
Using Resemblance to Support Component Reuse and
Evolution

Andrew McVeigh, Jeff Kramer and Jeff Magee
Department of Computing

Imperial College
London SW7 2BZ, United Kingdom
{amcveigh, jk, jnm}@doc.ic.ac.uk

ABSTRACT
The aim of a component-based approach to software is to allow
the construction of a system by reusing and connecting together a
number of existing components. To successfully reuse a compo-
nent, alterations generally need to be made to it, particularly if the
abstraction level is high. However, existing usage of a component
means that it cannot be altered without affecting the systems that
reuse it already. This leads to a dilemma which frustrates the goals
of the compositional approach to reuse.

To help resolve this dilemma, we introduce the resemblance con-
struct, allowing a new component to be defined in terms of changes
to a base component. This allows us to effectively alter a base com-
ponent for reuse, without affecting the existing definition or any
users of the component. We use an example to show how this and
other constructs ameliorate the reuse problems of complex, possi-
bly composite, components.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—Lan-
guages; D.2.13 [Software Engineering]: Reusable Software—
Reuse models; D.2.10 [Software Engineering]: Design—Repre-
sentation

General Terms
Design, languages

Keywords
Architecture, components, composition, reuse, modelling

1. INTRODUCTION
When taking a compositional approach to system construction, a
composite component can be created by composing and connect-
ing together a number of other components. Each of the constituent
components of the composite may either be composite themselves
or leaf components which have no further decomposition [20, 9].
Complex subsystems, and even entire systems can be represented

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10-11, 2006,
Portland, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

as composites which can then be reused as parts of other sys-
tems. The aim is to assemble systems from increasingly higher-
level components, offering a compelling approach to construction
and reuse. In practice, however, a number of issues frustrate this
goal.

To set the context, consider that a system is constructed from both
existing components, and new components developed specifically
for that architecture. Existing components are obtained from a
component provider, or taken from an existing system. It is un-
likely that changes can be made to an existing component specifi-
cally to accommodate a new system, as existing usage in other en-
vironments places constraints on what can be changed. To be suc-
cessfully reused, however, existing components generally require
alterations before they can be integrated into a new architecture
[6].

This situation leads to a dilemma: components cannot be reused
without changes, but existing usage heavily constrains any changes.
The more complex or higher-level a component is, the less is the
likelihood that it will be suitable for reuse in an unaltered form.
This situation is closely related to the abstraction problem [5]: com-
ponents are more valuable when they represent higher-level ab-
stractions targeted at a particular domain, but this specificity limits
their reuse. This is particularly a problem with composite compo-
nents as they hide their constituent components and abstractions.

In order to examine this dilemma more closely, a reuse scenario
from an existing system is presented. By analysing this situation,
we form a set of requirements that a solution must meet in order to
address the identified issues.

From these requirements we develop the concept of resemblance,
which is an inheritance-like construct for components. This allows
us define a new component in terms of changes to a, possibly com-
posite, base component. The key is that the changes are held in the
new component, and do not affect the base definition. Combined
with a small number of other constructs, we demonstrate how this
ameliorates the reuse problems. We further show how the con-
structs can also help with component evolution, acting as a type of
decentralised configuration management (CM) system.

The rest of the paper is organised as follows. We begin by pre-
senting the component model as general background for the dis-
cussion and to establish terminology. A simplified example of a
component reuse problem from a working system is shown, lead-
ing to a conceptual view of the problem. We then introduce the
resemblance and other constructs and show how a component can

49

be altered for new requirements, without losing the link back to the
original definition. We conclude with a discussion of related work
which contrasts this work with architecturally-aware CM systems,
and product family approaches.

2. THE COMPONENT MODEL
In keeping with Darwin [10] and UML2 [12], we define a com-
ponent as an instantiable, class-like construct which explicitly de-
scribes the interfaces that it provides and requires. An interface rep-
resents a collection of methods defining a service and may inherit
from other interfaces. Interfaces can only be provided or required
via ports, and each port has a name and may be indexed. Ports serve
to name the role of interfaces as services offered or required by a
component.

A component may have attributes, which can only be of primitive
type. These present a view, or projection, on the internal state of
the component.

Components are either leaf or composite, where a leaf component
cannot be further decomposed and is associated directly with an
implementation in (currently) Java.

Figure 1 shows a leaf component with two attributes and two ports.
The graphical representation is a UML2 composite structure dia-
gram where a provided interface is shown as a circle, and a required
interface is shown as a semi-circle. Note that the leaf is directly as-
sociated with a Java implementation class.

IRequiredInterfaceIProvidedInterface

LeafComponent

attr2: String
attr1: int

component LeafComponent

 describes com.example.JavaLeafComponent

{

 attributes:

 int attr1; String attr2;

 ports:

 port1 provides IProvidedInterface;

 port2 requires IRequiredInterface;

}

port2port1

Figure 1: Definition of a leaf component

The textual definition in the lower half of the figure is from the
Backbone architecture description language (ADL). This experi-
mental language has been defined, as part of this work, in order to
demonstrate the concepts in this paper, and to also explore the use
of UML2 as an ADL. We have developed a prototype Backbone
interpreter which can assemble a system from the ADL representa-
tion and the Java implementation of the leaf components.

Although Backbone has been designed around the UML2 compo-
nent meta-model, it bears more than a passing resemblance to Dar-
win. This presumably reflects the influence that Darwin, ROOM
[15], ACME [3] and other ADLs have had on the UML2 specifica-
tion.

A composite component (figure 2) can additionally contain a num-
ber of component instances, each of which is shown as a box within
the component. These instances are called parts in UML2 termi-
nology. Each part has a name (part1), and a component type (Leaf-
Component) which is the component it is an instance of. Further,

a part can define slots, which hold values for the attributes of the
component type e.g. attr(10). The parts of a composite represent
its initial configuration and state.

component CompositeComponent

{

 ports:

 portP provides IProvidedInterface;

 portR requires IRequiredInterface;

 parts:

 LeafComponent part1

 set attr1(10), attr2("test");

 connectors:

 connP joins portP to port1@part1;

 connR joins portR to port2@part1;

}

IProvidedInterface IRequiredInterface

CompositeComponent

part1 : LeafComponent

attr2("test")
attr(10)

connR
portP portR

connP

Figure 2: Definition of a composite component

Ports are wired together using connectors (connP, connR). In
UML2, connectors represent little more than an aliasing of two dif-
ferent ports [4].

3. MOTIVATING EXAMPLE
This example is based on a reuse problem experienced when ex-
tending our graphical modelling tool. This tool is being developed
as part of this work to provide an environment to support the con-
cepts outlined in this paper.

As we work through the example, we use it to distill four require-
ments that a solution to the component reuse problems must ad-
dress.

3.1 Context
Company X is a component provider that produces components for
constructing graphical drawing tools. The major component is a
composite called CDrawing, which represents a drawing frame-
work.

Also available are a set of components which can draw various
complex shapes when used with the framework. One such com-
ponent is CPostItNote, which displays a small note surrounded by
a border as shown in figure 3.

Feed the cat

and dog...

Register the car

http://www.dvla.gov.uk/

Buy some milk

Figure 3: Post-it notes displayed in a drawing

X sells these components to third parties, providing an ADL rep-
resentation for each component, along with the Java interface defi-
nitions, but not the Java implementation source code. X maintains
the components using its own CM systems, and periodically re-
leases new versions, which aim for backwards compatibility. A
major aim has been to make the drawing components as reusable

50

as possible. However, due to the large number of customers using
the components, changes cannot be specifically introduced for one
customer’s system.

The definition of CDrawing is shown in figure 4. It is a compos-
ite component with parts to handle clipboard functionality and a
drawing canvas. An indexed port (shown by a multiplicity of [0..*]
which denotes a lower bound of 0 and an unlimited upper bound)
is used to hold the list of shapes, which are used for drawing the
display. This is shorthand for a set of ports: shape[0], shape[1] and
so on.

CDrawing

mgr : CDrawingMgr

clip : CClipboardMgr

canvas : CDrawingCanvas

IShape

component CDrawing

{

 ports:

 shapes[0..*] requires IShape;

 parts:

 CDrawingMgr mgr;

 CDrawingCanvas canvas;

 CClipboardMgr clip;

 connectors:

 shapes joins shapes to shapes@manager;

 canvas joins surface@canvas to view@manager;

 clip joins board@clip to view@manager;

}

shapes [0..*]

Figure 4: Definition of CDrawing

The composite CPostitNote component (figure 5) is designed to
work with the framework by providing the IShape interface. The
CNoteDisplay part handles the display of text on the screen and the
word wrapping. The plain text is stored in the CNoteText part.

3.2 Reuse Scenario
Company Y now wishes to reuse the CDrawing and CPostitNote
components to construct a desktop tool for taking notes. For this
task, the clipboard is not needed and Y wishes to omit this facility
to minimise the size of the application. In addition, CPostitNote
must support hyperlinks and the CDrawing component must sup-
port changing the zoom level. Although this is a simple scenario, it
shares many of the characteristics of real-world reuse situations.

Y clearly must make changes in order to reuse the existing compo-
nents, leading to our first requirement:

Alter It should be possible to alter a component to allow it to be
reused into a new system. The changes required may be ex-
tensive.

IShape

component CPostitNote

{

 ports:

 shape provides IShape;

 parts:

 CNoteDisplay display;

 CNoteText text;

 connectors:

 shape join shape to shape@display;

 text joins data@text to text@display;

 }

CPostitNote

display : CNoteDisplay

text : CNoteText

shape

Figure 5: Definition of CPostitNote

In our scenario, Y contacts X and suggests that X makes the
changes, or at least provide variation points to make the incorpora-
tion of the features possible. However, the provider does not wish
to alter the components, as this would require a major change for
existing customers. In addition, if this courtesy was extended to all
reusers, the architecture would quickly descend into a generic mess
with variation points for every conceivable option.

This leads to our next requirement:

NoImpact Alterations to a component for reuse must not impact
existing users of the component. Further, the alterations
should not impose an obligation on the provider to accept
or even know about the changes.

At any rate, the alterations required for reuse are often specific to
the new application, and cannot easily be generalised for incorpo-
ration into a generic component. In this sense, the alterations fall
into the same category as glue code which often has to be written to
adapt a component for reuse in a new context. Like glue code, the
alterations belong with the system where the component is being
reused, not with the original component definition.

Subsequently, Y performs an analysis and decides that its re-
quirements could be met by omitting (or stubbing out) the CClip-
boardMgr part from CDrawing, upgrading the CNoteDisplay part
from CPostitNote and introducing a zoom manager component into
CDrawing. Graphically, this would look as shown in figure 6
(changes highlighted).

As a consequence of the analysis, Y decides to make the changes
directly to the components themselves. However, a further obstacle
is that X has only released their components in a binary form in
order to protect their intellectual property. This leads to the next
requirement:

NoSource The reuse approach should work even if the full source
code of the implementation is not available.

3.3 Evolution Scenario

51

CDrawing

canvas : CDrawingCanvas

z : CZoomMgr

clip : CNullClipboardMgr

mgr : CDrawingMgr

CPostitNote

text : CNoteText

display : CHyperlinkNoteDisplay

IShape

IShape

shapes [0..*]

shape

Figure 6: The architecture with Y’s changes

Suppose that Y is somehow able to reuse the components for its
product, incorporating the changes as described in figure 6. X then
issues a new release, upgrading the CDrawing component to use the
new CFastDrawingCanvas component, providing improved perfor-
mance. Clearly, Y wishes to incorporate this improvement into its
reuse of CDrawing, leading to a requirement that any reuse solution
should not cut off a component from its natural upgrade path from
the provider. This effectively rules out copy and paste as a reuse
mechanism.

Upgrade It should be possible for a reuser to accept an upgrade
to a component, even if that component has been altered for
reuse.

4. ADL CONSTRUCTS FOR COMPONENT
REUSE AND EVOLUTION

From the analysis of the requirements, constructs have been devel-
oped and integrated into the Backbone ADL. The constructs are
resemblance, redefinition and stratum.

4.1 Analysing the Requirements
Requirements Alter and NoImpact appear to be in direct conflict.
The provider and other reusers do not have to accept or even know
about changes to the component, and yet alterations must still be
allowed in order to facilitate reuse.

This situation can be resolved by holding any alterations to a com-
ponent separately from its original definition. By keeping these
alterations with the system that is reusing the component, no-one
else will be impacted by, or even aware of, the changes. Upgrade
further suggests that changes should be held in such a way as to
allow them to be analysed and combined with future upgrades of
the component. This suggests keeping the alterations explicitly as
differences or deltas, rather than storing the entire altered compo-
nent.

Alter indicates that we need the ability to modify any aspect of a
component to facilitate reuse, including interface definitions. This
blurs the line between modification for reuse, and the evolution of a
component. Such a facility will allow upgrades to also be delivered

as a set of differences, distilling the Upgrade requirement into the
ability to merge two different sets of alterations.

Finally, the requirements imply that we need a way to group related
definitions together to differentiate between an existing system and
a new system.

The resemblance, redefinition and stratum constructs have been de-
veloped in response to the above analysis. Resemblance allows
one component to be defined in terms of alterations to a base com-
ponent, such that the base definition is not affected. Redefinition
allows the definition of an existing component to be altered or
evolved, and coupled with resemblance allows the new definition
to be phrased in terms of alterations to the old definition. Stratum
provides a package-like mechanism for grouping a related set of
definitions.

4.2 Using Resemblance to Express Change
The resemblance construct allows one component to be defined in
terms of changes to another. This is an inheritance-like construct
for components, but it does not imply a subtype relationship be-
tween components in the way that inheritance usually does between
classes [16], as features can be added or removed.

A component can indicate that it resembles a base component, by
providing a list of changes in terms of renaming, adding, replac-
ing or deleting elements from the base. For instance, we can form
CNewDrawing in terms of CDrawing, thereby altering it for reuse:

component CNewDrawing resembles CDrawing {
replace-parts:
CNullClipboardMgr clip;

parts:
CZoomMgr z;

connectors:
zoom joins zoom@z to
surface@canvas; }

This component definition does not perturb the original definition,
and does not affect any existing usages of it.

4.3 Using Strata to Control Dependencies
The stratum construct exists to group definitions and control their
dependencies. A stratum is a package-like concept which groups
a set of related component and interface definitions. It indicates
which other stratum are visible for these definitions to refer to
through dependency relations. To facilitate strata reuse, circular
strata dependencies are not allowed.

To simplify the tracking of dependencies and the analysis of how
strata can be combined to create a system, we have restricted the
concept to being non-hierarchical. In other words, a stratum can-
not contain another stratum. The only valid relationship between
stratum is a dependency.

A system is constructed by indicating which strata will be included
and in what order. For instance, if CDrawing is in stratum Base
and CNewDrawing is in stratum Extension, then a strata load list of
{Extension, Base} will cause Base to be loaded into the interpreter,
followed by Extension.

52

4.4 Using Redefinition to Evolve Components
It is not always sufficient to reuse a component by declaring a new
component that resembles it. When a component is used in an exist-
ing architecture, and a wide-ranging change is required, the original
component definition may need to be altered. Redefinition provides
a way to alter the definition of the component, but still keep the dif-
ferences in a separate stratum so that the revised definition is only
visible to those systems which include the stratum.

To redefine the CDrawing component, we can use redefinition and
resemblance together. The redefinition allows the replacement of
an existing definition, and resemblance allows the new definition
to be expressed in terms of differences to the previous definition.

redefine-component CDrawing
resembles [previous]CDrawing

{
replace-parts:
CNullClipboardMgr clip;

parts:
CZoomMgr z;

connectors:
zoom joins zoom@z to
surface@canvas; }

Redefinition can also be used without resemblance, in order to wrap
and adapt a component. For instance, we can redefine CDrawing to
include the old definition as a part which is then delegated to in the
new definition.

redefine-component CDrawing
{
ports:
shapes[0..*] requires IShape;

parts:
[previous]CDrawing old;

connectors:
delegator joins shapes to
shapes@old; }

If the redefinition is in the Extension stratum and the original defi-
nition in Base, then the load list of {Extension, Base} will include
the alterations. If, however, another client does not wish to use the
changes, Extension is simply omitted from the load list. Conceptu-
ally, the changes are applied at start-up time to effect the alterations.

Further, using this construct, a provider can issue updates to a com-
ponent and release this as another stratum. Suppose that X releases
an updated form of CDrawing in a stratum called Update, where
CFastDrawingCanvas has replaced the original CDrawingCanvas
part.

redefine-component CDrawing
resembles [previous]CDrawing

{
replace-parts:
CFastDrawingCanvas canvas; }

We can include both sets of alterations above by using the load list
of {Update, Extension, Base}. The base definition is loaded, and
then modified by the inclusion of the redefinition in the Extension
stratum. Finally, the definition is again modified by the redefinition
in the Update stratum.

4.5 Summary of Approach
The relationship between the constructs is shown in figure 7, where
component definitions are shown as small boxes within a stratum.
Stratum are loaded in the reverse order of the load list, and each
successive stratum has the ability to alter any definitions in lower
strata via redefinition.

Redefinition is shown as an arrow from an upper to a lower stra-
tum, allowing alterations to be made to a definition in a lower stra-
tum. Resemblance is shown as an arrow from a lower to an upper
stratum, allow a definition in a stratum to reuse and alter a defini-
tion from a lower stratum without perturbing the original definition.
Even though the system is loaded from bottom to top, the eventual
view of the system is from the top down.

Figure 7: Conceptual view of constructs

Resemblance and redefinition support Alter and NoImpact by al-
lowing extensive alterations to be made to a component without
impacting any existing usages. As explained previously, support
for Upgrade relies on the ability to combine multiple redefinitions
of a single component. This can result in name collisions and other
issues, analogous to the problems experienced by the use of mul-
tiple inheritance [16]. This situation also occurs when combining
two independently developed systems that redefine the same com-
ponent in a common stratum.

Currently when two redefinitions cannot be merged automatically
due to overlap, manual alteration of one of the redefinitions is re-
quired. In this case, the replace, add and delete facilities seem
rather uncompromising. See the section on further work, detailing
possible solutions to this problem.

NoSource is partially supported, as long as the Backbone defini-
tions and interface definitions are provided (even if the implemen-
tation code is not). The range of alterations for leaf components is
then restricted to adaptation through decoration [2] or outright re-
placement. It is still possible to freely alter composite components,
as they only have a Backbone expression.

Backbone further supports Alter by allowing interfaces to be rede-
fined also, and tracking the possible leaf components which also

53

need to be redefined to support this. At an implementation level,
this relies on the Java facility where a definition in one JAR file can
supersede or hide the definition in another.

The approach integrates well with existing CM systems. Backbone
programs are textual and can be controlled like any set of source
files. The stratum and resemblance mechanisms address the con-
cerns about either holding the entire architectural configuration of a
system in a single file, or having to scatter the configuration across
many files [13]. The definitions within a stratum are held in files,
and each file can hold a number of Backbone definitions and redefi-
nitions. This allows related alterations to be grouped and controlled
in a simple and straight forward manner.

5. RELATED WORK
A number of approaches have been previously proposed that deal
with many of the requirements presented. Amongst other mech-
anisms, parameterisation is used in Koala to capture options sup-
ported by a component [19]. This approach only supports planned
variation which conflicts with the Alter requirement. This can also
result in a combinatorial explosion of options if the parameters of
the constituent parts of a composite are also exposed.

Koala and other approaches allow for variation in an architecture
[20, 18] to be expressed through variation points. These capture
possible component variants at predefined points in an architecture.
This is referred to variation over space. The points must be planned
in advance and designed into a system, which mitigates against this
technique for the reuse of existing components which must remain
unchanged.

In current product family approaches, if deep modifications or new
variation points are required for an existing component these must
be introduced by forming a new revision of the component. This
is known as variation over time, and any unplanned changes re-
quire perturbing the original definition violating many of the re-
quirements. Further, repeated introduction of variation points can
quickly create complex and generic architectures which are diffi-
cult to reuse and reason about.

The introduction of variation points and the general evolution of ar-
chitectures has been made more feasible through systems like Mae
which have integrated CM and architectural concepts [18, 13]. This
approach provides an overarching CM system which understands
architectural and evolutionary concepts and can support the cre-
ation of variants. This approach assumes that all components are
available via a unified and consistent CM system, which is not fea-
sible in an environment with many (possibly commercial) compo-
nent providers. Further this does not solve the need to create many
variation points to satisfy those wanting to reuse the components,
eventually leading to a complex, very generic architecture which
deeply violates the NoImpact requirement.

ROOM includes a notion of inheritance which allows for addi-
tive and subtractive changes to be specified against actors [14]. A
ROOM actor is analogous to a (composite) component with its own
thread of control. No formal model of this language has been con-
structed, and the inheritance facility is not suitable for redefinition,
evolution or arbitrary change.

Architectural reconfigurations have previously been used to alter
the architecture of a running system, using the property of quies-
cence to discern when a component can be upgraded [8]. In con-

trast, the approach presented here provides an intuitive modelling
construct for these types of changes, and applies the concepts to
the specification and reuse of components. In theory, it is possible
to utilise the work on quiescence to effect architectural changes at
runtime also.

C2SADEL [11] is a variant of the C2 ADL [17], supporting com-
ponent specifications through the explicit declaration of state along
with pre and post-conditions that indicate changes to that state.
This system addresses evolution using a type-based taxonomy of
components and connectors and supports configuration evolution,
but does not feature composite components. The approach is sup-
ported by a modelling environment called DRADEL.

In terms of component technologies, a number of approaches allow
for the selective updating of components in a system. COM [1], for
example, uses indirection and a registry-based approach to allow
one component to instantiate another without having direct knowl-
edge of the exact component type that will be used. Through this
mechanism, it is possible to update only some of the components
in a system, assuming that the updated components support at least
the old interfaces. In contrast, Backbone is focussed on modelling
and reasoning about changes to the architecture of a system. The
outcome of these changes can eventually be expressed as a set of
component updates, which could be realised using the mechanism
of the COM component technology.

6. CURRENT STATUS
The interpreter, jUMbLe modelling tool and Alloy model
for Backbone are available at the following location:
http://www.doc.ic.ac.uk/~amcveigh/backbone.html

6.1 The Backbone Interpreter
An interpreter for Backbone has been developed in order to ex-
periment with the language. This fully supports the resemblance,
redefinition and stratum concepts. Note however that in the current
interpreter, redefinition automatically presumes resemblance from
the base component, as opposed to the examples presented earlier
in 4.4.

The interpreter is written in Java, and uses reflection to instanti-
ate and connect components at startup time. A strata load list is
supported.

In recent use, it became apparent that names of elements in Back-
bone programs are being used for two purposes: human under-
standability and logical identity. E.g. a component specifies that
it resembles another component by using its name. Unfortunately,
support for renaming interferes with the concept of identity. As a
result, it has been decided to explicitly separate the two concepts.
The identity will be assigned as a globally unique identifier.

For instance, when defining a component, both the identity and
name will be used (identity/name). However, when referring to an
element, only the identity is required. This ensures that the identity
remains the same, even if the element’s name changes. The follow-
ing definition shows how the code listing in 4.4 might look under
this scheme.

redefine-component C0012/CDrawing
resembles [previous]C0012

{

54

replace-parts:
CNullClipboardMgr P009/clip;

parts:
CZoomMgr P023/z;

connectors:
zoom joins PT001@P023 to
PT002@P010; }

Clearly, assigning and working with identifiers places a large bur-
den on a designer. However, this is not an issue with a graphical
approaches to modelling, which explicitly separate the two con-
cepts. For instance, a dependency relation between component A
and B is not linked via the name of the components, but by their
logical identities. Changing the names will not affect the relation.

6.2 Graphical Modelling with Backbone
In order to support modelling with Backbone, we have developed
a prototype UML2 modelling tool called jUMbLe. A key focus of
the approach is to completely hide the textual language (including
logical identities), and allow designers to work directly with UML2
composite structure diagrams. The tool allows the creation of com-
posite structure diagrams and package (stratum) diagrams.

The next step is to support the resemblance construct in the mod-
eller. The aim is to allow the designer to alter a component by
deleting and adding parts, and have the tool record the changes ex-
plicitly.

6.3 Formal Model of Backbone
A formal model of Backbone has been created in Alloy [7]. Al-
loy is a formal language based on a combination of predicate logic
and relational algebra. Specifications can be model checked for
counter-examples within a finite state space.

The current Alloy model does not support resemblance, although
this is being added. The aim is to show that two redefinitions of the
same component can lead to potential conflict. This model will fur-
ther be used to verify that any solution to this conflict ameliorates
the problem.

7. CONCLUSIONS AND FURTHER WORK
From one perspective, resemblance provides a compelling mod-
elling construct which allows an inheritance-like concept to be ap-
plied to components at all levels, including the architectural level.
It makes it possible to derive other components from a base compo-
nent, with changes to reflect new requirements, supporting a more
incremental approach to system construction. This partially ad-
dresses the abstraction problem, as highly specific components can
be altered to be reused in a new context. This is useful for internal
reuse within a system, as well as for reusing existing components
from providers.

By providing uniform reuse and evolution support, the constructs
prevent the need to compulsively make components intended for
reuse more generic. Unplanned changes can be catered for at the
time when the change is required, rather than requiring a costly and
sometimes unused upfront investment.

From another perspective, resemblance and the supporting con-
structs provide a decentralised form of version control, which inte-
grates well with existing CM systems. This offers a multi-authority
approach to change control, and allows the changes to be held

where the component is reused, rather than were the component
is initially defined. Either CM revisions or redefinition can be used
for modelling variation over time, and resemblance combined with
redefinition can be used for modelling variation over space. Alter-
ations are managed by the team that desires the changes rather than
the provider of the component, allowing the original component to
retain a coherent architectural vision.

There is a potential conflict between Backbone and a CM system
when dealing with variation over time. Ideally, alterations will be
specified using redefinitions, even for provider-supplied component
upgrades, as this allows better reasoning about the combination of
changes. However, it is not possible to keep specifying deltas in-
definitely in this way, so a utility is provided which can compress
multiple redefinitions into one new definition. We call this process
baselining in keeping with the terminology of CM system. We are
also investigating the possibility of constructing reverse redefini-
tions from a baseline, which preserve the characteristics of previous
definitions.

As explained in 4.5, multiple redefinitions of a single component
present a problem when incompatible or overlapping alterations are
specified in two independent strata. We are currently pursuing two
approaches to resolve this situation. The first approach is based
around graph transformations. This involves expressing alterations
using an extensible set of transformation patterns. We aim to con-
struct the patterns to limit or resolve any interference between re-
definitions although we anticipate the need to for human guidance
in some cases.

The second approach is more declarative, where we allow be-
havioural specifications to be registered with each component.
These specifications describe the effect that the component is de-
signed to achieve, in terms of the message protocols of the con-
stituent components. An existing architecture can then be analysed
in conjunction with a behavioural specification for a new architec-
ture, with the aim of automatically determining the alterations re-
quired to effect the new specification.

8. REFERENCES
[1] D. Box. Essential COM. Addison-Wesley Professional, 1997.

[2] E. Gamma, R. Helm, R. Johnson, and V. J. Design Patterns:
Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[3] D. Garlan, R. Monroe, and D. Wile. Acme: an architecture
description interchange language. In CASCON ’97:
Proceedings of the 1997 conference of the Centre for
Advanced Studies on Collaborative research, page 7. IBM
Press, 1997.

[4] M. Goulo and F. Abreu. Bridging the gap between acme and
uml 2.0 for cbd. In Specification and Verification of
Component-Based Systems (SAVCBS 2003), pages –, 2003.

[5] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi.
Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Wiley; 1st edition (August
16, 2004), 2004.

[6] U. Holzle. Integrating independently-developed components
in object-oriented languages. In Proceedings of the 7th
European Conference on Object-Oriented Programming,
pages 36–56. Springer-Verlag, 1993.

55

[7] D. Jackson. Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290, 2002.

[8] J. Kramer and J. Magee. The evolving philosophers problem
- dynamic change management. Ieee Transactions on
Software Engineering, 16(11):1293–1306, Nov. 1990.

[9] J. Kramer, J. Magee, and M. Sloman. Configuration support
for system description, construction and evolution. In
Proceedings of the 5th international workshop on Software
specification and design, pages 28–33, Pittsburgh,
Pennsylvania, United States, 1989. ACM Press.

[10] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying
distributed software architectures. In W. Schafer and
P. Botella, editors, Proc. 5th European Software Engineering
Conf. (ESEC 95), volume 989, pages 137–153, Sitges, Spain,
1995. Springer-Verlag, Berlin.

[11] N. Medvidovic, D. Rosenblum, and R. Taylor. A language
and environment for architecture-based software
development and evolution. In ICSE ’99: Proceedings of the
21st international conference on Software engineering,
pages 44–53, Los Alamitos, CA, USA, 1999. IEEE
Computer Society Press.

[12] OMG. Uml 2.0 specification. Website,
http://www.omg.org/technology/documents/formal/uml.htm,
2005.

[13] R. Roshandel, A. Van Der Hoek, M. Mikic-Rakic, and
N. Medvidovic. Mae—a system model and environment for
managing architectural evolution. ACM Trans. Softw. Eng.
Methodol., 13(2):240–276, 2004.

[14] B. Selic, G. Gullekson, and P. Ward. Inheritance. In
Real-Time Object-Oriented Modeling, volume First, pages
255–285. Wiley, 1994.

[15] B. Selic, G. Gullekson, and P. Ward. Real-Time
Object-Oriented Modeling. John Wiley & Sons, 1994.

[16] A. Taivalsaari. On the notion of inheritance. ACM Comput.
Surv., 28(3):438–479, 1996.

[17] R. Taylor, N. Medvidovic, M. Anderson, E. Whithead Jr.,
and J. Robbins. A component- and message-based
architectural style for gui software. In Proceedings of the
17th international conference on Software engineering,
pages 295–304, Seattle, Washington, United States, 1995.
ACM Press.

[18] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and
N. Medvidovic. Taming architectural evolution. In
Proceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 1–10, Vienna, Austria, 2001. ACM Press.

[19] R. van Ommering. Mechanisms for handling diversity in a
product population. In ISAW-4: The Fourth International
Software Architecture Workshop, 2000.

[20] R. van Ommering. Building product populations with
software components. In ICSE ’02: Proceedings of the 24th
International Conference on Software Engineering, pages
255–265, New York, NY, USA, 2002. ACM Press.

56

