairwise distinct labels together with

@ the type of the corresponding value
@ a special tag abs if the message does not contain the given
label

@ Includes type, field, and row (record) variables
@ ser, an ad-hoc type constructor

o if 7 is an arbitrary type, ser () is the type of serialized
values of type

P. Bidinger et al. DREAM types

Overview

DREAM types Message types
Component types
Checking a configuration

Examples

p1 ={a:pre(A);b:pre(B);abs}

p2 ={a:pre(A);b:pre(B);c:abs;abs}
pus = {a:pre(X);abs}

g ={a:Y;abs}

ps ={a:pre(A)Z}
pe ={a:pre(A;b:z2",2"}
ur ={a:pre(A);a:pre(B);abs}

ug ={a: X;b:abs; X}

P. Bidinger et al. DREAM types

DREAM types
Component types

Checking a configuration

9 DREAM types

@ Component types

P. Bidinger et al. DREAM types

Overview

DREAM types Message types
Component types
Checking a configuration

Component types

@ A component has a set of server ports and client ports

@ Each port is characterized by:

@ its name
@ the type of the values it can carry

@ The type of a component is polymorphic, mapping client
port types to server port types

@ Polymorphism is important for two reasons:
@ the same component can be used in different contexts with
different types
@ it expresses explicit dependencies between client and
server port types

P. Bidinger et al. DREAM types

Ove W

DREAM types Message types
Component types
Checking a configuration

Examples

id: VX {i: {X}} = {o:{X}}
dup : VX {i: {X}} = {o1: {X};02:{X}}
add, : vX.{i : {a:abs;X}} — {o:{a:pre(A);X}}
remove, : VX, Y {i: {a:Y;X}} — {o: {a:abs;X}}
reset : VX.{i : {a:pre(A);X}} — {o:{a:pre(A);X}}
serialize :WVX.{i : {X}} — {o: {s:ser({X});abs}}
deserialize :¥X .{i : {s:ser ({X});abs}} — {o: {X}}

P. Bidinger et al. DREAM types

Overview
DREAM types Message types
Component types

Checking a configuration

9 DREAM types

@ Checking a configuration

P. Bidinger et al. DREAM types

Overview

DREAM types Message types
Component types
Checking a configuration

Checking a configuration

@ Type checking using equational theory and unification
algorithm (D. Rémy, 1993)

- -

{ts: pre(A) ; Y}

{ts : pre(A); Y}

ol readTS

H| &

duplicator

02

°

HY {tszabs; 2} fts:pre(A): Z}

addTS

Configuration well-typed iff we can solve the equations:

{X}={ts:pre(A);Y}
{X}={ts:abs;Z}

P. Bidinger et al. DREAM types

Use case

Use case

producer consumer producer consumer
o l {te:pre(TestChunk); abs} {te:pre(TestChunk); abs} B l {te:pre(TestChunk); abs} i 7 {te:pre(TestChunk); abs}
i+) x) i+
serializer deserializer serializer
o L {ipeiabs; X}
B l {sczpre(ser(X)); abs} ,-!I- {sc:pre(ser(X)); abs} ° l {sc:pre(ser(X)); abs}
i tipeiabs; X} o | {ipcabs: X} - tipeiabs; X} removelP
i = {ipe:pre(IPChunk); X}
addIP removelP addIP
B l {ipe:pre(IPChunk); X} ,-!I- fipe:pre(IPChunk); X} o l fipe:pre(IPChunk); X}
i L tipepre(IPChunk); X) ol Xy i 4 tipe:pre(IPChunk):; X} o x)
channelOut channelln channelOut channelln
o1 tipe:pre(IPChunk); X} o~ tipepre(IPChunk); X} ,-i- X}

(b)

DREAM types

Use case

Use case

From bindings, we deduce the following equations:

{tc : pr e(Test Chunk);abs} = {U} (1)
{sc :pre(ser (U));abs} = {ipc : abs;Z} 2
{ipc : pre(l PChunk); T} = {ipc : pr e(l PChunk);Z} (3)
{ipc : pre(l PChunk);Z} = {Y} 4

{Y} = {ipc : pre(l PChunk); X} (5)

{ipc : abs; X} = {tc : pre(Test Chunk);abs} (6)

P. Bidinger et al. DREAM types

Use case

Use case

From 6, we deduce that
X = {tc : pr e(Test Chunk); abs}

Then from 5, we have
Y = {ipc : pre(l PChunk);tc : pr e(Test Chunk); abs}

It follows from 4 and 3 that
T =Z = {tc : pre(Test Chunk); abs}

Besides, we deduce from 2 that
Z = {sc:pre(ser(U));abs}

tc : pr e(Test Chunk); abs and sc : pre(ser (U)); abs are not
unifiable = the configuration is not correct

P. Bidinger et al. DREAM types

Conclusion

Conclusion

@ Domain specific type system for messages and
components
@ Based on existing work on extensible records
@ Rich enough to address component assemblages such as
protocol stacks

@ FFS: type system is too restrictive to type DREAM
components that exhibit different behavior depending on
the presence of a given label in a message (e.g. routers)

o DREAM operational semantics
@ Intersection types

P. Bidinger et al. DREAM types

Appendix For Further Reading

For Further Reading |

@ M. Leclercq, V. Quéma and J.-B. Stefani.

DREAM: a Component Framework for Constructing
Resource-Aware, Configurable Middleware.

IEEE Distributed Systems Online, vol. 6 no. 9, 2005.

[E.Bruneton, T. Coupaye, M. Leclercq, V. Quéma and J.-B.
Stefani.

FRACTAL: an Open Component Model and its Support in Java.

Proceedings of the International Symposium on
Component-based Software Engineering (CBSE), 2004.

P. Bidinger et al. DREAM types

Appendix For Further Reading

For Further Reading Il

@ P Bidinger, A. Schmitt and Jean-Bernard Stefani.
An Abstract Machine for the Kell Calculus.

Proceedings of the International Conference on Formal Methods
for Object-Based Distributed Systems (FMOODS), 2005.

[@ D. Hirschkoff, T. Hirschowitz, D. Pous, A. Schmitt and J.-B.
Stefani.

Component-Oriented Programming with Sharing: Containment is
not Ownership.

Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), 2005.

P. Bidinger et al. DREAM types

Appendix For Further Reading

Questions

@ http://dream obj ect web. or g— DREAM
implementation and documentation

@ http://sardes.inrial pes.fr/kells—Kell calculus
papers and implementation

P. Bidinger et al. DREAM types

	Motivations
	Component-based programming
	The Dream framework
	Problem statement

	Dream types
	Overview
	Message types
	Component types
	Checking a configuration

	Use case
	Conclusion
	Appendix
	For Further Reading

