Experiments in the use of τ -simulations for the components-verification of real-time systems

F. Bellegarde, J. Julliand, H. Mountassir and E. Oudot

LIFC, University of Franche-Comté, France

11th November 2006

- SAVCBS'06 -5th International Workshop on Specification And Verification of Component-Based Systems Portland, Oregon, USA

Context

- Real-time systems modeled in a compositional framework using timed automata [Alur and Dill 90]
- (Timed) Properties expressed in MITL (Metric Interval Temporal Logic) [Alur, Feder and Henzinger 96]

• A verification method: Model-Checking

• Algorithmic verification method

Algorithmic verification method

Advantages

- Exhaustive
- Automatic

Algorithmic verification method

Advantages

- Exhaustive
- Automatic

Drawbacks

- State-space explosion: difficulties to handle large-sized models
- Accentuated for Timed Systems

Algorithmic verification method

Advantages

- Exhaustive
- Automatic

Drawbacks

- State-space explosion: difficulties to handle large-sized models
- Accentuated for Timed Systems

 \rightarrow A way out: using incremental development methods

Incremental Development for Component-Based Systems Integration of Components / Local properties of the components

1. Consider a system with a component *C* and the rest of the components *Env*,

Incremental Development for Component-Based Systems Integration of Components / Local properties of the components

- 1. Consider a system with a component *C* and the rest of the components *Env*,
- 2. Check local properties of C on C,

Incremental Development for Component-Based Systems

Integration of Components / Local properties of the components

- 1. Consider a system with a component *C* and the rest of the components *Env*,
- 2. Check local properties of C on C,
- 3. Check that local properties of C are preserved when it is integrated in Env.

• How to ensure preservation ?

• Is incremental verification more efficient than classic verification ?

- How to ensure preservation ?
 - with timed τ -simulations

• Is incremental verification more efficient than classic verification ?

- How to ensure preservation ?
 - with timed τ -simulations

- Is incremental verification more efficient than classic verification ?
 - Need of experiments

Outline

1. Background on Timed systems

- Modeling Timed systems with Timed Automata
- Classic Composition Operator for Timed Automata
- Specifying Timed Properties with MITL

2. Relations between components

- Timed \(\tau\)-Simulation
- \blacktriangleright Divergence-sensitive and stability-respecting Timed $\tau\textsc{-Simulation}$

3. Experiments

- The Tool Vesta
- Production Cell
- CSMA/CD Protocol

Outline

1. Background on Timed systems

- Modeling Timed systems with Timed Automata
- Classic Composition Operator for Timed Automata
- Specifying Timed Properties with Mitl
- 2. Relations between components
 - Timed \(\tau\)-Simulation
 - Divergence-sensitive and stability-respecting Timed τ -Simulation
- 3. Experiments
 - The Tool Vesta
 - Production Cell
 - CSMA/CD Protocol

Timed Automata

- Finite automata with real-valued variables called clocks.
- An example: the Railroad crossing:

Zeno Runs should be ignored since they are not realistic

- Synchronization: actions with same label
- Other actions interleave

E. Oudot (LIFC

The Logic $\rm M{\scriptscriptstyle ITL}$

- Metric Interval Temporal Logic,
- Temporal operators (possibly) constrained by a time delay

Examples: local properties of the train

- The train is not on the railroad crossing within the two t.u. following the emission of the signal "approach": □(near ⇒ □_{<2}¬in) → Safety,
- When the train approaches, it will eventually exit the railroad crossing: □(near ⇒ ◊ far) → Liveness

1. Background on Timed systems

- Modeling Timed systems with Timed Automata
- Classic Composition Operator for Timed Automata
- Specifying Timed Properties with MITL

2. Relations between components

- Timed \(\tau\)-Simulation
- \blacktriangleright Divergence-sensitive and stability-respecting Timed $\tau\textsc{-Simulation}$
- 3. Experiments
 - The Tool Vesta
 - Production Cell
 - CSMA/CD Protocol

Which relation between C||E and C preserving the local properties of Con C||E ?

• The relation between C and C||E is a timed τ -simulation, written $C||E \leq C$, i.e., a simulation modulo the actions of E (τ -actions)

• The relation between C and C||E is a timed τ -simulation, written $C||E \leq C$, i.e., a simulation modulo the actions of E (τ -actions)

• The relation between C and C||E is a timed τ -simulation, written $C||E \leq C$, i.e., a simulation modulo the actions of E (τ -actions)

Theorem (Preservation of safety properties)

Let φ be a safety property. C and E are timed automata.

If
$$C \models \varphi$$
 and $C || E \preceq C$ then $C || E \models \varphi$

Nice properties w.r.t.

- Composability
 C||E ≤ C
- Compatibility $C \preceq C' \Rightarrow C ||E \preceq C'||E$

• Compositionality $C \preceq C'$ and $D \preceq D' \Rightarrow C || D \preceq C' || D'$

Theorem (Preservation of safety properties)

Let φ be a safety property. C and E are timed automata.

If
$$C \models \varphi$$
 and $C || E \preceq C$ then $C || E \models \varphi$

Nice properties w.r.t. || • Composability $C||E \leq C$ • Compatibility $C \leq C' \Rightarrow C||E \leq C'||E$ • Compositionality $C \prec C'$ and $D \prec D' \Rightarrow C||D \prec C'||D'$

 \rightarrow Contribution of timed $\tau\text{-simulation}$ for incremental verification w.r.t. classic verification is immediate for safety properties.

- To preserve liveness properties, two more requirements
 - 1. No new deadlocks (stability-respecting)

- To preserve liveness properties, two more requirements
 - 1. No new deadlocks (stability-respecting)

- To preserve liveness properties, two more requirements
 - 1. No new deadlocks (stability-respecting)

• To preserve liveness properties, two more requirements

- 1. No new deadlocks (stability-respecting)
- 2. No non-zeno τ -cycles (divergence-sensitive)

The timed *τ*-simulation with these two requirements is called a Divergence-sensitive and Stability-respecting (DS) timed *τ*-simulation, written C||E ≤_{ds} C.

Theorem (Preservation of MITL properties)

Let φ be a MITL property. C and E are timed automata.

If $C \models \varphi$ and $C || E \preceq_{ds} C$ then $C || E \models \varphi$.

• Composability and compatibility w.r.t. || are not ensured for free.

 \rightarrow Check algorithmically the DS timed $\tau\text{-simulation}$ \rightarrow Compare with classic verification

1. Background on Timed systems

- Modeling Timed systems with Timed Automata
- Classic Composition Operator for Timed Automata
- Specifying Timed Properties with MITL

2. Relations between components

- Timed \(\tau\)-Simulation
- \blacktriangleright Divergence-sensitive and stability-respecting Timed $\tau\textsc{-Simulation}$

3. Experiments

- The Tool Vesta
- Production Cell
- CSMA/CD Protocol

- Verification of Simulations for Timed Automata,
- Checks the DS timed τ-simulation in the framework of integration of components, i.e., it checks

$$C||E \preceq_{ds} C$$

• Vesta is available at

http://lifc.univ-fcomte.fr/ \sim oudot/VeSTA

Presentation of the Production Cell Case Study

Modeling: at least seven components (six devices + one or several pieces)

- Local properties to check
 - > 7 local properties for the robot (P_1 to P_7), in particular 2 liveness and 3 bounded liveness.
 - ▶ 1 liveness local property for robot || press (P_8).

Model-check all properties on the complete model

feed belt||sensor||table||robot||press||deposit belt||piece 1

Our Method

- 1. Model-check properties P_1 to P_7 on the robot,
- 2. Model-check property P_8 on robot || press,
- 3. Check preservation of P_1 to P_7 on robot || press, i.e.,

 $robot||press \leq_{ds} robot|$

4. Check preservation of P_8 on the whole model, i.e.,

complete model \leq_{ds} *robot* ||*press*.

Detailed Results

• Computation times (seconds)

Property	Туре	Classic	Local	Preservation
		Method	Verification	Checking
P_1	Safety	0.01	< 0.001	
P_2	Safety	0.01	< 0.001	
P ₃	Liveness	0.98	< 0.001	
P_4	Liveness	15.79	0.04	0.05
P_5	Bounded Response	0.68	< 0.001	
P_6	Bounded Response	0.48	< 0.001	
P_7	Bounded Response	0.7	< 0.001	
P_8	Liveness	0.93	0.02	0.46
Total		19.58	0.06	0.51

Presentation of the CSMA/CD Protocol Case study

- Carrier Sense, Multiple Access with Collision Detection protocol
- Modeling: at least three components (a medium + 2 or more senders)
- Parameterized system (parameter: number of senders)

The main property (P): whatever the number of stations, if a collision occurs between two stations i and j, i ≠ j, both detect it within 26 t.u.

Model-check P on the complete model, with 2 senders, 3 senders, 4 senders...

Our method

- Model-check *P* on a model with 2 senders.
- Check that preservation is ensured when adding other senders.

Model-check P on the complete model, with 2 senders, 3 senders, 4 senders...

- $\rightarrow \leq$ 6 senders: model-checking successful (from $<\!0.001$ seconds to $>\!57$ minutes),
- $\rightarrow \geq$ 7 senders: verification can not be run to completion (waiting for ten hours).

Our method

- Model-check *P* on a model with 2 senders.
- Check that preservation is ensured when adding other senders.

Model-check P on the complete model, with 2 senders, 3 senders, 4 senders...

- $\rightarrow \leq$ 6 senders: model-checking successful (from <0.001 seconds to $>\!57$ minutes),
- $\rightarrow \geq$ 7 senders: verification can not be run to completion (waiting for ten hours).

Our method

- Model-check *P* on a model with 2 senders.
- Check that preservation is ensured when adding other senders.
- $\rightarrow\,$ Verification with 2 senders: $<\!0.001$ seconds
- \rightarrow Preservation ensured thanks to simple arguments guaranteeing that DS timed $\tau\text{-simulation holds}.$

• Preservation of safety / liveness MITL properties during integration of components with (DS) timed τ -simulation relations.

- Comparison with classic verification:
 - for safety properties, preservation is ensured for free
 - for liveness properties, first experiments results (verification time) seem encouraging.

- Study the contribution of timed τ-simulations for parametrized systems, e.g., networks of automata (as CSMA/CD protocol),
- Study other composition operators, which would guarantee deadlock and τ-livelock-freedom during integration of components (J. Sifakis)
- How to guide a decomposition into components to obtain their compatibility with the (DS) timed τ -simulation,
- How to reuse a component so that its integration in an application is compatible with the DS timed τ-simulation.

- Study the contribution of timed τ-simulations for parametrized systems, e.g., networks of automata (as CSMA/CD protocol),
- Study other composition operators, which would guarantee deadlock and τ-livelock-freedom during integration of components (J. Sifakis)
- How to guide a decomposition into components to obtain their compatibility with the (DS) timed τ -simulation,
- How to reuse a component so that its integration in an application is compatible with the DS timed τ-simulation.
- Questions ?

Experiments in the use of τ -simulations for the components-verification of real-time systems

F. Bellegarde, J. Julliand, H. Mountassir and E. Oudot

LIFC, University of Franche-Comté, France

11th November 2006

- SAVCBS'06 -5th International Workshop on Specification And Verification of Component-Based Systems Portland, Oregon, USA