Variance Analyses from Invariance Analyses

Josh Berdine
jjb@microsoft.com
Microsoft Research, Cambridge

Joint work with Aziem Chawdhary, Byron Cook, Dino Distefano \& Peter O'Hearn

SAVCBS'06: 10 Nov 2006
\rightarrow Safety properties \& reachability:

- For proving that software doesn't "crash"
- Many verification tools \& techniques at hand
- Software model checkers, e.g. SLAM, Blast, SATAbs,...
- Abstract domains: e.g. Interval, Octagon, Polyhedra,...
- Other static analyzers: e.g. various control-flow, shape,... analyses
- Not insignificant degree of coverage and maturity
\rightarrow Liveness \& termination:
- For proving that software does "react"
- Fewer verification tools
- Often not as general, each strongly tailored to a form of programs
- Sometimes "inconvenient" restrictions: e.g. no nested loops, purely functional
\rightarrow Here: constructing termination provers from safety analyzers

Termination provers for free!

\rightarrow Take an invariance analysis as a parameter

- Computes an invariance assertion for each program location
- An invariance assertion for ℓ holds of all reachable states at ℓ
\rightarrow Construct its induced variance analysis
- Computes a variance assertion for each program location
- A variance assertion for ℓ holds between any reachable state at ℓ and any previous state at l
\rightarrow Yields a termination prover
- We give a local termination predicate $\mathcal{L I}$ such that
- Program terminates if $\mathcal{L} \mathcal{T}$ holds of each program location's variance assertion
\rightarrow Need two additional operations on abstract representation
- Seed \& WellFounded
- Not difficult to define in practice
\rightarrow Introduction
\rightarrow Overview induced variance analysis algorithm
\rightarrow Local termination predicates
\rightarrow Play-by-play for an example
\rightarrow Requirements on instantiations
\rightarrow Instantiation for numerical abstract domains
\rightarrow Instantiation for shape analysis
\rightarrow Conclusion

Parameterized variance analysis algorithm

01 VarianceAnalysis $\left(P, L, I^{\sharp}\right)$ \{
$02 \quad I A s:=\operatorname{InvarianceAnalysis}\left(P, I^{\sharp}\right)$
03 foreach $\ell \in L\{$
$04 \quad$ LTPreds $[\ell]:=$ true
$05 \quad O:=\operatorname{Isolate}(P, L, \ell)$
06 foreach $q \in I A s$ such that $\mathrm{pc}(q)=\ell\{$

07
08
09
10
11
12
13
14
15 return LTPreds
16 \}
\}
\}
\}
\}
$V A s:=\operatorname{InvarianceAnalysis}(O, \operatorname{Step}(O,\{\operatorname{Seed}(q)\}))$ foreach $r \in V A s\{$
if $\mathrm{pc}(r)=\ell \wedge \neg \mathrm{WELLFOUNDED}(r)\{$ LTPreds $[\ell]:=$ false

Parameterized variance analysis algorithm

01 VarianceAnalysis $\left(P, L, I^{\sharp}\right)\{$

Underlying invariance analysis

$02 \quad I A s:=$ InvarianceAnalysis $\left(\overline{\left.P, I^{+}\right)}\right.$
03 foreach $\ell \in L\{$

04
05
06
07
08
09
10
11
12
13
14
LTPreds $[\ell]:=$ true $O:=\operatorname{Isolate}(P, L, \ell)$
foreach $q \in I A s$ such that $\mathrm{pc}(q)=\ell\{$
$V A s:=\operatorname{InvarianceAnalysis}(O, \operatorname{Step}(O,\{\operatorname{SeEd}(q)\}))$ foreach $r \in V A s\{$
if $\mathrm{pc}(r)=\ell \wedge \neg \operatorname{WELLFOUNDED}(r)\{$ LTPreds $[\ell]:=$ fal

\}
\}
15 return LTPreds
16 \}

Additional operation to check progress is being made

Single-step version of invariance analysis

Additional operation to plant initial representation of progress

Parameterized variance analysis algorithm

$06 \quad$ foreach $q \in I A s$ such that $\mathrm{pc}(q)=\ell\{$
$07 \quad V A s:=\operatorname{InvarianceAnalysis}(O, \operatorname{Step}(O,\{\operatorname{SeEd}(q)\}))$

08
09
10
11
12
13
14
15 return LTPreds 16 \}
\}
\}
\}
foreach $r \in V A s$ \{
if $\mathrm{pc}(r)=\ell \wedge \neg \operatorname{WELLFOUNDED}(r)\{$ LTPreds $[\ell]:=$ false
 which local termination predicates were proved

Local termination predicates

```
82 while (x>a && y>b) {
83 if (nondet()) {
84
85
86
87
88
89
90 }
```

\rightarrow Line 83 is not visited infinitely often
\rightarrow Line 85 is not visited infinitely often
\rightarrow Program terminates

Local termination predicates

\rightarrow Line 83 is visited infinitely often
\rightarrow Program diverges
but...
$\rightarrow \mathcal{L \mathcal { T }}$ (83): Line 83 is visited infinitely often only when the program's execution exits the loop contained in lines 82 to 90 infinitely often

Local termination predicates

```
8 1 \text { while (nondet()) \{}
82 while (x>a && y>b) {
83 if (nondet()) {
84 do {
85 x = x - 1;
86 } while (nondet());
87 } else {
88 y = y - 1;
89 }
90 }
91 }
```

\rightarrow Line 85 is visited infinitely often
\rightarrow Program diverges
but still...
$\rightarrow \mathcal{L} \mathcal{T}(83)$: Line 83 is visited infinitely often only when the program's execution exits the loop contained in lines 82 to 90 infinitely often

Local termination predicates

$\rightarrow \mathcal{L} \mathcal{T}(82)$: Line 82 is visited infinitely often only when the program's execution exits the loop contained in lines 81 to 91 infinitely often \times
$\rightarrow \mathcal{L} \mathcal{T}(83)$: Line 83 is visited infinitely often only when the program's execution exits the loop contained in lines 82 to 90 infinitely often
$\rightarrow \mathcal{L} \mathcal{T}(85)$: Line 85 is visited infinitely often only when the program's execution exits the loop contained in lines 84 to 86 infinitely often \times

Illustrative example

\rightarrow Consider an invariance analysis based on the Octagon domain
\rightarrow Can express conjunctions of inequalities of the form: $\pm x+ \pm y \leq c$
\rightarrow Represent the program counter with equalities: $\mathrm{pc}=\mathrm{c}$

Illustrative example

$\longrightarrow 01 \operatorname{VarianceAnalysis}\left(P, L, I^{\sharp}\right)\{$
$02 \quad I A s:=\operatorname{InvarianceAnalysis}\left(P, I^{\sharp}\right)$
03 foreach $\ell \in L\{$
$04 \quad$ LTPreds $[\ell]:=$ true
$05 \quad O:=\operatorname{Isolate}(P, L, \ell)$
06
07
08
09
10
11
12
13
14
16 \}
foreach $q \in I A s$ such that $\mathrm{pc}(q)=\ell\{$
$V A s:=\operatorname{InvarianceAnalysis}(O, \operatorname{Step}(O,\{\operatorname{SeED}(q)\}))$
foreach $r \in V A s\{$
if $\mathrm{pc}(r)=\ell \wedge \neg \operatorname{WELLFOUNDED}(r)\{$
LTPreds $[\ell]:=$ false

Illustrative example

```
\(01 \operatorname{VarianceAnalysis}\left(P, L, I^{\sharp}\right)\)
\(p c=81 \wedge x \geq a+1 \wedge y \geq b+1\)
```

$02 \quad I A s:=\operatorname{InvaRIANCEANALYSIS}\left(P, I^{\sharp}\right)$
03 foreach $\ell \in L\{$
$04 \quad$ LTPreds $[\ell]:=$ true
$05 \quad O:=\operatorname{IsOLATE}(P, L, \ell)$
foreach $\ell \in L$ \{
LTPreds $[\ell]:=$ true
$O:=\operatorname{Isolate}(P, L, \ell)$
foreach $q \in I A s$ such that $\mathrm{pc}(q)=\ell\{$
$V A s:=\operatorname{InvarianceAnalysis}(O, \operatorname{Step}(O,\{\operatorname{SeED}(q)\}))$
foreach $r \in V A s\{$
if $\mathrm{pc}(r)=\ell \wedge \neg \operatorname{WELLFOUNDED}(r)\{$
LTPreds $[\ell]:=$ false

Illustrative example

$01 \operatorname{VarianceAnalysis}\left(P, L, I^{\sharp}\right)\{\quad \mathrm{pc}=81 \wedge \mathrm{x} \geq \mathrm{a}+1 \wedge \mathrm{y} \geq \mathrm{b}+1$
$02 \quad I A s:=\operatorname{InvarianceAnalysis}\left(P, I^{\sharp}\right)$
03 foreach $\ell \in L\{$

04
05
O LTPreds $[\ell]:=$ true

IsoLATE (P, L, ℓ)

06
07
08
09
10
11
12
$13 \quad\}$

$$
\}
$$

$14\}$
15 return LTPreds
$16\}$

$$
\}
$$

$$
\}
$$

$$
p c=83 \wedge x \geq a+1 \wedge y \geq b+1
$$

$$
\{s \mid s(p c)=83 \wedge
$$

$V A s:=$ Invarianceanal

$$
s(x) \geq s(a)+1 \wedge s(y) \geq s(b)+1\}
$$ foreach $r \in V A s\{$ if $\mathrm{pc}(r)=\ell \wedge \neg$ WELLFOUND LTPreds $[\ell]:=$ false

Illustrative example

01 VarianceAnalysis $\left(P, L, I^{\sharp}\right)\{$
$02 \quad I A s:=\operatorname{InvarianceAnalysis}\left(P, I^{\sharp}\right)$
03 foreach $\ell \in L\{$
$04 \quad$ LTPreds $[\ell]:=$ true

$$
O:=\operatorname{IsOLATE}(P, L, \ell)
$$

foreach $q \in I A s$ such that $\mathrm{pc}(q)=\ell\{$
$V A s:=\operatorname{InvarianceAnalysis}(O \operatorname{Step}(O,\{\operatorname{SeED}(q)\}))$
foreach $r \in V A s$ \{
if $\mathrm{pc}(r)=\ell \wedge \neg \operatorname{WELLFOUNDEL}(r)\{$
LTPreds [$\ell]:=$ false

$$
\}
$$

\}
\}
\}
return LTPreds

Illustrative example

01 VarianceAnalysis $\left(P, L, I^{\sharp}\right)$ \{
$02 \quad I A s:=\operatorname{InvarianceAnalysis}\left(P, I^{\sharp}\right)$
03 foreach $\ell \in L\{$
$04 \quad$ LTPreds $[\ell]:=$ true

$$
p c=83 \wedge x \geq a+1 \wedge y \geq b+1
$$

$05 \quad O:=\operatorname{IsOLATE}(P, L, \ell)$

07

15 return LTPreds
foreach $q \in I A s$ such that $\mathrm{pc}(q)=\ell\{$
$V A s:=\operatorname{InvarianceAnalysis}(O, \operatorname{Step}(O,\{\operatorname{Seed}(q)\}))$
foreach $r \in V A s\{$
if $\mathrm{pc}(r)=\ell \wedge \neg \operatorname{WELLFOUNDED}(r)\{$
LTPreds $[\ell]:=$ false

Illustrative example

01 VarianceAnalysis $\left(P, L, I^{\sharp}\right)$ \{
$02 \quad I A s:=\operatorname{InvarianceAnalysis}\left(P, I^{\sharp}\right)$
03 foreach $\ell \in L\{$
$04 \quad$ LTPreds $[\ell]:=$ true

$$
p c=83 \wedge x \geq a+1 \wedge y \geq b+1
$$

$05 \quad O:=\operatorname{IsOLATE}(P, L, \ell)$

07
08
09
10
11
12
13
14
$16\}$

foreach $q \in I A s$ such that $\mathrm{pc}(q)=\ell\{$
$V A s:=\operatorname{InvarianceAnalysis}(O, \operatorname{Step}(O,\{\operatorname{SeEd}(q)\}))$
foreach $r \in V A s$ \{
if $\mathrm{pc}(r)=\ell \wedge \neg \mathrm{WEL}^{\circ} \quad \mathrm{pc}=83 \wedge \mathrm{x} \geq \mathrm{a}+1 \wedge \mathrm{y} \geq \mathrm{b}+1$ LTPreds $[\ell]:=\mathrm{fa} \quad \begin{gathered}\mathrm{pc}=83 \wedge \mathrm{x} \geq \mathrm{a}+1 \wedge \mathrm{y} \geq \mathrm{b}+1 \\ \wedge \mathrm{pc}_{\mathrm{s}}=\mathrm{pc} \wedge \mathrm{x}_{\mathrm{s}}=\mathrm{x} \wedge \mathrm{y}_{\mathrm{s}}=\mathrm{y} \wedge \mathrm{a}_{\mathrm{s}}=\mathrm{a} \wedge \mathrm{b}_{\mathrm{s}}=\mathrm{b}\end{gathered}$

82	while (x>a \&\& y>b) \{
83	if (nondet ()) \{
84	do \{
85	$x=x-1 ;$
86	$\}$ while (nondet ());

87 \} else \{
$88 \quad y=y-1 ;$
89 \}
90 \}; assume(false);
91 \}

Illustrative example

01 VarianceAnalysis $\left(P, L, I^{\sharp}\right)$ \{
$02 \quad I A s:=\operatorname{InvarianceAnalysis}\left(P, I^{\sharp}\right)$
03 foreach $\ell \in L\{$
$04 \quad$ LTPreds $[\ell]:=$ true

$$
p c=83 \wedge x \geq a+1 \wedge y \geq b+1
$$

05
07
08
09
10
11
12
13
14
15 return LTPreds
$16\}$
$O:=\operatorname{Isolate}(P, L, \ell)$
foreach $q \in I A s$ such that $\mathrm{pc}(q)=\ell\{$
$V A s:=\operatorname{InvarianceAnalysis}(O, \operatorname{Step}(O,\{\operatorname{Seed}(q)\}))$
foreach $r \in \operatorname{VAs}\{$
if $\mathrm{pc}(r)=\ell \wedge \neg$ WeLLF $\quad \mathrm{pc}=83 \wedge \mathrm{x} \geq \mathrm{a}+1 \wedge \mathrm{y} \geq \mathrm{b}+1$
LTPreds $[\ell]:=\mathrm{fa}$.
\} $\quad \wedge \mathrm{pc}_{\mathrm{s}}=\mathrm{pc} \wedge \mathrm{x}_{\mathrm{s}}=\mathrm{x} \wedge \mathrm{y}_{\mathrm{s}}=\mathrm{y} \wedge \mathrm{a}_{\mathrm{s}}=\mathrm{a} \wedge \mathrm{b}_{\mathrm{s}}=\mathrm{b}$
$\{(\mathrm{s}, \mathrm{t}) \mid \mathrm{s}(\mathrm{pc})=\mathrm{t}(\mathrm{pc})=83$
$\wedge s(x)=t(x)$
$\wedge s(y)=t(y)$
$\wedge s(a)=t(a)$
$\wedge s(b)=t(b)$
$\wedge t(x) \geq t(a)+1$
$\wedge t(y) \geq t(b)+1\}$
90 \}; assume(false);
91 \}

Illustrative example

01 VarianceAnalysis $\left(P, L, I^{\sharp}\right)\{$
$02 \quad I A s:=\operatorname{InvarianceAnalysis}\left(P, I^{\sharp}\right)$
03 foreach $\ell \in L$ \{
$04 \quad$ LTPreds $[\ell]:=$ true

$$
p c=83 \wedge x \geq a+1 \wedge y \geq b+1
$$

$05 \quad O:=\operatorname{Isolate}(P, L, \ell)$
06 foreach $q \in I A s$ such that $\mathrm{pc}(q)=\ell\{$
$07 \quad V A s:=\operatorname{InvarianceAnalysis}(O, \operatorname{Step}(O,\{\operatorname{SeEd}(q)\}))$
08
09
10 foreach $r \in V A s\{$ if $\mathrm{pc}(r)=\ell \wedge \neg$ WeLr $\mathrm{pc}=83 \wedge \mathrm{x} \geq \mathrm{a}+1 \wedge \mathrm{y} \geq \mathrm{b}+1$

15 return LTPreds
$16\}$

Illustrative example

$01 \operatorname{VarianceAnalysis}\left(P, L, I^{\sharp}\right)\{$
$02 \quad I A s:=\operatorname{InvarianceAnalysis}\left(P, I^{\sharp}\right)$
03 foreach $\ell \in L\{$
$04 \quad$ LTPreds $[\ell]:=$ true
$05 \quad O:=\operatorname{IsOLATE}(P, L, \ell)$
$06 \quad$ foreach $q \in I A s$ such that $\mathrm{pc}(q)=\ell\{$
$07 \quad V A s:=\operatorname{InvarianceAnalysis}(O, \operatorname{StEp}(O,\{\operatorname{SeEd}(q)\}))$
08
09
10
foreach $r \in V A s\{$
if $\mathrm{pc}(r)=\ell \wedge \neg \mathrm{WELLFOUNDED}(r)\{$
LTPreds $[\ell]:=$ false

Illustrative example

$$
\begin{gathered}
\supseteq\left\{\mathrm{pc}_{s}=83 \wedge p c=83 \wedge x \geq a+1 \wedge y \geq b+1\right. \\
\wedge x_{s} \geq x+1 \wedge y_{s} \geq y \wedge a_{s}=a \wedge b_{s}=b
\end{gathered}
$$

01 VarianceAnalysis $(P, L$,
$02 \quad I A s:=$ InvarianceAnal
03 foreach $\ell \in L\{$
04

$$
\left.05 \quad O:=\text { IsOLAY } \quad \wedge \mathrm{x}_{\mathrm{s}} \geq \mathrm{x}+1 \wedge \mathrm{y}_{\mathrm{s}} \geq \mathrm{y}+1 \wedge \mathrm{a}_{\mathrm{s}}=\mathrm{a} \wedge \mathrm{~b}_{\mathrm{s}}=\mathrm{b}\right\}
$$

06 foreach \rightarrow IAs such that $\mathrm{pc}(q)=\ell$
$07 V A s:=\operatorname{InvarianceAnalysis}(O, \operatorname{Step}(O,\{\operatorname{SeEd}(q)\}))$
foreach $r \in V A s\{$
if $\mathrm{pc}(r)=\ell \wedge \neg \operatorname{WELLFOUNDED}(r)\{$
LTPreds $[\ell]:=$ false

Illustrative example

$$
\begin{gathered}
\supseteq\left\{\mathrm{pc}_{s}=83 \wedge p c=83 \wedge x \geq a+1 \wedge y \geq b+1\right. \\
\wedge x_{s} \geq x+1 \wedge y_{s} \geq y \wedge a_{s}=a \wedge b_{s}=b \\
, p c_{s}=83 \wedge p c=83 \wedge x \geq a+1 \wedge y \geq b+1 \\
\wedge x_{s} \geq x \wedge y_{s} \geq y+1 \wedge a_{s}=a \wedge b_{s}=b
\end{gathered}
$$

01 VarianceAnalysis $(P, L, 1$
02 IAs := INVARIANCEANAI
03 foreach $\ell \in L\{$
04

05

06

07

09
10
11
12
13
$V A s:=\operatorname{InvarianceAnalysis}(O, \operatorname{Step}(O,\{\operatorname{Seed}(q)\}))$
foreach $r \in V A s\{$
if $\mathrm{pc}(r)=\ell \wedge \neg \operatorname{WELLFOUNDED}(r)\{$
LTPreds $[\ell]:=$ false
 disjunction of well-founded relations that over-approximates R^{+}. Then isolated program terminates by Podelski \& Rybalchenko [LICSO4]
"A superset of the possible transitions from states at 83 to states also at line 83 reachable in 1 or more steps of the program's execution" \}
return LTPreds
\qquad

Remarks

\rightarrow Speed: the induced termination provers are fast:

- 0.07s for Octagon-based prover on this example, vs 8.3s for Terminator
\rightarrow Automatic:
- Termination arguments are automatically found and checked
\rightarrow Disjunctive termination arguments:
- Disjunctive decomposition under the control of the invariance analysis
- Allows using invariance analyzers based on simpler domains
- Traditional ranking function for blue loop is:

$$
f(s)=s(x)+s(y)
$$

and the program's transition relation
(whose coverage must be proven) is:

$$
\{(s, t) \mid s(x)+s(y) \geq t(x)+t(y)-1 \wedge t(x)+t(y) \geq 0\}
$$

Note the 4 -variable inequality.
\rightarrow Dynamic seeding: improved precision

- Seeding may be done after some disjunctive decomposition
- Auxiliary information kept by the invariance analysis can be seeded
\rightarrow No rank function synthesis:
- Well-foundedness checks only need boolean result, a full rank-function synthesizer is unnecessary
\rightarrow Some usable information is computed whether or not overall termination is established
- The well-founded disjuncts that are found provide refinement-based tools like Terminator with a much better starting point
\rightarrow Robust wrt nested loops, etc. by use of standard analysis methods
- Fits in comfortably with cutpoint decomposition techniques
\rightarrow Over-approximation of program's transition relation holds by construction, in Terminator checking this is the performance bottleneck
\rightarrow Seed encodes a binary relation on states into a predicate on states
\rightarrow Ghost state is the additional information in a state used to represent a relation (the seed variables)
\rightarrow Seeding must introduce ghost state, approximating copying the state, in a fashion such that:
- The concrete semantics is independent of any ghost state
- The abstract semantics (InvarianceAnalysis) must ignore the ghost state and not introduce spurious facts about it
\rightarrow WellFounded must soundly check well-foundedness of the relations seeded states represent
and of course:
\rightarrow Step and InvarianceAnalysis must be sound over-approximations of the program's concrete semantics

Induced termination provers for numerical domains
 earch Camoridge

\rightarrow Take a conventional invariance analysis based on the Ocatgon or Polyhedra abstract domains
\rightarrow Fit a post-analysis phase that recovers some disjunctive information
\rightarrow Define:

$$
\begin{array}{ll}
\operatorname{SeEd}(F) & \triangleq F \wedge \bigwedge_{v \in \operatorname{PVar}}\{v=\rho(v)\} \\
\operatorname{WellFounded}(F) & \triangleq \operatorname{WFChECK}(\rho(\operatorname{PVar}), \operatorname{PVar}, F)
\end{array}
$$

- ρ is a bijection between program and seed variables
- WfCheck can be e.g. RankFinder or PolyRank
\rightarrow That's it!

Induced termination provers for numerical domains

	1		2		3		4		5		6	
\mathbf{O}	0.11	\checkmark	0.08	\checkmark	6.03	\checkmark	1.02	\checkmark	0.16	\checkmark	0.76	\checkmark
P	1.40	\checkmark	1.30	\checkmark	10.90	\checkmark	2.12	\checkmark	1.80	\checkmark	1.89	\checkmark
PR	0.02	\checkmark	0.01	\checkmark	T/O	-	T/O	-	T/O	-	T/O	-
T	6.31	\checkmark	4.93	\checkmark	T/O	-	T/O	-	33.24	\checkmark	3.98	\checkmark

(a) Results from experiments with termination tools on arithmetic examples from the Octagon Library distribution.

	1		2		3		4		6		7		8		9		10		11		12	
O	0.30	\dagger	0.05	\dagger	0.11	\dagger	0.50	I	0.10	†	0.17	\dagger	0.16	+	0.12	\dagger	0.35	-	0.86	+	0.12	\dagger
P	1.42	\checkmark	0.82	\checkmark	1.06	\dagger	2.29	\dagger	2.61	\dagger	1.28	\dagger	0.24	\dagger	1.36	\checkmark	1.69	\dagger	1.56	\dagger	1.05	\dagger
PR	0.21	\checkmark	0.13	\checkmark	0.44	\checkmark	1.62	\checkmark	3.88	\checkmark	0.11	\checkmark	2.02	\checkmark	1.33	\checkmark	13.34	\checkmark	174.55	\checkmark	0.15	\checkmark
T	435.23	\checkmark	61.15	\checkmark	T/O	-	T/O	-	75.33	\checkmark	T/O	-	10.31	\dagger								

(b) Results from experiments with termination tools on arithmetic examples from the PolyRank distribution.

	1		2		3		4		5		6		7		8		9		10	
0	1.42	\checkmark	1.67	\bigcirc	0.47	\bigcirc	0.18	\checkmark	0.06	\checkmark	0.53	\checkmark	0.50	\checkmark	0.32	\checkmark	0.14	\bigcirc	0.17	\checkmark
P	4.66	\checkmark	6.35	\bigcirc	1.48	\bigcirc	1.10	\checkmark	1.30	\checkmark	1.60	\checkmark	2.65	\checkmark	1.89	\checkmark	2.42	\bigcirc	1.27	\checkmark
PR	T/O	-	T/O	-	T/O	-	T/O	-	0.10	\checkmark	T/O	-	T/O	-	T/O	-	T/O	-	0.31	\checkmark
T	10.22	\checkmark	31.51	\bigcirc	20.65	\bigcirc	4.05	\checkmark	12.63	\checkmark	67.11	\checkmark	298.45	\checkmark	444.78	\checkmark	T/O	-	55.28	\checkmark

(c) Results from experiments with termination tools on small arithmetic examples taken from Windows device drivers. Note that the examples are small as they must currently be hand-translated for the three tools that do not accept C syntax.
\rightarrow Take Sonar, the separation-logic based shape analysis that tracks sizes of abstracted portions of the heap
\rightarrow No post-analysis, the Sonar analysis is already fully disjunctive
\rightarrow Define:

$$
\begin{array}{cl}
\quad \operatorname{SEED}(\Pi \wedge \Sigma) & \triangleq\left(\Pi \wedge \Sigma \wedge \bigwedge_{v \in \operatorname{fDV}(\Pi \wedge \Sigma)}\{v=\rho(v)\}\right) \\
\operatorname{SEED}(\top) \triangleq \top \\
\operatorname{WELLFOUNDED}(\Pi \wedge \Sigma) & \triangleq \operatorname{WFCHECK}(\rho(\mathrm{DVar}), \operatorname{DVar}, \Pi) \\
\operatorname{WELLFOUNDED}(\top) \triangleq \text { false }
\end{array}
$$

- ρ is a bijection between list length and seeded length variables
- WfCheck can be e.g. RankFinder or PolyRank
\rightarrow Surprisingly similar to instantiation for numerical domains, despite the underlying analyses being radically different

Induced termination prover for shape analysis

Loop	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Time (s)	0.0	0.0	8.0	0.3	1.7	13	296	0.1	5.4	0.0	8.2	821	0.0	1.6	152	0.0	2.6	3.5	58	32	261
Result	\checkmark	\varnothing	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\varnothing	\varnothing	\checkmark	\oslash	\checkmark	\oslash	\checkmark	\checkmark						
WF checks	1	4	16	3	5	9	15	2	4	1	6	39	1	3	16	1	28	9	85	20	37

\rightarrow Results on examples Terminator flags as buggy
$\rightarrow 1$ false bug reported: loop 8, essentially reversing a pan-handle list
\rightarrow Variance analyses can be constructed from invariance analyses
\rightarrow Resulting termination provers are fast: at least competitive with the state-of-the art
\rightarrow Even (quickly) failed proofs can help other provers
\rightarrow Usual analysis techniques for varying the precision versus performance balance can now be done for termination
\rightarrow Questions?
details in a paper to appear in POPL

