Non-null References
by Default in the
Java Modeling Language

Patrice Chalin
Dependable Software Research Group (DSRG)

Computer Science and Software Engineering Department

Concordia University

Montreal, Canada

Specification and Verification of Component-Based Systems
(SAVCBS’05)
September 5-6, 2005 at ESEC/FSE 2005, Lisbon, Portugal

Outline

* Introduction
— Null pointer exceptions
— Better detecting them statically using JML ...

Null Pointer Dereference

* Quite a common symptom of a software bug in
C based languages:

— Java: results 1n a NullPointerException.

 Static analysis tools
— Code analysis
— Detect possible null pointer dereferences.

— Limited success i1f given only code.

Code + Specs = Better Detection

* Analysis tools can detect a large proportion of
null pointer exceptions when programs are
suitable annotated.

* Some tools support a minimal set of
annotations (e.g. declaration modifiers)

— FindBugs: @NonNull

* QOur focus: the Java Modeling Language ...

Java Modeling Language (JML)

» #1 Behavioral Interface Specification
Language (BISL) for Java.

* Supports
— declaration modifiers, €.g. non null.

— Contract-based specification
 (Class invariants

* Method specifications via pre-, post-conditions

— More general: BIS

JML Tools

* Various levels of checking (Tool)
— Run-time assertion checking (JML RAC)
— Extended static checking (ESC/Java2)
— (Full) Program verification (LOOP)

« ESC/Java2

« What does JML look like ...?

JML Example

public abstract class Greeting {
// ..

L

e [llustrates JIML..

* [llustrates means by which declarations can be
constrained to be non-null.

Greeting Class — declaration modifiers

private /*0 spec public non_null */
String nm;

/*@ public normal behavior

@

@ requires 'aNm.equals('"");

@ modifies nm;

@ ensures nm == aNm;

@*/
public void set(/*@ non_null @*/ String aNm)
{

}

nm = aNm;

Greeting Class — non-null assertions

private /*0 spec public non_null */
String nm;

/*@ public normal behavior
@ requires aNm = null &&
@ TaNm.equals('"'");
@ modifies nm;
@ ensures nm == aNm;
@*/

public void set(String aNm)

{

}

nm = aNm;

Experiences Writing JML

 JML, like Java assumes references can be null.

— Extra annotation required to constrain as non-null

* Notice that in the previous example:
— Two reference type declarations.
— Both constrained to be non-null.

Hypothesis

 After having written JML for a few case
studies i1t seemed that we were writing

/*@ non _null @*/

very often.

» Study conducted to test hypothesis:

— By design, the majority of reference type
declarations that are meant to be non-null.

Study Overview

* Choose a (random) sampling of Java source
files from four projects.

* Added non-null annotations (JML)
based on our understanding of the design.

* Measured proportion of non-null declarations.

Study

We now explain

e Metrics

* Tool

e Study subjects

* Procedure

* Results

 (Threats to validity)

Study: Metrics (principal ones)

Number of declarations (per file)
e that are of a reference type (d)
» specified to be non-null (2, hence m < d).

Study: Main Statistic

* Proportion of reference type declarations that
are non-null.

e x=m/d

Measuring d, number of ref. decl.

Count:
e Fields

— Instance
— Static

e Methods (return types)
* Method parameters.

Excluding: local variables

Measuring m, number of non-null d

 Declaration modifier
—/*@ non_null @*/

» Assertions
—0 "= null and variants '(null == 0), ...
—0 Instanceof C
—\fresh(o)
—\nonnul lelements(0)

Measuring m for Fields

/*@ non_null @*/ Object o01;

Object o2;
//0 1nvariant o2 1= null;

static Object a[];
//0 static i1nvariant
//0 \nonnul lelements(a);

Measuring m for Methods & Param.

* Some challenges
— Multiple specification blocks.

— Normal and exceptional behavior.

Measuring m for Methods

/*@ normal _behavior
@ requires 1 ==
@ ensures \result !'= null
@ && \result.equals('zero");
@ also
@ normal_behavior
@ requires 1 > 0;
@ ensures \result = null
@ && \result.equals("positive");
@ also
@ exceptional behavior
@ requires 1 < 0;
@ sighals(Exception e) true;
@*/

/*@ pure @*/ String m(int 1) { .- }

[TBC|] Measuring m for Parameters

e Similar to previous case ...

— Except that parameter 1s not counted as non null 1f
there 1s a signals only clause.

Measuring m for Overriding Methods

* Cannot only examine specification of method.

* Must consider method specification as given in
ancestor classes.

Measuring m for Overriding Methods

class Greeting {
//0 ensures \result = null;

/70 && "\result.equals(''); public
abstract /7*@ pure @*/ String greeting();

}

class FrenchGreeting extends Greeting {
//0 also

//0 ensures \result.equals(''Bonjour ');
public /*@pure non_null*/

String greeting() { return "'Bonjour '; }
by

Tool

* Adapted the ISU JML checker
— Uses tool to parse and type check.

— Accumulates metrics during/after type checking.

Study Subjects

1. ISU JML checker
2. ESC/Java2
3. Tallying subsystem of Koa

— Dutch internet voting application

— Used 1n 2004 European parlementary elections.

4. Web-based Enterprise Application framework
and samples (SoenEA) used at Concordia.

Study Subjects: Encompassing System

ISU ESC Koa e-

Tools Tools pocHES Voting Total
of files 831 455 52 459 1797
LOC (K) 243 124 3 87 457

SLOC (K) 140 75 2 62 278

Study Subjects: Overall Project

ISU Tools
of files 831
LOC (K) 243
SLOC (K) 140
Stuc‘!y Checker
subject

of files 217
LOC (K) 86

SLOC (K) 58

ESC Tools

455
124

75

ESC/
Java2

216
63
41

SoenEA

52
3

2

Koa

459
87

62

SoenEA Koa TS

52
3

29
10
4

Total

1797
457

278

Total

514
161
104

Study Subjects

* Why these?
— They were partly annotated already.

— We were familiar or knew someone familiar with
the design and implementation.

— Offer an interesting selection

* Web apps are a common use for Java.

Procedure

e Choose source files:

— Either used entire component in study, or took a
random election of 35 files.

* Annotated source files by adding non-null
constraints.

— Stop annotating once mean — error > 50%.

Results: Summary

n
Y

2.4,

2. m,
xd./ym,
mean (x)
std.dev.(s)
E (0=5%)

H min

JML
Checker

35
217
376
210
56%
59%
0.24
7.4%

52%

ESC/
Javaz

35
216
807
499
62%
60%
0.31
9.3%
51%

Soe

n-EA

41

41
231
177
1 7%
12%
0.37

2%

Koa TS

AS
AS
564
368
65%
64%
0.32

64%

Sum or
JA\Y2

140
503
1978
1254
63%
64%

60%

Results: % of files having a value for x in given range

0% 5% 10% 15% 20% 25% 30%

(0-10%)
10-20%)
20-30%) |
30-40%)
40-50%) |
50-60%) |
60-70%) |
70-80%) |
80-90%) |
[90-100%) T

[100%)] \ \ _ |

@0 JML Checker B ESC/Java2 [0 SoenEA O Koa TS

Mean of x by kind of declaration

B m

JML ESC/Java2 SoenEA KoaTS Overall
Checker

O Fields B Methods O Parameters

Threats to (Internal) Validity

* Main threat: we were wrong 1n annotating a
declaration as non-null.

e Mitigation: we were conservative 1n our
annotation exercise.

e Solution: run ESC/Java2 ESC/Java2 on the
study subjects to validate our specifications.
(50% done)

Improving JML

 If well over 50% of decl. are non-null, why not
adopt non-null as the default?

Advantages:
 Non-null 1s a safer default.

* Without any effort, unannotated source files
would be over 50% correct.

* Much less effort to correct remaining
declarations by marking them nullable.

Language design goals of JML

 Adhere to the semantics of Java to the extent
possible.

* Do not surprise Java developers when
semantics differ ...

— 1.€. G1ive some explicit indication

JML: Declaration Modifiers

* Class modifier warning developer of different
default:

—/*@ non_null by default @*/

— Un annotated declarations would be implicitly
declared non_null.

 To override default:
—/*0 nullable @*/

JML Tool Help

* Help developers learn about the new default.

 JML checker to warn if class default 1s not
explicitly specified as either:

—non_null by default
—nullable by default

Feature Support

e JML checker and RAC:

— 97% complete
— (keyword change from “null” to “nullable”)

« ESC/Java2
— 40% complete

Other Languages / Tools ...

* Supporting non-null types and/or annotations.

Splint

o Static checker for C.
* Mainly supports annotation pragmas.
e Default: non-null.

* Declaration modifier: (@null.

Nice

* Essentially an enriched variant of Java.
* Supporting

— parametric types,

— multi-methods, and

— contracts

— among other features
* Default: non-null.
» 77T denotes the type of nullable T.

ECMA Eiffel Standard (2005)

e Introduces notion of
— Attached types.
— Detachable types.

» Default: non-null (attached).
7T denotes a detachable 7.

Spec#

* A superset of C# supporting:
— contracts,
— checked exceptions and
— non-null types.

* For backwards compatibility: default 1s
nullable types.

* 7! denotes non-null type of 7.

Summary

Null pointer exceptions can practically be

eliminated from properly JML annotated Java
code.

Study: over 50% of decl. non-null 1n Java.
JML.:

— New declaration modifiers to support
— New default of non-null

Others also believe this 1s a good 1dea.

Thank you

* Questions / Remarks?

Greeting Class (part 2)

//0@ ensures
\result.equals(greeting()+nm);

public /7*@ pure non_null @*/ String
welcome() {

return greeting() + nm;

}
//0@ ensures \result '= null;
//0 && "\result.equals('"');

public abstract /7*@ pure @*/ String
greeting(),;

	Non-null References by Default in the Java Modeling Language
	Outline
	Null Pointer Dereference
	Code + Specs = Better Detection
	Java Modeling Language (JML)
	JML Tools
	JML Example
	Greeting Class – declaration modifiers
	Greeting Class – non-null assertions
	Experiences Writing JML
	Hypothesis
	Study Overview
	Study
	Study: Metrics (principal ones)
	Study: Main Statistic
	Measuring d, number of ref. decl.
	Measuring m, number of non-null d
	Measuring m for Fields
	Measuring m for Methods & Param.
	Measuring m for Methods
	[TBC] Measuring m for Parameters
	Measuring m for Overriding Methods
	Measuring m for Overriding Methods
	Tool
	Study Subjects
	Study Subjects: Encompassing System
	Study Subjects: Overall Project
	Study Subjects
	Procedure
	Results: Summary
	Results: % of files having a value for x in given range
	Mean of x by kind of declaration
	Threats to (Internal) Validity
	Improving JML
	Language design goals of JML
	JML: Declaration Modifiers
	JML Tool Help
	Feature Support
	Other Languages / Tools …
	Splint
	Nice
	ECMA Eiffel Standard (2005)
	Spec#
	Summary
	Thank you

	Greeting Class (part 2)

