

Variance Analyses from Invariance Analyses

Josh Berdine

jjb@microsoft.com Microsoft Research, Cambridge

Joint work with Aziem Chawdhary, Byron Cook, Dino Distefano & Peter O'Hearn

SAVCBS'06: 10 Nov 2006

State of the verification toolbox

- → Safety properties & reachability:
 - For proving that software doesn't "crash"
 - Many verification tools & techniques at hand
 - Software model checkers, e.g. SLAM, Blast, SATAbs,...
 - Abstract domains: e.g. Interval, Octagon, Polyhedra,...
 - Other static analyzers: e.g. various control-flow, shape,... analyses
 - Not insignificant degree of coverage and maturity
- Liveness & termination:
 - For proving that software does "react"
 - Fewer verification tools
 - Often not as general, each strongly tailored to a form of programs
 - Sometimes "inconvenient" restrictions: e.g. no nested loops, purely functional

→ Here: constructing termination provers from safety analyzers

- → Take an invariance analysis as a parameter
 - Computes an *invariance assertion* for each program location
 - An invariance assertion for ℓ holds of all reachable states at ℓ
- Construct its *induced* variance analysis
 - Computes a variance assertion for each program location
 - A variance assertion for l holds between any reachable state at l and any previous state at l
- → Yields a termination prover
 - We give a *local termination predicate* \mathcal{LT} such that
 - Program terminates if \mathcal{LT} holds of each program location's variance assertion
- Need two additional operations on abstract representation
 - Seed & WellFounded
 - Not difficult to define in practice

The plan

- Introduction
- Overview induced variance analysis algorithm
- Local termination predicates
- → Play-by-play for an example
- → Requirements on instantiations
- Instantiation for numerical abstract domains
- → Instantiation for shape analysis
- Conclusion

```
01 VARIANCEANALYSIS(P, L, I^{\sharp}) {
      IAs := INVARIANCEANALYSIS(P, I^{\sharp})
02
03
      foreach \ell \in L {
          LTPreds[\ell] := true
04
          O := \text{ISOLATE}(P, L, \ell)
05
06
          foreach q \in IAs such that pc(q) = \ell {
              VAs := INVARIANCEANALYSIS(O, STEP(O, {SEED(q)}))
07
             foreach r \in VAs {
08
09
                if pc(r) = \ell \land \neg WELLFOUNDED(r) {
                    LTPreds[\ell] := false
10
11
12
13
14
15
      return LTPreds
16 }
```

Microsoft*


```
82 while (x>a && y>b) {
83
      if (nondet()) {
84
       do {
85
         x = x - 1;
       } while (x>10);
86
87 } else {
88
       y = y - 1;
89
      }
90
    }
```

- → Line 83 is not visited infinitely often
- → Line 85 is not visited infinitely often
- → Program terminates

- → Line 83 is visited infinitely often
- Program diverges

but...

→ $\mathcal{LT}(83)$: Line 83 is visited infinitely often only when the program's execution exits the loop contained in lines 82 to 90 infinitely often

- → Line 85 is visited infinitely often
- Program diverges

but still...

→ $\mathcal{LT}(83)$: Line 83 is visited infinitely often only when the program's execution exits the loop contained in lines 82 to 90 infinitely often


```
81 while (nondet()) {
    while (x>a \&\& y>b) {
82
83
      if (nondet()) {
84
        do {
85
          x = x - 1;
86
        } while (nondet());
87 } else {
88
        y = y - 1;
89
90
    }
91 }
```

- → $\mathcal{LT}(82)$: Line 82 is visited infinitely often only when the program's execution exits the loop contained in lines 81 to 91 infinitely often ×
- → LT(83): Line 83 is visited infinitely often only when the program's execution exits the loop contained in lines 82 to 90 infinitely often
- → $\mathcal{LT}(85)$: Line 85 is visited infinitely often only when the program's execution exits the loop contained in lines 84 to 86 infinitely often ×

- Consider an invariance analysis based on the Octagon domain
- \rightarrow Can express conjunctions of inequalities of the form: $\pm x + \pm y \leq c$
- \rightarrow Represent the program counter with equalities: pc = c

```
81 while (nondet()) {
82
    while (x>a && y>b) {
      if (nondet()) {
83
84 do {
85
         x = x - 1;
       } while (nondet());
86
87 } else {
88
       y = y - 1;
      }
89
90
91 }
```



```
\rightarrow 01 VARIANCEANALYSIS(P, L, I^{\sharp}) {
         IAs := INVARIANCEANALYSIS(P, I^{\sharp})
   02
   03
         foreach \ell \in L {
   04
             LTPreds[\ell] := \texttt{true}
            O := \text{ISOLATE}(P, L, \ell)
   05
            foreach q \in IAs such that pc(q) = \ell {
   06
                VAs := INVARIANCEANALYSIS(O, STEP(O, {SEED(q)}))
   07
   08
                foreach r \in VAs {
                   if pc(r) = \ell \land \neg WELLFOUNDED(r) {
   09
                      LTPreds[\ell] := \texttt{false}
   10
                                               81 while (nondet()) {
   11
                   }
                                               82
                                                     while (x>a && y>b) {
   12
                                                        if (nondet()) {
                                               83
   13
                                                          do {
                                               84
   14
                                               85
                                                             x = x - 1;
         return LTPreds
   15
                                                          } while (nondet());
                                               86
   16 }
                                                       } else {
                                               87
                                               88
                                                          y = y - 1;
                                               89
                                               90
                                               91 }
```



```
01 VARIANCEANALYSIS(P, L, I^{\sharp})
                                                   pc=81 \land x \ge a+1 \land y \ge b+1
       IAs := INVARIANCEANALYSIS(P, I^{\sharp})
02
       foreach \ell \in L {
 03
 04
           LTPreds[\ell] := \texttt{true}
           O := \text{ISOLATE}(P, L, \ell)
 05
           foreach q \in IAs such that pc(q) = \ell {
 06
               VAs := INVARIANCEANALYSIS(O, STEP(O, {SEED(q)}))
 07
 08
              foreach r \in VAs {
                 if pc(r) = \ell \land \neg WELLFOUNDED(r) {
 09
                     LTPreds[\ell] := \texttt{false}
 10
                                              81 while (nondet()) {
 11
                  }
                                              82
                                                    while (x>a && y>b) {
 12
                                                       if (nondet()) {
                                              83
 13
                                              84
                                                         do {
 14
                                              85
                                                            x = x - 1;
       return LTPreds
 15
                                                          } while (nondet());
                                              86
 16 }
                                                       } else {
                                              87
                                              88
                                                         y = y - 1;
                                              89
                                              90
                                              91
                                                 }
```



```
01 VARIANCEANALYSIS(P, L, I^{\sharp}) {
      IAs := INVARIANCEANALYSIS(P, I^{\ddagger})
02
03
      foreach \ell \in L {
                                               pc=83 \land x \ge a + 1 \land y \ge b + 1
04
         LTPreds[\ell] := \texttt{true}
         O := \text{ISOLATE}(P, L, \ell)
05
         foreach q \in IAs such that pc(q) = \ell {
06
             VAs := INVARIANCEANALYSIS(O, STEP(O, {SEED(q)}))
07
             foreach r \in VAs {
08
                if pc(r) = \ell \land \neg WELLFOUNDED(r) {
09
                   LTPreds[\ell] := \texttt{false}
10
                                             81 while (nondet()) {
11
                }
                                                   while (x>a && y>b) {
                                             82
12
                                             83
                                                      if (nondet()) {
13
                                                         do {
                                             84
14
                                             85
                                                           x = x - 1;
      return LTPreds
15
                                                         } while (nondet());
                                             86
16 }
                                                      } else {
                                             87
                                             88
                                                         y = y - 1;
                                             89
                                             90
                                                    }; assume(false);
                                             91
```


Illustrative example	$ \supseteq \{ pc_s = 83 \land pc = 83 \land x \ge a + 1 \land y \ge b + 1 \\ \land x_s \ge x + 1 \land y_s \ge y \land a_s = a \land b_s = b $
08 foreach $r \in VAs$ {	, $pc_s=83 \land pc=83 \land x \ge a + 1 \land y \ge b + 1$ $\land x_s \ge x \land y_s \ge y + 1 \land a_s=a \land b_s=b$, $pc_s=83 \land pc=83 \land x \ge a - 1 \land y \ge b + 1$ $\land x_s \ge x + 1 \land y_s \ge y + 1 \land a_s=a \land b_s=b$ } that $pc(q) = \ell$ { $CEANALYSIS(O, STEP(O, {SEED(q)}))$ = WELLFOUNDED(r) { := false 81 while (nondet()) {
$pc_s = 83 \land pc = 84 \land x \ge a + 1 \land y \ge a + x \land x_s = x \land y_s = y \land a_s = a \land b_s = b$	
<pre>15 return LTPreds 16 }</pre>	<pre>85</pre>

Illustrative example	$ \supseteq \{ pc_s = 83 \land pc = 83 \land x \ge a + 1 \land y \ge b + 1 \\ \land x_s \ge x + 1 \land y_s \ge y \land a_s = a \land b_s = b $										
01 VARIANCEANALYSIS (P, L, I) 02 $IAs :=$ INVARIANCEANAL	$, \mu c_s = 0.5 \land \mu c = 0.5 \land x \ge a + 1 \land y \ge b + 1$										
03 foreach $\ell \in L$ {	$ \land \land_{s} \leq \land \land y_{s} \leq y + 1 \land a_{s} - a \land b_{s} - b $										
04 $LTPreds[\ell] := t$, $pc_s = 83 \land pc = 83 \land x \ge a - 1 \land y \ge b + 1$										
05 $O := ISOLAT$ (L, ℓ)	$\land x_s \ge x + 1 \land y_s \ge y + 1 \land a_s = a \land b_s = b $										
06 foreach $\in TAs$ such											
-	$CEANALYSIS(O, STEP(O, \{SEED(q)\}))$										
$08 \qquad \qquad \text{foreach } r \in VAs \ \{$											
•	$\neg WELLFOUNDED(r) $										
10 $LTPreds[\ell]$											
11 }	<pre>81 while (nondet()) {</pre>										
12 }	82 while (x>a && y>b) {										
13 }	83 if (nondet()) {										
14 }	84 do {										
15 return <i>LTPreds</i>	85 $x = x - 1;$										
16 }	<pre>86 } while (nondet());</pre>										
	87 } else {										
"A superset of the possible transitions											
from states at 83 to states also at line											
83 reachable in 1 or more steps of the	e }; assume(false);										
program's execution"											

- → Speed: the induced termination provers are fast:
 - 0.07s for Octagon-based prover on this example, vs 8.3s for Terminator
- → Automatic:
 - Termination arguments are automatically found and checked
- Disjunctive termination arguments:
 - Disjunctive decomposition under the control of the invariance analysis
 - Allows using invariance analyzers based on simpler domains
 - Traditional ranking function for blue loop is:

f(s)=s(x)+s(y)

and the program's transition relation

(whose coverage must be proven) is:

 $\label{eq:star} \{(s,t) \mid s(x) + s(y) \geq t(x) + t(y) - 1 \ \land \ t(x) + t(y) \geq 0 \}$ Note the 4-variable inequality.

```
81 while (nondet()) {
82
     while (x>a && y>b) {
83
       if (nondet()) {
84
         do
             ł
85
            x = x - 1;
86
          } while (x>10);
87
       } else {
88
         y = y - 1;
89
90
91 }
```

Remarks

- → Dynamic seeding: improved precision
 - Seeding may be done after some disjunctive decomposition
 - Auxiliary information kept by the invariance analysis can be seeded
- → No rank function synthesis:
 - Well-foundedness checks only need boolean result, a full rank-function synthesizer is unnecessary
- Some usable information is computed whether or not overall termination is established
 - The well-founded disjuncts that are found provide refinement-based tools like Terminator with a much better starting point
- → Robust wrt nested loops, etc. by use of standard analysis methods
 - Fits in comfortably with cutpoint decomposition techniques
- Over-approximation of program's transition relation holds by construction, in Terminator checking this is the performance bottleneck

Instantiating the algorithm: Seed & WellFounded

- Seed encodes a binary relation on states into a predicate on states
- Ghost state is the additional information in a state used to represent a relation (the seed variables)

Microsoft^{*}

- Seeding must introduce ghost state, approximating copying the state, in a fashion such that:
 - The concrete semantics is independent of any ghost state
 - The abstract semantics (InvarianceAnalysis) must ignore the ghost state and not introduce spurious facts about it
- WellFounded must soundly check well-foundedness of the relations seeded states represent

and of course:

Step and InvarianceAnalysis must be sound over-approximations of the program's concrete semantics

Take a conventional invariance analysis based on the Ocatgon or Polyhedra abstract domains

Microsoft^{*}

→ Fit a post-analysis phase that recovers some disjunctive information

→ Define:

- ρ is a bijection between program and seed variables
- WfCheck can be e.g. RankFinder or PolyRank

→ That's it!

Microsoft*

(a) Results from experiments with termination tools on arithmetic examples from the Octagon Library distribution.

	1	1 2 3		4 6				7		8		9		10		11		12				
0	0.30	t	0.05	Ť	0.11	†	0.50	t	0.10	Ť	0.17	†	0.16	†	0.12	†	0.35	†	0.86	t	0.12	†
Р	1.42	\checkmark	0.82	\checkmark	1.06	t	2.29	t	2.61	t	1.28	t	0.24	†	1.36	\checkmark	1.69	Ť	1.56	Ť	1.05	t
PR	0.21	\checkmark	0.13	\checkmark	0.44	\checkmark	1.62	\checkmark	3.88	\checkmark	0.11	\checkmark	2.02	\checkmark	1.33	\checkmark	13.34	\checkmark	174.55	\checkmark	0.15	\checkmark
Т	435.23	\checkmark	61.15	\checkmark	T/O	-	T/O	-	75.33	\checkmark	T/O	-	T/O	-	T/O	-	T/O	-	T/O	-	10.31	†

(b) Results from experiments with termination tools on arithmetic examples from the POLYRANK distribution.

	1		2		2		3		4		5		6		7		8	9		10	
0	1.42	\checkmark	1.67	\oslash	0.47	\oslash	0.18	\checkmark	0.06	\checkmark	0.53	\checkmark	0.50	\checkmark	0.32	\checkmark	0.14	\oslash	0.17	\checkmark	
Р	4.66	\checkmark	6.35	\oslash	1.48	\oslash	1.10	\checkmark	1.30	\checkmark	1.60	\checkmark	2.65	\checkmark	1.89	\checkmark	2.42	\oslash	1.27	\checkmark	
PR	T/O	-	T/O	-	T/O	-	T/O	-	0.10	\checkmark	T/O	-	T/O	-	T/O	-	T/O	-	0.31	\checkmark	
Т	10.22	\checkmark	31.51	\oslash	20.65	\oslash	4.05	\checkmark	12.63	\checkmark	67.11	\checkmark	298.45	\checkmark	444.78	\checkmark	T/O	-	55.28	\checkmark	

(c) Results from experiments with termination tools on small arithmetic examples taken from Windows device drivers. Note that the examples are small as they must currently be hand-translated for the three tools that do not accept C syntax.

Induced termination prover for shape analysis

Microsoft^{*}

→ No post-analysis, the Sonar analysis is already fully disjunctive

→ Define:

- ρ is a bijection between list length and seeded length variables
- WfCheck can be e.g. RankFinder or PolyRank
- Surprisingly similar to instantiation for numerical domains, despite the underlying analyses being radically different

Loop	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Time (s)	0.0	0.0	8.0	0.3	1.7	13	296	0.1	5.4	0.0	8.2	821	0.0	1.6	152	0.0	2.6	3.5	58	32	261
Result	\checkmark	\oslash	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\oslash	\bigcirc	\checkmark	\oslash	\checkmark	\oslash	\checkmark	\checkmark						
WF checks	1	4	16	3	5	9	15	2	4	1	6	39	1	3	16	1	28	9	85	20	37

- → Results on examples Terminator flags as buggy
- → 1 false bug reported: loop 8, essentially reversing a pan-handle list

Conclusions

- Variance analyses can be constructed from invariance analyses
- Resulting termination provers are fast: at least competitive with the stateof-the art
- → Even (quickly) failed proofs can help other provers
- Usual analysis techniques for varying the precision versus performance balance can now be done for termination

→ Questions?

details in a paper to appear in POPL