lterator Specification with
Typestates

Kevin Bierhoff — Carnegie Mellon University

SAVCBS 10 November 2006

lterator Specification with
[Typestates

Specify lterator protocol as abstract
state machine using typestates

Ensure Iterator consistency with
access permissions

Talk focuses on read-only Iterators
o Modifying lterators in the paper

SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates

[Java lterators Enumerate and

Modify Collections
= interface Iterator © ihere anomer
o| boolean hasNext() 'ﬁn Sr—

—

o| Object next() | element

5 void remove() ——==__Removethe

element you just
= Interface Collection gave me
o lterator iterator()i Crea’i:eo:;[;r;’?r: over

o ... methods for adding, removing, etc.

Focus on read-only iterators in this talk

lterator State Machine

Next next No next
element > element:
next hasNext
is true

SAVCBS 10 November 2006 Kevin Bierhoff: lterator Specification with Typestates

hasNext
is false

lterator Invalidation Through]
Concurrent Modification

add!

Collection
remove!

Need to ensure that lterators are not used after concurrent modification

Access Permissions For
Typestate Tracking

Associate access permissions with object
references

o Limit what reference can do

o Keep permissions consistent

Enforce one of two situations
o One unique permission

o One full and many pure permissions
Full permission can modify object
Pure permissions can read from object

SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates

Permissions Can Model Collection
Aliasing Through lterators

We specify collections to
require unique permission lterators can be

aliased as well

for modifications

unique pure -
Collection Collection oure
full I
 —
. . _unique / Modifying
pure Collection Use fractions to Collection lterator
— put permissions

SAVCBS 10 November 2006 baCk tOg ether cification with Typestates

Access Permissions For
[References

Permissions to objects

o What kind of permission?

o For what reference?

o What do we know about the state?

Example: full(this, available)

Ay Y.

Full permission Currently in the
“available” state
On the receiver (optional)

SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates

Linear Logic for Method
Specifications

Permissions as resources

Method behavior
o A—oB

o Transitions from Ato B

Conjunction
o A®B
o A and B at the same time

Disjunction (external choice)
o A®B
o Either A or B non-deterministically—be ready for either

SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates

Read-only lterator

Specification
: Dynamic state test:
= interface lterator result value paired with
o boolean hasNext() : state information

pure(this) —o y

(result = true ® pure(this, available)) &
(result = false ® pure(this, end))

o Object next() : % Don't know state

full(this, available) — full(this) after call

» Interface Collection

o lterator iterator() : % lterator captures
pure(this) —o unique(result) permission to collection

Enforces the characteristic hasNext() / next() call pairing

Releasing Collection Permission
Upon lterator Destruction

interface lterator<c: Collection, g: Fraction function>

o hasNext, next as before

o void finalize() : lterator parameterized

unique(this) — pure(c, g) by iteratgd _collectiqn and
permission fraction
interface Collection x
o lterator iterator() : Release “captured” collection
Vv g : Fraction function. permission upon destruction

(pure(this, g) —
3 result . Iterator<this, g>. unique(result)

T~

lterator captures
permission to collection

SAVCBS 10 November 2006 Kevin Bierhoff: Iterator Specification with Typestates 11

[Summary

Specified read-only lterators with
typestates

o Modifying lterators in the paper
Ensure lterator consistency with
access permissions

o Can modify only unique collections

o Gannot turn read-only into modifying
lterator after creation (details in paper)

SAVCBS 10 November 2006 Kevin Bierhoff: lterator Specification with Typestates 12

