
Variance Analyses
from Invariance Analyses

Josh Berdine
jjb@microsoft.com

Microsoft Research, Cambridge

Joint work with Aziem Chawdhary, Byron Cook, Dino Distefano & Peter O’Hearn

SAVCBS’06: 10 Nov 2006

State of the verification toolbox

Safety properties & reachability:
For proving that software doesn’t “crash”
Many verification tools & techniques at hand

Software model checkers, e.g. SLAM, Blast, SATAbs,…
Abstract domains: e.g. Interval, Octagon, Polyhedra,…
Other static analyzers: e.g. various control-flow, shape,… analyses

Not insignificant degree of coverage and maturity

Liveness & termination:
For proving that software does “react”
Fewer verification tools
Often not as general, each strongly tailored to a form of programs
Sometimes “inconvenient” restrictions: e.g. no nested loops, purely functional

Here: constructing termination provers from safety analyzers

Termination provers for free!

Take an invariance analysis as a parameter
Computes an invariance assertion for each program location
An invariance assertion for l holds of all reachable states at l

Construct its induced variance analysis
Computes a variance assertion for each program location
A variance assertion for l holds between any reachable state at l and any
previous state at l

Yields a termination prover
We give a local termination predicate LT such that
Program terminates if LT holds of each program location’s variance assertion

Need two additional operations on abstract representation
Seed & WellFounded
Not difficult to define in practice

The plan

Introduction

Overview induced variance analysis algorithm

Local termination predicates

Play-by-play for an example

Requirements on instantiations

Instantiation for numerical abstract domains

Instantiation for shape analysis

Conclusion

Parameterized variance analysis algorithm

Parameterized variance analysis algorithm

Underlying invariance analysis

Single-step version of
invariance analysis

Additional operation to
plant initial

representation of
progress

Additional operation
to check progress is

being made

Parameterized variance analysis algorithm

Input program Set of cutpoints

Initial abstract
state

Output array indicating
which local termination
predicates were proved

Local termination predicates

Line 83 is not visited infinitely often

Line 85 is not visited infinitely often

Program terminates

82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (x>10);
87 } else {
88 y = y - 1;
89 }
90 }

Local termination predicates

Line 83 is visited infinitely often

Program diverges

but…

LT(83): Line 83 is visited infinitely often only when the program’s
execution exits the loop contained in lines 82 to 90 infinitely often

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (x>10);
87 } else {
88 y = y - 1;
89 }
90 }
91 }

Local termination predicates

Line 85 is visited infinitely often

Program diverges

but still…

LT(83): Line 83 is visited infinitely often only when the program’s
execution exits the loop contained in lines 82 to 90 infinitely often

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }
91 }

Local termination predicates

LT(82): Line 82 is visited infinitely often only when the program’s
execution exits the loop contained in lines 81 to 91 infinitely often

LT(83): Line 83 is visited infinitely often only when the program’s
execution exits the loop contained in lines 82 to 90 infinitely often

LT(85): Line 85 is visited infinitely often only when the program’s
execution exits the loop contained in lines 84 to 86 infinitely often

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }
91 }

Illustrative example

Consider an invariance analysis based on the Octagon domain

Can express conjunctions of inequalities of the form: ±x + ±y ≤ c

Represent the program counter with equalities: pc = c

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }
91 }

Illustrative example

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }
91 }

Illustrative example

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }
91 }

pc=81 ∧ x ≥ a + 1 ∧ y ≥ b + 1

Illustrative example

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }
91 }

pc=81 ∧ x ≥ a + 1 ∧ y ≥ b + 1

pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1

{s | s(pc)=83 ∧
s(x) ≥ s(a) + 1 ∧ s(y) ≥ s(b) + 1}

83

Illustrative example

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }; assume(false);
91 }

pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1

Illustrative example

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }; assume(false);
91 }

pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1

Illustrative example

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }; assume(false);
91 }

pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1

pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1
∧ pcs=pc ∧ xs=x ∧ ys=y ∧ as=a ∧ bs=b

Illustrative example

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }; assume(false);
91 }

pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1

pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1
∧ pcs=pc ∧ xs=x ∧ ys=y ∧ as=a ∧ bs=b

{(s,t) | s(pc)=t(pc)=83
∧ s(x)=t(x)
∧ s(y)=t(y)
∧ s(a)=t(a)
∧ s(b)=t(b)
∧ t(x) ≥ t(a) + 1
∧ t(y) ≥ t(b) + 1 }

Illustrative example

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }; assume(false);
91 }

pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1

pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1
∧ pcs=pc ∧ xs=x ∧ ys=y ∧ as=a ∧ bs=b

pcs=83 ∧ pc=84 ∧ x ≥ a + 1 ∧ y ≥ b + 1
∧ xs=x ∧ ys=y ∧ as=a ∧ bs=b

Illustrative example

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }; assume(false);
91 }

pcs=83 ∧ pc=84 ∧ x ≥ a + 1 ∧ y ≥ b + 1
∧ xs=x ∧ ys=y ∧ as=a ∧ bs=b

Illustrative example

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }; assume(false);
91 }

pcs=83 ∧ pc=84 ∧ x ≥ a + 1 ∧ y ≥ b + 1
∧ xs=x ∧ ys=y ∧ as=a ∧ bs=b

⊇ { pcs=83 ∧ pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1
∧ xs ≥ x + 1 ∧ ys ≥ y ∧ as=a ∧ bs=b

, pcs=83 ∧ pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1
∧ xs ≥ x ∧ ys ≥ y + 1 ∧ as=a ∧ bs=b

, pcs=83 ∧ pc=83 ∧ x ≥ a − 1 ∧ y ≥ b + 1
∧ xs ≥ x + 1 ∧ ys ≥ y + 1 ∧ as=a ∧ bs=b }

Illustrative example

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }; assume(false);
91 }

“A superset of the possible transitions
from states at 83 to states also at line
83 reachable in 1 or more steps of the

program’s execution”

⊇ { pcs=83 ∧ pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1
∧ xs ≥ x + 1 ∧ ys ≥ y ∧ as=a ∧ bs=b

, pcs=83 ∧ pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1
∧ xs ≥ x ∧ ys ≥ y + 1 ∧ as=a ∧ bs=b

, pcs=83 ∧ pc=83 ∧ x ≥ a − 1 ∧ y ≥ b + 1
∧ xs ≥ x + 1 ∧ ys ≥ y + 1 ∧ as=a ∧ bs=b }

Illustrative example

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }; assume(false);
91 }

“A superset of the possible transitions
from states at 83 to states also at line
83 reachable in 1 or more steps of the

program’s execution”

⊇ { pcs=83 ∧ pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1
∧ xs ≥ x + 1 ∧ ys ≥ y ∧ as=a ∧ bs=b

, pcs=83 ∧ pc=83 ∧ x ≥ a + 1 ∧ y ≥ b + 1
∧ xs ≥ x ∧ ys ≥ y + 1 ∧ as=a ∧ bs=b

, pcs=83 ∧ pc=83 ∧ x ≥ a − 1 ∧ y ≥ b + 1
∧ xs ≥ x + 1 ∧ ys ≥ y + 1 ∧ as=a ∧ bs=b }

If LTPreds[l]=true, then VAs is a finite
disjunction of well-founded relations that

over-approximates R+. Then isolated
program terminates by Podelski &

Rybalchenko [LICS04]

Remarks

Speed: the induced termination provers are fast:
0.07s for Octagon-based prover on this example, vs 8.3s for Terminator

Automatic:
Termination arguments are automatically found and checked

Disjunctive termination arguments:
Disjunctive decomposition under the control of the invariance analysis
Allows using invariance analyzers based on simpler domains

Traditional ranking function for blue loop is:
f(s)=s(x)+s(y)

and the program’s transition relation
(whose coverage must be proven) is:

{(s,t) | s(x)+s(y) ≥ t(x)+t(y)-1 ∧ t(x)+t(y) ≥ 0}
Note the 4-variable inequality.

81 while (nondet()) {
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (x>10);
87 } else {
88 y = y - 1;
89 }
90 }
91 }

Remarks

Dynamic seeding: improved precision
Seeding may be done after some disjunctive decomposition
Auxiliary information kept by the invariance analysis can be seeded

No rank function synthesis:
Well-foundedness checks only need boolean result, a full rank-function
synthesizer is unnecessary

Some usable information is computed whether or not overall termination
is established

The well-founded disjuncts that are found provide refinement-based tools like
Terminator with a much better starting point

Robust wrt nested loops, etc. by use of standard analysis methods
Fits in comfortably with cutpoint decomposition techniques

Over-approximation of program’s transition relation holds by
construction, in Terminator checking this is the performance bottleneck

Instantiating the algorithm: Seed & WellFounded

Seed encodes a binary relation on states into a predicate on states
Ghost state is the additional information in a state used to represent a
relation (the seed variables)
Seeding must introduce ghost state, approximating copying the state, in
a fashion such that:

The concrete semantics is independent of any ghost state
The abstract semantics (InvarianceAnalysis) must ignore the ghost state and
not introduce spurious facts about it

WellFounded must soundly check well-foundedness of the relations
seeded states represent

and of course:

Step and InvarianceAnalysis must be sound over-approximations of the
program’s concrete semantics

Induced termination provers for numerical domains

Take a conventional invariance analysis based on the Ocatgon or
Polyhedra abstract domains

Fit a post-analysis phase that recovers some disjunctive information

Define:

ρ is a bijection between program and seed variables
WfCheck can be e.g. RankFinder or PolyRank

That’s it!

Induced termination provers for numerical domains

Induced termination prover for shape analysis

Take Sonar, the separation-logic based shape analysis that tracks sizes
of abstracted portions of the heap

No post-analysis, the Sonar analysis is already fully disjunctive

Define:

ρ is a bijection between list length and seeded length variables
WfCheck can be e.g. RankFinder or PolyRank

Surprisingly similar to instantiation for numerical domains, despite the
underlying analyses being radically different

Induced termination prover for shape analysis

Results on examples Terminator flags as buggy

1 false bug reported: loop 8, essentially reversing a pan-handle list

Conclusions

Variance analyses can be constructed from invariance analyses

Resulting termination provers are fast: at least competitive with the state-
of-the art

Even (quickly) failed proofs can help other provers

Usual analysis techniques for varying the precision versus performance
balance can now be done for termination

Questions?

details in a paper to appear in POPL

