
Iterator Specification with Typestates

Kevin Bierhoff
Institute for Software Research

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213, USA

kevin.bierhoff @ cs.cmu.edu

ABSTRACT
Java iterators are notoriously hard to specify. This paper
applies a general typestate speci�cation technique that sup-
ports several forms of aliasing to the iterator problem. The
presented speci�cation conservatively captures iterator pro-
tocols and consistency rules. Two limitations of the speci�-
cation are discussed.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Speci�ca-
tion�Languages; D.2.2 [Software Engineering]: Design
Tools and Techniques�Modules and interfaces; D.2.4 [Soft-
ware Engineering]: Software/Program Veri�cation

General Terms
Design, languages, veri�cation

Keywords
Iterator, typestate, speci�cation, aliasing, veri�cation

1. INTRODUCTION
The Java Collection API de�nes various rules for using

iterators. It de�nes a protocol for accessing individual it-
erators. It also imposes restrictions on modifying iterated
collections in order to keep iterators consistent. Similar rules
are de�ned for C# enumerators.
Typestates augment the �xed type of a (mutable) object

with a variable �condition� that describes the object's ab-
stract state in its lifecycle [7]. A type system like Fugue's
[4] that is based on this idea lets the programmer essen-
tially de�ne a state machine for each class. However, Fugue
cannot fully capture iterator behavior due to its restrictions
regarding aliasing and non-determinism.
This paper presents a speci�cation of Java iterators based

on a technique for typestate speci�cations in the presence of
aliasing. The following section introduces some of the key

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

concepts of this technique. The actual iterator speci�cation
is presented in section 3. Limitations of the speci�cation are
discussed in section 4 and section 5 concludes.

2. TYPESTATE SPECIFICATIONS
This section introduces a general technique for typestate

speci�cations to the extent necessary for specifying iterators.

Hierarchical state spaces. We de�ne orthogonal state di-
mensions with sets of mutually exclusive states [2]. The idea
is to model separate aspects of object behavior separately.
For example, we model Java iterators with three orthogonal
dimensions (�gure 1). At runtime, an iterator object will
be in exactly one of the states from each dimension. The
root state alive basically stands for �any state� and can be
re�ned in an arbitrary number of dimensions. Similarly, a
dimension stands for �any state� in that dimension.
States and dimensions are explicitly de�ned as part of an

interface. For example, the next dimension depicted in �gure
1 could be de�ned as follows.

states available, end refine alive as next

Dimensions or states do not correspond to implementation
�elds but information about �elds can be tied to states, al-
lowing implementation veri�cation (see section 3.5).

Access permissions. Di�erent variables could alias the
same object and care must be taken to keep the �views�
of those aliases onto the object consistent. Our approach
is to associate variables with access permissions that are
guaranteed to remain consistent.
A permission perm(x, n, A) grants di�erent levels of access

to a part n of the state space (e.g., a state dimension) to
a variable x. Permissions optionally carry additional infor-
mation A about the exact state inside the part of the state
space they cover (omitted otherwise). We use the following
access levels.

• unique permissions guarantee that the variable is the
only one that has access.

• full permissions guarantee that the variable is the only
one that can change state.

• pure permissions give read-only access. There may be
other pure permissions and at most one full permission
around.

79

76 5401 23alive Legend: 76 5401 23state

next

44iiiiiiiiiiiiiiiiiiiiiii
previous

OO

mode

eeKKKKKKKKKK

dimension

re�nement

OO

76 5401 23available

;;vvvvvvvvv 76 5401 23end

OO

76 5401 23unavailable

99rrrrrrrrrr 76 5401 23retrieved

OO

76 5401 23readonly

OO

76 5401 23modifying

eeKKKKKKKKKK

Figure 1: Iterator state space

As an example, pure(this, next, available) represents a pure
permission on the next dimension of an (Iterator) receiver
that is currently in the available state.
We use fractions [3] to keep track of splits. This lets

us �collect� the full and all pure permissions and regain a
unique permission. We omit fractions in speci�cations if they
do not change (these permissions are universally quanti�ed
for all fractions).

Method specifications. Methods are speci�ed with the de-
cidable multiplicative-additive fragment of linear logic [5]
(MALL). Pre- and post-conditions are separated with a lin-
ear implication (() and use conjunction (⊗), internal choice
(&), and external choice (⊕). We include quanti�ers for re-
ceiver this and return value result to make speci�cations
self-su�cient. In one case we explicitly quantify over frac-
tions.
The following example speci�es the hasNext method for

Java iterators. It requires a pure permission for the receiver's
next dimension. The post-condition on the right-hand side of
the implication is an external choice between conjunctions.
The external choice indicates that the caller has no in�uence
on whether hasNext will return true or false.

∀this : Iterator. ∃result : boolean.
pure(this, next) ((pure(this, next, end)⊗ result = false)

⊕ (pure(this, next, available)⊗ result = true)

The expressiveness of linear logic speci�cations is similar to
our earlier work based on union and intersection types [2].
Tracking permissions with linear logic ensures that permis-
sions cannot be duplicated. This is essential for sound static
veri�cation in a permission-based approach.
The notation used in this paper is fully explicit for clarity

but we envision a more practical surface notation. In partic-
ular, quanti�ers are implied by standard method signatures
(see �gure 2). Permissions could by default apply to the
receiver or the position of a permission could imply which
variable it applies to [2].

3. JAVA ITERATOR SPECIFICATION
This section presents an iterator speci�cation using the

techniques introduced in the last section. We state assump-
tions and goals before specifying iterators and iterables. Fi-
nally, we discuss how the speci�cation can be used in veri�-
cation.

3.1 Assumptions
This speci�cation assumes single-threaded execution. We

also assume that a unique permission is needed to modify a

collection directly. This can be enforced with an appropri-
ate speci�cation of modifying methods in the Collection
interface (which extends Iterable, speci�ed below).

3.2 Specification Goals
Goals of the presented speci�cation include the following.

• Allow creating an arbitrary number of iterators over
collections (�iterables�).

• Invalidate iterators before modi�cation of the iterated
collection.

• Capture the usage protocol of Java iterators.

3.3 Specifying Iterators
The Iterator speci�cation is primarily concerned with

capturing the protocol for using iterators (�gure 2). In or-
der to capture the expected usage of the hasNext and next
methods we introduce a state dimension next with mutu-
ally exclusive states available and end. Calling hasNext con-
ceptually performs a dynamic state test on this dimension:
a true (false) return value corresponds with the available
(end) state. A subsequent Boolean test on the return value
allows a client to deduce the state of the iterator.
Notice that we do not change state with a call to hasNext,

expressed by only requiring a pure permission for this call.
Conversely, a call to next can potentially change the state
of the next dimension and therefore needs a full permission
to the receiver. It requires the next element to be available.
Which of the two states in the next dimension will apply
after the call is unknown. Thus our speci�cation enforces
the characteristic alternation of calls to hasNext and next.
The speci�cation of remove requires two additional state

dimensions. The mode dimension characterizes iterators as
readonly or modifying. This dimension is immutable in the
sense that an iterator cannot change between these states.
The remove method can only be called on modifying itera-
tors. Notice how the speci�cation preserves that state like a
side condition. With regard to the other dimension, remove
prescribes that the previous element must be retrieved in or-
der to remove it, making it also unavailable. Notice that
the speci�cation for next changes the previous dimension to
retrieved. This enforces that remove can be called at most
once after each call to next. (A newly created iterator will
be in the unavailable state.)

3.4 Specifying Iterables
The Iterable interface is used to create iterators. We de-

�ne two cases for this method. One case creates a read-only

80

interface Iterator<c : Iterable, g : alive→ Fract> {
states available, end refine alive as next
states unavailable, retrieved refine alive as previous
states readonly, modifying refine alive as mode

boolean hasNext() :
∀this : Iterator. ∃result : boolean.

pure(this, next) ((pure(this, next, available)⊗ result = true)
⊕ (pure(this, next, end)⊗ result = false)

Object next() :
∀this : Iterator. ∃result : Object.

full(this, previous)⊗ full(this, next, available) (
full(this, previous, retrieved)⊗ full(this, next)⊗ pure(result, alive)

void remove() :
∀this : Iterator.

full(this, previous, retrieved)⊗ pure(this,modifying) (full(this, previous, unavailable)⊗ pure(this,modifying)

void finalize() :
∀this : Iterator.

(unique(this, alive, readonly) (pure(c, alive, g)) & (unique(this, alive,modifying) (full(c, alive, g))
}

Figure 2: Iterator interface speci�cation

iterator and divides the fraction on the receiver's permis-
sion in half. The second half is given as a pure permission
to the resulting readonly iterator. The other case requires a
unique permission to the receiver in order to create a mod-
ifying iterator. Only a pure permission to the receiver is
retained. Notice that our iterators are parameterized with a
collection and a fraction (�gure 2). These parameters help
describing an iterator's permission to a collection.
Calling iterator with a full permission will always yield

a read-only iterator (because only the �rst case applies).
When calling it with a unique permission, on the other hand,
both cases could apply. Thus iterator conceptually returns
a readonly & modifying iterator, i.e., one of the two at the
caller's choice, but not both. Another call to iterator forces
readonly while calling remove on an iterator forces it to be
modifying. As would be expected, retrieving elements from
an iterator does not force one or the other. Thus we delay
the choice between these two cases until it is inevitable. A
full reference to an iterable indicates the existence of read-
only iterators. A pure reference to an iterable indicates a
modifying iterator.

3.5 Verification
Clients that use iterators as speci�ed above can be veri�ed

by tracking linear permissions of bound variables. If rea-
soning about a decidable fragment of linear logic (MALL),
dependently typed objects, and splitting and coalescing of
permissions can be automated then veri�cation can proceed
automatically. Capabilities like Fugue's �state predicates�
[4] let us reason about correctness of iterator implementa-
tions as well.
The last section described how speci�cations of Iterable

and Iterator allow creating and using iterators in the right
way. The question arises, how can a collection ever be mod-
i�ed again after an iterator was created? And how can we

create a modifying iterator after other iterators were cre-
ated?
A simple variable liveness analysis can determine when an

iterator is no longer needed. If a variable dies that carries a
unique permission to an iterator then the iterator becomes
inaccessible and is subject to garbage collection. As soon as
the iterator is dead we can get back its permission to the
underlying collection.
We use the �nalizer to specify this. A finalize method

is de�ned for all Java objects and intended to be called in
the process of garbage collection to release resources. We
use it to release the permission to the iterated collection
(�gure 2; notice how the permission depends on the itera-
tor's mode). Once released, the permission can be coalesced
with any other permissions to the collection. Finalizing all
created iterators restores the original unique permission to
the collection, enabling direct modi�cations and creation of
a modifying iterator.

4. LIMITATIONS AND COMPARISON
We identi�ed the following two limitations of the speci�-

cation presented here.

• The speci�cation prevents the following legal use of
Java iterators. A client can create two iterators and
iterate over them in parallel until it decides to start
modifying the collection through one of the iterators.
This is legal if the other iterator is never used again.
Our speci�cation does not permit the modi�cation be-
cause creating two iterators forces both to be read-
only (see above) unless the second one is created after
the �rst one dies. We are working on overcoming this
problem by implicitly changing the iterator mode.

• As discussed above, the speci�cation requires collec-
tions to be linear in order to be modi�ed directly. This

81

interface Iterable {
Iterator iterator() :
∀this : Iterable.

(∀g : alive→ Fract. ∃result : Iterator<this, g/2>.
full(this, alive, g) (full(this, alive, g/2)⊗ unique(result, alive, readonly))

& (∃result : Iterator<this, alive 7→ 1/2>.
unique(this, alive) (pure(this, alive, alive 7→ 1/2)⊗ unique(result, alive,modifying))

}

Figure 3: Iterable interface speci�cation

is stronger than one would expect; a full permission to
the collection should su�ce. The problem is that it-
erators expect collections to be immutable. We could
model this with a state change of the collection (from
�mutable� to �immutable�), but then we would need a
dynamic test to know when the collection is mutable
again. Instead we use fractions to count the number
of iterators. Thus we trade states against aliasing re-
strictions and ease of use against �exibility in order
to meet the Java speci�cation (that does not include
dynamic state tests on iterators).

The presented iterator speci�cation uses a general tech-
nique that allows veri�cation of iterator clients and imple-
mentations. We are aware of general techniques for func-
tional speci�cation (e.g. the JML [6], Spec# [1]) that rely
on manual veri�cation or automatic decision procedures but
that are undecidable in general. Our technique supports cer-
tain forms of aliasing and is restricted to reasoning about
typestates. The technique can capture many uses of itera-
tors but we pay (modulo a cleverer speci�cation) with the
limitations mentioned above.

5. CONCLUSIONS
This paper presents a speci�cation of Java iterators that

may allow automatic veri�cation of clients. The speci�ca-
tion is conservative in that it respects the rules de�ned in
the Java Collection API. To this end it limits aliasing of
collections beyond what seems necessary and forbids a legal
(albeit unusual) use of iterators.

6. ACKNOWLEDGMENTS
The author wishes to thank Ciera Christopher, Nels Beck-

man, and Jonathan Aldrich for helpful feedback on an ear-
lier draft of this paper. This work was supported in part
by NASA cooperative agreement NNA05CS30A, NSF grant
CCF-0546550, and the Army Research O�ce grant num-
ber DAAD19-02-1-0389 entitled �Perpetually Available and
Secure Information Systems�.

7. REFERENCES
[1] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino,

and W. Schulte. Veri�cation of object-oriented
programs with invariants. Journal of Object Technology,
3(6):27�56, June 2004.

[2] K. Bierho� and J. Aldrich. Lightweight object
speci�cation with typestates. In ACM Symposium on
the Foundations of Software Engineering, pages
217�226, Sept. 2005.

[3] J. Boyland. Checking interference with fractional
permissions. In R. Cousot, editor, Static Analysis: 10th
International Symposium, volume 2694 of Lecture Notes
in Computer Science, pages 55�72. Springer, 2003.

[4] R. DeLine and M. Fähndrich. Typestates for objects.
In European Conference on Object-Oriented
Programming. Springer, 2004.

[5] J.-Y. Girard. Linear logic. Theoretical Computer
Science, 50:1�102, 1987.

[6] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface speci�cation
language for Java. Technical Report 98-06-rev28, Iowa
State University, Department of Computer Science,
July 2005.

[7] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability.
IEEE Transactions on Software Engineering,
12:157�171, 1986.

82

