
A Specification Language for
Coordinated Objects

Gabriel Ciobanu∗ and Dorel Lucanu∗∗

gabriel@iit.tuiasi.ro, dlucanu@info.uaic.ro

∗Institute of Computer Science, Romanian Academy, Iaşi, Romania
∗∗“A.I.Cuza” University, Iaşi, Romania

Outline

what is coordination

our approach to coordination: the main idea

our approach to coordination: details
syntax and operational semantics
integrated semantics
implementation

conclusion

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.1/21

What is coordination

“Coordination models and languages are meant to close
the conceptual gap between the cooperation model of an
application and the lower level communication used in its
implementation.” (F. Arbab, What Do You Mean,
Coordination?, 1998)

“...: the formalization of the separation of concerns that is
known as Coordination”
“Object-oriented systems do not go a long way in
supporting that separation.”
(J. Fiadeiro, Categories for Software Engineering, 2005)

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.2/21

Example
consider a sender, a receiver, and unreliable
communication channels

we assume that all these are represented as objects

they should communicate in a safe way

a protocol is a coordinator that instructs the objects
to accomplish a safe communication

the goal of this work is
to specify the protocol and the objects separately,
and then
to check the properties of the assembled system

Alternate Bit Protocol (ABP) is just an example of
such a coordinator

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.3/21

The main idea
the three components of the coordination

coordinated objects
coordinator
a means to coordinate

OSAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.4/21

The main idea
the three components of the coordination

coordinated objects

coordinator
a means to coordinate

OSAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.4/21

The main idea
the three components of the coordination

coordinated objects
coordinator

a means to coordinate

OSAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.4/21

The main idea
the three components of the coordination

coordinated objects
coordinator
a means to coordinate

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.4/21

The main idea

wrapper

(b,~b)

coordinated objects coordinator = process

a

τ

C1:Channel

τ

coordinated objects

A = a.0 + b.0

B = ~b.0

coordinator = processwrapper

S.send() || R.rec()

a −> S.read()

S:Sender

C2:Channel

R:Receiver

(b,~b) −>

OSAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.5/21

The main idea

wrapper

(b,~b)

coordinated objects coordinator = process

a

τ

C1:Channel

τ

coordinated objects

A = a.0 + b.0

B = ~b.0

coordinator = processwrapper

S.send() || R.rec()

a −> S.read()

S:Sender

C2:Channel

R:Receiver

(b,~b) −>

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.5/21

Classes and objects: syntax

class AbsComp
{
Bool bit;
Data data;
Bool ack;

}

class Sender extends AbsComp
{

Bool chBit() {
bit’ = not bit;
data’ = data;
ack’ = ack;

}
void read() {
bit’ = bit;
ack’ = ack;

}
...

}

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.6/21

Classes and objects: configurations

object state: (att1, val1), . . . , (attn, valn)

an execution of a method may change the state:

S.chBit()((bit, true), (ack, false), (data, d)) =

((bit, false), (ack, false), (data, d)).

object instance : (object reference | object state)

configuration: a multiset of object instances s.t. an
object reference occurs at most once

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.7/21

Commands: syntax

〈cmd〉 ::= R = new C(d) |

delete R |

R.m(d) |

R1.m1(d1)‖R2.m2(d2) |

〈cmd〉; 〈cmd〉 |

if 〈bexpr〉 then 〈cmd〉 else 〈cmd〉 |

throw error()

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.8/21

Commands: operational semantics

labeled transition system, where the labels are given
by commands

cnfg
R = new C(d1,...,dn)
−−−−−−−−−−−−→ cnfg , (R|(att1, d1), . . . , (attn, dn));

. . .

cnfg
R1.m1(d1)‖R2.m2(d2)
−−−−−−−−−−−−−→ cnfg ′ iff R1 6= R2, cnfg ′ is

obtained from cnfg by replacing the object instance
(Ri | statei) with (Ri | state′i), where
state′i = Ri.mi(di)(statei), i = 1, 2;

. . .

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.9/21

Coordinators (processes): syntax
proc ABP
{
global actions: in, out, alterS, alterR;
local actions: ch1, ch2;
processes: A, A’, V, B, B’, T;
guards: sok, rok;
equations:
A = in.A’;
A’ = ˜ch1.ch2.V;
V = [sok]alterS.A + [not sok]A’;
B = ch1.T;
T = [rok]B’ + [not rok]out.alterR.B;
B’ = ˜ch2.B;

}

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.10/21

Coordinators: operational semantics
labeled transition system, where the labels are given
by action names

gact.E
gact
−−−→ E

E
act
−−→ E′

E + F
act
−−→ E′

E
act
−−→ E′

E|F
act
−−→ E′|F

EA
act
−−→ E′, A = EA

A
act
−−→ E′

E
act
−−→ E′, γ(guard_id) = true

[guard_id]E
act
−−→ E′

˜lact.E | lact.E′
τ(lact)
−−−−→ E|E′

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.11/21

Wrapper: syntax

wrapper w(Sender S, Receiver R) implementing ABP
{
in -> S.read();
alterS -> S.chBit();
alterR -> R.chAck();
tau(ch1) ->

R.recFrame(S.data(), S.bit()) ||
S.sendFrame();

tau(ch2) ->
S.recAck(R.ack()) || R.sendAck();

out -> R.write();
sok -> S.bit == S.ack;
rok -> R.bit =/= R.ack;

}

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.12/21

Wrapper: operational semantics

labeled transition system, where the labels are given
by action names

cnfg
act
−−→ cnfg ′ iff cnfg

w(R)(act)
−−−−−−→ cnfg ′

cnfg
τ(ch2)
−−−−→ cnfg ′ iff cnfg

S.recAck(R.ack())‖R.sendAck()
−−−−−−−−−−−−−−−−−−→ cnfg ′

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.13/21

Integrated semantics

labeled transition systems as coalgebras
Set is the category of sets
A is the set of action names
TLTS : Set→ Set is the functor given by

TLTS(X) = {Y ⊆ A×X | Y finite}

a coalgebra representing a l.t.s. is a function
γ : X → TLTS(X)

x
a
−→ y iff (a, y) ∈ γ(x)

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.14/21

Integrated semantics

operational semantics of the coordinator: π : Proc → TLTS(Proc)

operational semantics of the wrapper:
w(R) : Config → TLTS(Config)

operational semantics of the integrated system consists of a
partial supervising operation proc : Config → Proc and a
coalgebra γ : dom(proc)→ TLTS(Config) s.t. the following diagram
commutes:

Config
id

←−−−− dom(proc)
proc

−−−−→ Proc

w(R)

y
yγ

yπ

TLTS(Config) ←−−−−−
TLTS(id)

TLTS(dom(proc)) −−−−−−→
TLTS(proc)

TLTS(Proc)

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.15/21

Supervising means bisimulation
Proposition.
Let γ∼ : graph(proc)→ TLTS(graph(proc)) be the coalgebra
given by (a, 〈cnfg2, p2〉) ∈ γ∼(〈cnfg1, p1〉) iff
proc(cnfg1) = p1, proc(cnfg2) = p2, and
(act, cnfg2) ∈ γ(cnfg1). Then γ∼ is a bisimulation between
w(R) and π.

γ: cnfg1
act
−−→ cnfg2 iff

p1 supervises cnfg1 (proc(cnfg1) = p1) and
p2 supervises cnfg2 (proc(cnfg2) = p2) and
. . .

γ∼: 〈cnfg1, p1〉
act
−−→ 〈cnfg2, p2〉 iff . . .

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.16/21

Hidden algebra based semantics
we use hidden algebra to give semantics to classes and objects

visible sorts for data values (Bool, Data)
hidden sorts for state space (Sender)
operations for methods:
recAck : Sender Bool -> Sender

operations for attributes:
bit : Sender -> Bool

constants for particular states: initS : -> Sender

behavioural abstraction
a subset Γ of methods and attributes (behavioural ops)
Γ-behavioural equivalence: two states are Γ-behavioural
equivalent iff they cannot be distinguished under
Γ-experiments
if S ≡ S′ iff bit(S) ≡ bit(S′) ∧ data(S) ≡ data(S′)
then read is not Γ-behavioural congruent (it does not
preserve ≡)

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.17/21

Hidden algebra based semantics

the objects and configurations can also be specified
using hidden algebra

the models, i.e., implementations, for hidden
specifications are algebras

w(R) and γ can be defined over hidden algebra
models, i.e., implementations

we get a framework suitable to investigate
initial semantics (syntax)
final semantics (behaviour)

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.18/21

Temporal properties

we may use temporal logics for describing
behavioural properties of the integrated systems
the atomic propositions are given by attributes
(operations with results of visible sorts)

AG((S.bit()(_) = true ∧ R.ack()(_) = false ∧ S.data()(_) = d)→

AF(S.bit()(_) = false ∧ R.ack()(_) = true ∧ R.data()(_) = d))

since we have an algebraic semantics, algebraic
expressions over attributes are also allowed
the underscore symbol _ is used for the current
configuration

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.19/21

Implementation
joined work with M. Daneş (SYNASC 2005)

hidden algebra framework for classes and objects is
encoded in Maude

the processes are encoded using rewrite rules

the wrapper is encoded as a Maude functional
module

we extend Maude to extract a Kripke structure from
the integrated specification

we use an existing model checker to verify temporal
properties

ABP integrated specification is verified under the
fairness assumption using SMV

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.20/21

Conclusion

a specification language for coordinated objects with
a syntax closer to OOP languages

rigorously defined operational semantics based on
labeled transition systems and bisimulation

use of the temporal logics to describe behavioural
properties

an automated procedure extracting a finite-state
machine model

use of the existing model checking algorithms and
tools

SAVCBS’05, Lisbon G. Ciobanu, D. Lucanu: A Specification Language for Coordinated Objects – p.21/21

	Outline
	What is coordination
	Example
	The main idea
	The main idea
	The main idea
	The main idea

	The main idea
	The main idea

	Classes and objects: syntax
	Classes and objects: configurations
	Commands: syntax
	Commands: operational semantics
	Coordinators (processes):
syntax
	hspace {-.35cm}Coordinators: operational semantics
	Wrapper: syntax
	Wrapper: operational semantics
	Integrated semantics
	Integrated semantics
	Supervising means bisimulation
	Hidden algebra based semantics
	Hidden algebra based semantics
	Temporal properties
	Implementation
	Conclusion

