N

%

Classboxes:
An Experiment in Modeling Compositional
Abstractions using Explicit Contexts

Markus Lumpe Jean-Guy Schneider
Department of Computer Faculty of Information &
Science Communication Technologies
Iowa State University Swinburne University of

Technology

£

Do we really need a specially designed
composition language?

N

Systematic method
for construction

large software

systems

f What are the obstacles?

e Dependence on position and arity

e Changes may affect the whole system

e The world is dynamic

fAnd the winner is ...

What are forms?

N

e First-class namespaces with a small
set of purely asymmetric operators

e Component interfaces, components,
and composition mechanisms

e Compile-time and run-time entities

N

What else can we say about forms?

L

e Forms are not bound to a particular
computational model.

e Forms have to be combined with a
concrete target system.

N

F. 6 Hu=()
X

Fo 6
F\ 6
F> |
FIG]

The A F-Calculus

empty form V::

form variable |

F{ = V) binding extension |

form extension

form restriction M N

form dereference

form context

= &

a

M

= F
M.
AMX) M

M N
MIF]

empty value
abstract value

LA F-value

form
projection
abstraction
application

AF-context

How can we represent objects
in the A F-calculus?

C, =
let
Ac = M(State) (

N\e'thdSc

) [State]

e = My) MI) Py ® AT @ ([Statec

| We = A7) pserr(((y 2 Co).G (

in

(G — Gc, W = Wc)

))

3@ v)) [self])

N

How can we denote changes?

L

Namespace X

Class extensions are used to add or refine
features of existing classes in a namespace.

N

BoundedPoint

‘ L/

Point

DAace £~

Point

How can we manage changes?

[)
eSpdce o

Class extensions are only visible in the
namespace in which they are defined.

10

N

A new module system: Classboxes

L

e Classboxes define explicitly named
scopes.

e Classboxes support import and local
refinement of classes.

11

N

What are the available operations?

L

e Import a classes
e Introduction of subclasses
e Extension of classes

e Inclusion of new behavior

12

A Point Class Hierarchy

N

= it N Por

=

13

Extension

N

% BEB :
let
Agp = AM(State) (|[Methodsp|) [State]
Geg = M(Class)
A(y) MI)
let
P = useif((Class.G y) [self]) I
in
in P® Ap(T & (|Statep|(super = P)))

(G = Gp) y

Inclusion

Methodsg|) [State]

P=(Class.Gy)I

& . -
let
Agp = A(State) (
Geg = M(Class)
A(y) MI)
let
in
in

(G = Gp)

P® Ap(I @ (|Statep

(original = P)))

15

N

How can we apply extension and inclusion?

L

Extension:
C.. = (lookupClass{C, a)}{G = BE;.6 (lookupClass(C, o)))

Inclusion:
C,=
let
Gc = My) (BY.6 (lookupClass(C, a.))) v
W¢ = A(y) (lookupClass(C, o)).W (p D y)
in
<G - Gc, W = Wc>

16

N

Why is the encoding of classboxes
in the A F-calculus useful?

L

e Expressiveness of the i F-calculus

e Precise semantics of classboxes

e Discovery of new operations

17

Can our results be applied to an
industry-strength language?

N

L

o Yes, C# with explicit class extensions:

namespace ColorCB
{
using System.Drawing;
using Point = OriginalCS.Point append Color;
using LinearBoundedPoint = LinearCB.LinearBoundedPoint;

extension Color {
private Color color;

public Color Color { get { return color; }
set { color = value; } } }

18

