
Classboxes:
An Experiment in Modeling Compositional
Abstractions using Explicit Contexts

Markus Lumpe
Department of Computer

Science
Iowa State University

Jean-Guy Schneider
Faculty of Information &

Communication Technologies
Swinburne University of

Technology

2

Do we really need a specially designed
composition language?

Systematic method
for construction
large software

systems

3

What are the obstacles?

• Dependence on position and arity

• Changes may affect the whole system

• The world is dynamic

4

And the winner is …

Forms

5

What are forms?

• First-class namespaces with a small
set of purely asymmetric operators

• Component interfaces, components,
and composition mechanisms

• Compile-time and run-time entities

6

What else can we say about forms?

• Forms are not bound to a particular
computational model.

• Forms have to be combined with a
concrete target system.

7

The λF-Calculus

| M [F] λF-context

| M N application

| λ(X) M abstraction| F [G] form context

| M . l projection| F l form dereference

M, N ::= F form| F \ G form restriction

| F ⊕ G form extension

| M λF-value| F 〈l = V 〉 binding extension

| a abstract value | X form variable

V ::= ε empty valueF, G, H ::= 〈〉 empty form

8

How can we represent objects
in the λF-calculus?

∆C = λ(State) (MethodsC) [State]

GC = λ(γ) λ(I) Pβ ⊕ ∆C〈I ⊕ (StateC)〉

WC = λ(γ) µself〈((γ Cα).G (β ⊕ γ)) [self]〉

Cα =
let

in
〈G = GC, W = WC〉

9

Namespace X

How can we denote changes?

Class extensions are used to add or refine
features of existing classes in a namespace.

Point

BoundedPoint

Color

10

How can we manage changes?

Class extensions are only visible in the
namespace in which they are defined.

Namespace B

Point

BoundedPoint

Color

Namespace A

Point

BoundedPoint

11

A new module system: Classboxes

• Classboxes define explicitly named
scopes.

• Classboxes support import and local
refinement of classes.

12

What are the available operations?

• Import a classes

• Introduction of subclasses

• Extension of classes

• Inclusion of new behavior

13

A Point Class Hierarchy

OriginalCB LinearCB ColorCB TraceCB

Point

BoundedPoint

Point

BoundedPoint

LinearBPoint

Point

BoundedPoint

LinearBPoint

Point

BoundedPoint

LinearBPoint

+Color +Trace

14

Extension

∆B = λ(State) (MethodsB) [State]
GB = λ(Class)

λ(γ) λ(I)
let

P = µself〈(Class.G γ) [self]〉 I
in

P ⊕ ∆B〈I ⊕ (StateB 〈super = P〉)〉

BE
β =
let

in
〈G = GB〉

15

Inclusion

∆B = λ(State) (MethodsB) [State]
GB = λ(Class)

λ(γ) λ(I)
let

P = (Class.G γ) I
in

P ⊕ ∆B〈I ⊕ (StateB 〈original = P〉)〉

BI
β =
let

in
〈G = GB〉

16

How can we apply extension and inclusion?
Extension:

Cα = (lookupClass〈C, α’〉)〈G = BE
β.G (lookupClass〈C, α’〉) 〉

Inclusion:
Cα =

let
GC = λ(γ) (BI

β.G (lookupClass〈C, α’〉)) γ
WC = λ(γ) (lookupClass〈C, α’〉).W (β ⊕ γ)

in
〈G = GC, W = WC〉

17

Why is the encoding of classboxes
in the λF-calculus useful?

• Expressiveness of the λF-calculus

• Precise semantics of classboxes

• Discovery of new operations

18

Can our results be applied to an
industry-strength language?

• Yes, C# with explicit class extensions:
namespace ColorCB
{

using System.Drawing;
using Point = OriginalCS.Point append Color;
using LinearBoundedPoint = LinearCB.LinearBoundedPoint;

extension Color {
private Color color;

public Color Color { get { return color; }
set { color = value; } } }

}

