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Do we really need a specially designed
composition language?

N

Systematic method
for construction

large software

systems




f What are the obstacles?

e Dependence on position and arity

e Changes may affect the whole system

e The world is dynamic




fAnd the winner is ...




What are forms?

N

e First-class namespaces with a small
set of purely asymmetric operators

e Component interfaces, components,
and composition mechanisms

e Compile-time and run-time entities
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What else can we say about forms?

L

e Forms are not bound to a particular
computational model.

e Forms have to be combined with a
concrete target system.
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How can we represent objects
in the A F-calculus?

C, =
let
Ac = M(State) (
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) [State]

e = My) MI) Py ® AT @ ([Statec
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How can we denote changes?

L

Namespace X

Class extensions are used to add or refine
features of existing classes in a namespace.
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How can we manage changes?

[ )
eSpdce o

Class extensions are only visible in the
namespace in which they are defined.
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A new module system: Classboxes

L

e Classboxes define explicitly named
scopes.

e Classboxes support import and local
refinement of classes.
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What are the available operations?

L

e Import a classes
e Introduction of subclasses
e Extension of classes

e Inclusion of new behavior
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A Point Class Hierarchy
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Extension

N

% BEB :
let
Agp = AM(State) (|[Methodsp|) [State]
Geg = M(Class)
A(y) MI)
let
P = useif((Class.G y) [self]) I
in
in P® Ap(T & (|Statep|(super = P)))

(G = Gp) y




Inclusion

Methodsg|) [State]

P=(Class.Gy)I

& . -
let
Agp = A(State) (
Geg = M(Class)
A(y) MI)
let
in
in

(G = Gp)

P® Ap(I @ (|Statep

(original = P)))
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How can we apply extension and inclusion?

L

Extension:
C.. = (lookupClass{C, a)}{G = BE;.6 (lookupClass(C, o)) )

Inclusion:
C,=
let
Gc = My) (BY.6 (lookupClass(C, a.))) v
W¢ = A(y) (lookupClass(C, o)).W (p D y)
in
<G - Gc, W = Wc>
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Why is the encoding of classboxes
in the A F-calculus useful?

L

e Expressiveness of the i F-calculus

e Precise semantics of classboxes

e Discovery of new operations
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Can our results be applied to an
industry-strength language?

N

L

o Yes, C# with explicit class extensions:

namespace ColorCB
{
using System.Drawing;
using Point = OriginalCS.Point append Color;
using LinearBoundedPoint = LinearCB.LinearBoundedPoint;

extension Color {
private Color color;

public Color Color { get { return color; }
set { color = value; } } }
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