
SAVCBS 10 November 2006

Iterator Specification with 

Typestates

Kevin Bierhoff – Carnegie Mellon University



SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates 2

Iterator Specification with 

Typestates

� Specify Iterator protocol as abstract 
state machine using typestates

� Ensure Iterator consistency with 
access permissions

� Talk focuses on read-only Iterators

� Modifying Iterators in the paper



SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates 3

Java Iterators Enumerate and 

Modify Collections

� interface Iterator

� boolean hasNext()

� Object next()

� void remove()

� interface Collection

� Iterator iterator()

� … methods for adding, removing, etc.

Is there another 

element?

Give me the next 

element

Remove the 

element you just 

gave me

Create iterator over 

collection

Focus on read-only iterators in this talk



SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates 4

Iterator State Machine

Next

element 

available

No next

element: 

end

next hasNext

is false

hasNext

is true

next



SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates 5

Iterator Invalidation Through 

Concurrent Modification

Collection

Iterator 1

Iterator 2

Iterator n

…

Need to ensure that Iterators are not used after concurrent modification

add!

remove!



SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates 6

Access Permissions For 

Typestate Tracking

� Associate access permissions with object 

references

� Limit what reference can do

� Keep permissions consistent

� Enforce one of two situations

� One unique permission

� One full and many pure permissions

� Full permission can modify object

� Pure permissions can read from object 



SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates 7

Permissions Can Model Collection 

Aliasing Through Iterators

Collection

unique

Collection

pure
Iterator 1

Iterator 2
pure

full

We specify collections to 

require unique permission 

for modifications

Collection

full

pure

pure

Iterators can be 

aliased as well

Collection
unique Modifying

IteratorUse fractions to 

put permissions 

back together



SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates 8

Access Permissions For 

References

� Permissions to objects

� What kind of permission?

� For what reference?

� What do we know about the state?

� Example: full(this, available)

Full permission

On the receiver

Currently in the 

“available” state 

(optional)



SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates 9

Linear Logic for Method 

Specifications

� Permissions as resources

� Method behavior
� A ⊸ B 

� Transitions from A to B

� Conjunction
� A ⊗ B

� A and B at the same time

� Disjunction (external choice)
� A ⊕ B

� Either A or B non-deterministically—be ready for either



SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates 10

Read-only Iterator

Specification

� interface Iterator

� boolean hasNext() : 
pure(this) ⊸

(result = true ⊗ pure(this, available)) ⊕
(result = false ⊗ pure(this, end))

� Object next() :
full(this, available) ⊸ full(this)

� interface Collection

� Iterator iterator() :
pure(this) ⊸ unique(result)

Enforces the characteristic hasNext() / next() call pairing

Dynamic state test: 

result value paired with 

state information

Don’t know state 

after call

Iterator captures 

permission to collection



SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates 11

Releasing Collection Permission 

Upon Iterator Destruction

� interface Iterator<c: Collection, g: Fraction function>
� hasNext, next as before
� void finalize() :

unique(this) ⊸ pure(c, g)

� interface Collection
� Iterator iterator() :

∀ g : Fraction function.
(pure(this, g) ⊸

∃ result : Iterator<this, g>. unique(result)

Iterator parameterized 

by iterated collection and 

permission fraction

Release “captured” collection 

permission upon destruction

Iterator captures 

permission to collection



SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates 12

Summary

� Specified read-only Iterators with 
typestates

� Modifying Iterators in the paper

� Ensure Iterator consistency with 
access permissions

� Can modify only unique collections

� Cannot turn read-only into modifying 

Iterator after creation (details in paper)


