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Outline

* Introduction
— Null pointer exceptions
— Better detecting them statically using JML ...



Null Pointer Dereference

* Quite a common symptom of a software bug in
C based languages:

— Java: results 1n a NullPointerException.

 Static analysis tools
— Code analysis
— Detect possible null pointer dereferences.

— Limited success i1f given only code.



Code + Specs = Better Detection

* Analysis tools can detect a large proportion of
null pointer exceptions when programs are
suitable annotated.

* Some tools support a minimal set of
annotations (e.g. declaration modifiers)

— FindBugs: @NonNull

* QOur focus: the Java Modeling Language ...



Java Modeling Language (JML)

» #1 Behavioral Interface Specification
Language (BISL) for Java.

* Supports
— declaration modifiers, €.g. non null.

— Contract-based specification
 (Class invariants

* Method specifications via pre-, post-conditions

— More general: BIS



JML Tools

* Various levels of checking (Tool)
— Run-time assertion checking (JML RAC)
— Extended static checking (ESC/Java2)
— (Full) Program verification (LOOP)

« ESC/Java2

« What does JML look like ...?



JML Example

public abstract class Greeting {
// ..

L

e [llustrates JIML..

* [llustrates means by which declarations can be
constrained to be non-null.



Greeting Class — declaration modifiers

private /*0 spec public non_null */
String nm;

/*@ public normal behavior

@

@ requires 'aNm.equals('"");

@ modifies nm;

@ ensures nm == aNm;

@*/
public void set(/*@ non_null @*/ String aNm)
{

}

nm = aNm;



Greeting Class — non-null assertions

private /*0 spec public non_null */
String nm;

/*@ public normal behavior
@ requires aNm = null &&
@ TaNm.equals('"'");
@ modifies nm;
@ ensures nm == aNm;
@*/

public void set(String aNm)

{

}

nm = aNm;



Experiences Writing JML

 JML, like Java assumes references can be null.

— Extra annotation required to constrain as non-null

* Notice that in the previous example:
— Two reference type declarations.
— Both constrained to be non-null.



Hypothesis

 After having written JML for a few case
studies i1t seemed that we were writing

/*@ non _null @*/

very often.

» Study conducted to test hypothesis:

— By design, the majority of reference type
declarations that are meant to be non-null.



Study Overview

* Choose a (random) sampling of Java source
files from four projects.

* Added non-null annotations (JML)
based on our understanding of the design.

* Measured proportion of non-null declarations.



Study

We now explain

e Metrics

* Tool

e Study subjects

* Procedure

* Results

 (Threats to validity)



Study: Metrics (principal ones)

Number of declarations (per file)
e that are of a reference type (d)
» specified to be non-null (2, hence m < d).



Study: Main Statistic

* Proportion of reference type declarations that
are non-null.

e x=m/d



Measuring d, number of ref. decl.

Count:
e Fields

— Instance
— Static

e Methods (return types)
* Method parameters.

Excluding: local variables



Measuring m, number of non-null d

 Declaration modifier
—/*@ non_null @*/

» Assertions
—0 "= null and variants '(null == 0), ...
—0 Instanceof C
—\fresh(o)
—\nonnul lelements(0)



Measuring m for Fields

/*@ non_null @*/ Object o01;

Object o2;
//0 1nvariant o2 1= null;

static Object a[];
//0 static i1nvariant
//0 \nonnul lelements(a);



Measuring m for Methods & Param.

* Some challenges
— Multiple specification blocks.

— Normal and exceptional behavior.



Measuring m for Methods

/*@ normal _behavior
@ requires 1 ==
@ ensures \result !'= null
@ && \result.equals('zero");
@ also
@ normal_behavior
@ requires 1 > 0;
@ ensures \result = null
@ && \result.equals("positive");
@ also
@ exceptional behavior
@ requires 1 < 0;
@ sighals(Exception e) true;
@*/

/*@ pure @*/ String m(int 1) { .- }



[TBC|] Measuring m for Parameters

e Similar to previous case ...

— Except that parameter 1s not counted as non null 1f
there 1s a signals only clause.



Measuring m for Overriding Methods

* Cannot only examine specification of method.

* Must consider method specification as given in
ancestor classes.



Measuring m for Overriding Methods

class Greeting {
//0 ensures \result = null;

/70 && "\result.equals(''); public
abstract /7*@ pure @*/ String greeting();

}

class FrenchGreeting extends Greeting {
//0 also

//0 ensures \result.equals(''Bonjour ');
public /*@pure non_null*/

String greeting() { return "'Bonjour '; }
by




Tool

* Adapted the ISU JML checker
— Uses tool to parse and type check.

— Accumulates metrics during/after type checking.



Study Subjects

1. ISU JML checker
2. ESC/Java2
3. Tallying subsystem of Koa

— Dutch internet voting application

— Used 1n 2004 European parlementary elections.

4. Web-based Enterprise Application framework
and samples (SoenEA) used at Concordia.



Study Subjects: Encompassing System

ISU ESC Koa e-

Tools Tools pocHES Voting Total
# of files 831 455 52 459 1797
LOC (K) 243 124 3 87 457

SLOC (K) 140 75 2 62 278



Study Subjects: Overall Project
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Study Subjects

* Why these?
— They were partly annotated already.

— We were familiar or knew someone familiar with
the design and implementation.

— Offer an interesting selection

* Web apps are a common use for Java.



Procedure

e Choose source files:

— Either used entire component in study, or took a
random election of 35 files.

* Annotated source files by adding non-null
constraints.

— Stop annotating once mean — error > 50%.



Results: Summary
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Results: % of files having a value for x in given range
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Threats to (Internal) Validity

* Main threat: we were wrong 1n annotating a
declaration as non-null.

e Mitigation: we were conservative 1n our
annotation exercise.

e Solution: run ESC/Java2 ESC/Java2 on the
study subjects to validate our specifications.
(50% done)



Improving JML

 If well over 50% of decl. are non-null, why not
adopt non-null as the default?

Advantages:
 Non-null 1s a safer default.

* Without any effort, unannotated source files
would be over 50% correct.

* Much less effort to correct remaining
declarations by marking them nullable.



Language design goals of JML

 Adhere to the semantics of Java to the extent
possible.

* Do not surprise Java developers when
semantics differ ...

— 1.€. G1ive some explicit indication



JML: Declaration Modifiers

* Class modifier warning developer of different
default:

—/*@ non_null by default @*/

— Un annotated declarations would be implicitly
declared non_null.

 To override default:
—/*0 nullable @*/



JML Tool Help

* Help developers learn about the new default.

 JML checker to warn if class default 1s not
explicitly specified as either:

—non_null by default
—nullable by default



Feature Support

e JML checker and RAC:

— 97% complete
— (keyword change from “null” to “nullable”)

« ESC/Java2
— 40% complete



Other Languages / Tools ...

* Supporting non-null types and/or annotations.



Splint

o Static checker for C.
* Mainly supports annotation pragmas.
e Default: non-null.

* Declaration modifier: (@null.



Nice

* Essentially an enriched variant of Java.
* Supporting

— parametric types,

— multi-methods, and

— contracts

— among other features
* Default: non-null.
» 77T denotes the type of nullable T.



ECMA Eiffel Standard (2005)

e Introduces notion of
— Attached types.
— Detachable types.

» Default: non-null (attached).
7T denotes a detachable 7.



Spec#

* A superset of C# supporting:
— contracts,
— checked exceptions and
— non-null types.

* For backwards compatibility: default 1s
nullable types.

* 7! denotes non-null type of 7.



Summary

Null pointer exceptions can practically be

eliminated from properly JML annotated Java
code.

Study: over 50% of decl. non-null 1n Java.
JML.:

— New declaration modifiers to support
— New default of non-null

Others also believe this 1s a good 1dea.



Thank you

* Questions / Remarks?






Greeting Class (part 2)

//0@ ensures
\result.equals(greeting()+nm);

public /7*@ pure non_null @*/ String
welcome() {

return greeting() + nm;

}
//0@ ensures \result '= null;
//0 && "\result.equals('"');

public abstract /7*@ pure @*/ String
greeting(),;
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