
1

Specification and Verification of Inter-
Component Constraints in CTL

Nguyen Truong Thang Takuya Katayama
Japan Advanced Institute of Science and Technology – JAIST

{thang, katayama}@jaist.ac.jp

2

Contents

Introduction to Component-Based Software
Background
A Formal Model of Components
Incremental Verification of Component Consistency
Component Specification and Verification
Conclusion

3

CB Software (1/3)

Component-based software:
structured from a set components
- Ideally, components are plug-and-play.
- Flexible for changes: handling new functional
requirements or operating platforms.
- E.g.: mobile phones → camera-equipped
mobile phones.

Many current software practice are
essentially component-based.
- Feature-oriented software.
- Each feature is treated as a large component
which is formed from several member
components.

199x: components with
talking features only

2004: offering varieties of
features via extra
components:
- Email/MMS
- Photo-shooting
- Contact-less IC
- Web browsing
- Document Viewer
- GPS etc.

evolving

4

Specification and Verification of CBS (2/3)

Components:
- Component-Off-The-Shelf (COTS): independent components in which computation
paths rarely interleave each other (only a single exit state, no reentry state).
- Component refinement: interleave at some degree.
- This work: focusing on refinement (also applicable to COTS). Specifically, a
property initially holds in B. How to verify that subsequent refinements like E and E’
still preserve p in the composition component.

… … … …

COTS

… …

Refinement

B E E’
p

5

Specification and Verification of CBS (3/3)

Current practice in component technology:
- Component plugging: only up to the level of syntactical matching.
- The issue: after being plugged, the components are inconsistent with each
other.
- The work: focusing on the consistency in terms of CTL properties.

An important issue of component-based software paradigm:
- Specifically, what to formally specify component consistency and how to verify it
in consistent and efficient manner?

Solution:
- Component specification: enforced with interface-mapping compatibilities and
consistency constraints.
- Verification: via Open Incremental Model Checking (OIMC).
- OIMC: using assumption at reentry states, checking if the preservation constraints
are preserved at the interface between components. If so, the consistency among
components is guaranteed. (explained later in Background section)

6

Contents

Introduction
Background
- Model Checking: CTL and Assumption Model Checking
- Incremental Model Checking

A Formal Model of Components
Incremental Verification of Component Consistency
Component Specification and Verification
Conclusion

7

Model Checking & CTL (1/3)

CTL* logic: constructed from two quantifiers: A (for all paths) and E
(for some path); plus five temporal operators: X (next), F
(eventually), G (always), U (until), R (release).

CTL: a true subset of CTL*.
- 10 basic normal CTL properties: AX f, EX f, AF f, EF f, AG f, EG f, A [f U g], E [f U g],
A [f R g], E [f R g]; where f and g are CTL or atomic propositions.

Definition: The closure set, cl(p), of p is the set of all sub-formulae
of p.
- p is an atomic proposition: cl(p) = {p}
- p is among AX f, EX f, AG f, EG f, AF f, EG f: cl(p) = {p} ∪ cl(f)
- p is among A [f U g], E [f U g], A [f R g], E [f R g]: cl(p) = {p} ∪ cl(f) ∪ cl(g)
- p = ¬f: cl(p) = cl(f)
- p = f ∧ g or p = f ∨ g: cl(p) = cl(f) ∪ cl(g)

8

Assumption Model Checking (2/3)

Idea [Laster98]: 2 sequential modules M1, M2.
- Possible to model check within M1 only if knowing the labels at the interface states
between M1 and M2 by representing the whole M2 with those labels.
- A critical note on AMC: There should be no circle involving the interface nodes of
M1 and M2.

M1A [f U g]
f

f

M2
f

g

g g

g

=

M1A [f U g]
f

fg g

A [f U g]

Assumption model checking is reliable only if the
assumed labels at the interface states are proper.

9

Incremental Model Checking (3/3)

…

B E

The assumption made at this state
represents the computation tree in B

After assumption model checking in E, if the
constraints at this state are preserved, there
is no need to check further in B.Incremental verification (or Open

Incremental Model Checking)
[Fisler01 etc]:
- An application of Assumption Model Checking.
- Difference from AMC: ensuring the
preservation of constraints.
- Efficient: model checking each component
separately.
- Open: handling even unanticipated future
changes.

OIMC:
- Focusing on component refinement, but also
applicable to COTS.
- Initially, a property under consideration holds
in a base component.
- The property is guaranteed to hold in the
system as long as other components preserve
constraints at the interface of the base
component.

10

Contents

Introduction
Background
A Formal Model of Components
Incremental Verification of Component Consistency
Component Specification and Verification
Conclusion

11

A Formal Model of Components (1/2)

A component is formally represented by a state
transition model:
- A set of states: S
- A set of input events: Σ
- An initial state: s0
- A state transition function: R: S x PL(Σ) → S
- Labeling function at states: L – showing a set of atomic
propositions to be true at a given state.

Typical case: a base component B is extended
with an extension component E.
- B = <SB, ΣB, s0B, RB, LB> (see figure in next page)
- E = <SE, ΣE, ⊥, RE, LE> (⊥ : no-care value)
- B and E are either composite or primitive components.

Associated with a component is an interface of
two state sets.
- B: <exit, reentry> - at which control is released
from/returned to the base.
- E: <in, out> - states receiving/returning control respectively

e1[g] e2

[f∧¬g] e2

12

A Formal Model of Components (2/2)

Interfaces of B and E to be mapped accordingly.
- Defining the compatible conditions for which ex ↔ i, o ↔ re.

- ex ↔ i if ∧[LB(ex)] ⇒ ∧ [LE(i)], where ∧ is the inter-junction.

- o ↔ re if ∧ [LE(o)] ⇒ ∧ [LB(re)].

The composition model C = <SC, ΣC, s0B, RC, LC> is defined via
elements of B and E.
- E can overrides some part of B.

e1[f] e2

e1[g] e2

exit state

in-stateout-state

reentry state

E e1

B

13

Contents

Introduction
Background
A Formal Model of Components
Incremental Verification of Component Consistency
- Component Consistency
- A Theorem on Component Consistency
- Incremental Verification
- Scalability of Incremental Verification

Component Specification and Verification
Conclusion

14

Component Consistency
(1/5)

B

E

i3/f

i1/fi0/¬f

i1/fi0/¬f

i2/f

Definition: a property p holds on a
model M = (S, Σ, s0, R, L) if M, s0 |= p.

Component consistency definition:
- In terms of CTL properties.
- Initially, p holds on B = (SB, ΣB, s0B, RB, LB), i.e.
B, s0B |= p.
- E does not violate p on B if within C, p still
holds at s0B in C, i.e. C, s0B |= p.

In the example: p = AG EX f
- Initially: B, i0 |= p
- After composition, C, i0 |= p
- E does not violate p in B in this case.

E does not
violate B w.r.t

p

i1/fi0/¬f

i3/f

i2/f

15

A Theorem on Component Consistency (2/5)

Definition: Given a model M, the truth values of a state s with
respect to a closure set cl(p), VM(s, cl(p)) are
- ∀φ ∈ cl(p): if M, s |= φ then φ ∈ VM(s, cl(p)).
- Otherwise, ¬φ ∈ VM(s, cl(p)).

Conformance condition: B and E conform with each other (with
respect to cl(p)) at an exit state ex if VE(ex, cl(p)) = VB(ex, cl(p)).

Theorem: Given a property p holding in B, E does
not violate p in B if B and E conform with each
other (w.r.t cl(p)) at all exit states.
- Regardless of composition type: additive or overriding.

16

Incremental Verification of Components
(3/5)

During verifying p on B, the preservation constraints pc(s) =
VB(s, cl(p)) at any interface state s are recorded.

The algorithm of OIMC: within E (the refinement) only

1. For each reentry state re in B, seeding pc(re), i.e. VB(re, cl(p)),
at the corresponding mapped out-state o in E.

2. For each in-state i in E: run the CTL assumption model checking
procedure in E to check sub-formulae φ, ∀φ ∈ cl(p).

3. Checking if VE(i1,cl(p)), VE(i2,cl(p)), … are matched with the
preservation constraints VB(ex1,cl(p)), VB(ex2,cl(p)), … at
respective mapped exit states ex1, ex2 … of B.

Note: - In case of COTS, there is no assumption since no reentry states.
- Assumption model checking is then replaced by standard model checking.
- The constraints stay the same as above.

17

Incremental Verification of Components
(4/5)

…

Base

re/VB(re,cl(p)) ex1/VB(ex1,cl(p))

ex2/VB(ex2,cl(p))

VB(re,cl(p))

…

Extension 1

prop. values prop. values

values(i1)

checking if B and E agree on
the truth values at ex1, i.e.
values (i1) = VB(ex1,cl(p))

…

VB(re,cl(p))

Extension 2

prop. values prop. values

values(i2)

checking if B and E
conform at ex2, i.e.

values (i2) = VB(ex2,cl(p))

18

Scalability of Incremental Verification (5/5)

Considering subsequent component refinements.

Theorem: The method preserves its incremental
characteristic for any subsequent extensions as long as Ei
conform with C(i-1) at all exit states between them.

- The complexity only depends on the size of En (extending the base C(n-1)).

C0
C0

C1
C1

C(n-1)
C(n-1)

Cn
CnE1

E1
…

E2
E2

En
En

At all evolution steps, incremental verification for component consistency is scalable.

19

Contents

Introduction
Background
A Formal Model of Components
Incremental Verification of Component Consistency
Component Specification and Verification
- Component Specification
- Component Composition
- Incremental Verification of Components

Conclusion

20

Component Specification (1/7)

Component-based software:
- Problem: components are often inconsistent after composition.
- Consistency: several types ⇒ focusing on CTL property preservation.
- This work: enforcing component matching in terms of consistency semantic.

Current component technology (OMG CORBA, Sun Java, Microsoft
COM/DCOM, UML/OCL etc): semantic is limited to a simple logic of
weak expressiveness and syntactical component matching.
- Internal to components.
- Inter-component: Consumer.num_items ≤ Producer.num_items.
- The underlying logic only expresses constraints at the moment the interface
element is invoked, i.e. static view.

Component specification:
- Interface signature: traditionally, attributes and operations (static and syntactical
matching).
- Constraints: component matching in terms of semantic (via the interface
compatibility in the formal model and the CTL consistency).

21

Component Composition (2/7)

Encapsulating temporal semantic constraints to component
interface via 2 constraint types.
- Plugging compatibility: for two components to be plugged together via exit-in
and reentry-out states (p.11).
- Consistency constraint: making components to be consistent after being
composed (p.15).

Consistency constraint:
- Written in CTL showing components’ execution traces, i.e. dynamic view.
- Regarding to a CTL property p inherent to a component B, at an interface
state s, its constraints are VB(s, cl(p)).

Composing two components: C = B + E
- Signature (attributes and operations): the sum of those from B and E.
- Plugging constraint: taken as LB(s) or LE(s) accordingly.
- Consistency constraint: taken as VB(s, cl(p)) or VE(s, cl(p)) accordingly.

22

Incremental Verification of Components
(3/7)

VB(s2, cl(p))

Constraints for future
composition VR(s1, cl(p))

VR(s, cl(p)) = VB(s, cl(p))

Initially, p holds in B.

B (Red) and E (Blue) are composed via
two exit states ex1, ex2 and a reentry
state re.

If VE(ex1, cl(p)) = VB(ex1, cl(p)) and
VE(ex2, cl(p)) = VB(ex2, cl(p)), E does
not violate p in B.
- only executed in E (i.e. incrementally).

Similar checking for Red and Yellow.

…

re ex1

ex2

23

Incremental Verification of Components
(4/7)

…

Base Checking (Red)

re/VB(re,cl(p)) ex1/VB(ex1,cl(p))

ex2/VB(ex2,cl(p))

VB(re,cl(p))

…

Ext. Checking (Blue) 1

prop. values prop. values

values(i1)

checking if B and E agree on
the truth values at ex1, i.e.
values (i1) = VB(ex1,cl(p))

…

VB(re,cl(p))

Ext. Checking (Blue) 2

prop. values prop. values

values(i2)

checking if B and E
conform at ex2, i.e.

values (i2) = VB(ex2,cl(p))

24

Incremental Verification of Components
(5/7)

1_black 2_black

3_black

i1_brick i2_brick

i3_brick1_brick

i2_white

i3_white

1_white

B (item-producing) E (cons. and var. size) E’ (buffer opt.)

Composing 3 components for producer-consumer: B, E and E’.
- B is composed with E and then E’.
- The property of B: p = AG(#cons ≤ #prod).
- Interface states are mapped accordingly, e.g. 1_black ↔ i1_brick, 3_black ↔
i3_white etc.

If VE(i1_brick, cl(p)) = VB(1_black, cl(p)) and VE(i2_brick, cl(p)) =
VB(2_black, cl(p)), B and E are consistent with respect to p.
- only executed in E (i.e. incrementally).
- C1 = B + E.

25

Incremental Verification of Components
(6/7)

Seeding VB(2_black,cl(p))

Seeding VB(3_black,cl(p))

i1_brick i2_brick

i3_brick1_brick

E

Getting VE(i2_brick,cl(p))Getting VE(i1_brick,cl(p))

Model checking for the consistency between B and E.
Seeding step:
- VB(2_black, cl(p)) = {AG(#cons ≤ #prod), (#cons ≤ #prod)}
- VB(3_black, cl(p)) = {AG(#cons ≤ #prod), (#cons ≤ #prod)}

Assumption model checking step:
- VE(i1_brick, cl(p)) = {AG(#cons ≤ #prod), (#cons ≤ #prod)} = VB(1_black, cl(p))
- VE(i2_brick, cl(p)) = {AG(#cons ≤ #prod), (#cons ≤ #prod)} = VB(2_black, cl(p))
⇒ B and E are consistent in terms of p.

26

Incremental Verification of Components
(7/7)

Getting VE(i2_white,cl(p))

E’

i2_white

i3_white

1_white

Seeding VB(3_black,cl(p))

In C1: the consistency constraints VC1(s, cl(p)) are respectively
taken by
- VB(s, cl(p)) if s ∈ SB.
- VE(s, cl(p)) if s ∈ SE.

For the composition of C1 and E’, the procedure is similar.
- checking if VE(i2_white, cl(p)) = VB(2_black, cl(p)).
- Only executed in E’.

27

Contents

Introduction
Background
A Formal Model of Components
Consistency among Components
Component Specification and Verification
Conclusion

28

Conclusion (1/3)

Modular verification [Grumberg91, Kupferman98 etc]: based on
assume-guarantee paradigm
- Often dealing with hardware verification; modules are composed in parallel.
- Verifying each module separately while assuming about the behaviors of the
external environment and other modules.
- Interfaces are pre-defined and static.
- Verification task needs to re-run in the whole system if a new module is inserted
or removed.

Modular software verification [Laster98]: exactly Assumption
Model Checking.
- Characteristically different from hardware verification.
- Taking the advantage of sequential nature in software.

OIMC: the application of AMC in an open way (unanticipated future
evolution via component refinement).
- Open verification comes at the cost of fixed preservation constraints at interface.

29

Conclusion (2/3)

Open incremental model checking
- Interface is dynamically defined.
- Systems are more open for changes.
- Only model checking within the new module, i.e. incremental.
- The approach is also scalable for the whole evolution process as long as bases and
extensions pair-wise conform.

Several research on software modules (components) compatibility
or consistency.
- Different types of consistency.

[Chakrabarti02]: interface compatibility among software modules
- Also state-based model.
- Focusing on different aspects of component semantic: correctness and
completeness of operation definitions within components.
- Complementary to the temporal consistency among components in this work.

30

Conclusion (3/3)

OIMC is based on assumption model checking.
- AMC is not supported by well-known model checkers such as SMV, SPIN etc.

Improvement from current stage:
- Bridging formal specification and concrete component implementation via AOSD
with AspectJ, Hyper/J.
- Re-using the results delivered after model checking in B if no conformance.
- Tool support: NuSMV2 is the target for adapting OIMC into real practice.

NuSMV2 is selected as the target because:
- open-source: comprehensibility and documentation.
- derived, i.e. re-design and re-engineering, from SMV (focusing on CTL properties).

	Specification and Verification of Inter-Component Constraints in CTL
	Contents
	CB Software (1/3)
	Specification and Verification of CBS (2/3)
	Specification and Verification of CBS (3/3)
	Contents
	Model Checking & CTL (1/3)
	Assumption Model Checking (2/3)
	Incremental Model Checking (3/3)
	Contents
	A Formal Model of Components (1/2)
	A Formal Model of Components (2/2)
	Contents
	Component Consistency (1/5)
	A Theorem on Component Consistency (2/5)
	Incremental Verification of Components (3/5)
	Incremental Verification of Components (4/5)
	Scalability of Incremental Verification (5/5)
	Contents
	Component Specification (1/7)
	Component Composition (2/7)
	Incremental Verification of Components (3/7)
	Incremental Verification of Components (4/7)
	Incremental Verification of Components (5/7)
	Incremental Verification of Components (6/7)
	Incremental Verification of Components (7/7)
	Contents
	Conclusion (1/3)
	Conclusion (2/3)
	Conclusion (3/3)

