
Systems Research Group
School of Computer Science and Informatics
University College Dublin

Soundness and
Completeness

Warnings in ESC/Java2
Joe Kiniry, Alan Morkan, and Barry Denby

presented by David Cok

Systems Research Group
School of Computer Science and Informatics
University College Dublin

ESC/Java2

by design, neither sound nor complete

popularity of similar tools growing as
(lightweight) static analysis tools become
more widely used (e.g, Eclipse & FindBugs)

developer comprehension and confidence
are paramount (program safety via
programmer safety)

complaints from “soundationalists” drives
a desire for “tool honesty” and disclosure

2

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Checking Limitations

a fast, automatic tool must “cheat”

many scientific and engineering trade-offs

several sources of soundness and
completeness problems

Java and JML semantic incompleteness

unsound verification methodology

limitations of dependent tools (provers)

problems with user specifications

3

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Requirements on New
Warning Subsystem
contextually warn the user (in detail) about
potential soundness and incompleteness

e.g., must take into account the program
code, annotations, execution path in tool,
and theorem prover in use

provide “tunable” feedback so as to not
overwhelm the user with warnings

be itself sound and complete

have no false positives or negatives

4

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Detection
Methodology

manually analyze and classify all
soundness and completeness issues

define a type- and annotation-aware AST
pattern match for each issue

each issue implemented as a single “smart”
visitor pattern (separation of concerns)

customized warning levels, messages, and
criticality per issue

5

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
Incompleteness Warning:
Simplify cannot deal with

large integer values.public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Soundness Warning:
Exposed field may be used
in other class invariants.

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example WarningsSoundness Warning:
Heuristics for class invariant

analysis are not sound.

public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Incompleteness Warning:
Semantics for floating

point numbers.

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Incompleteness Warning:
Semantics for bitwise OR

are not complete.

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Example Warnings
public class CreditCard {
 //@ invariant balance <= maxCredit;
 public double balance = 0, maxCredit = 100000;
 public static int STANDARD = 1, SILVER = 2, GOLD = 4;
 private int accountType = 1;

 //@ ensures accountType == 4;
 public void goldCard()
 { accountType = 4; }

 //@ requires cost < (maxCredit - balance);
 //@ ensures \result == \old(balance + cost);
 public double purchase(double cost)
 { return balance + cost; }

 //@ ensures (accountType == GOLD ? 1 : 0);
 public /*@ pure @*/ boolean isGoldCard()
 { return accountType | GOLD; }
}

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Benefits and
Drawbacks

increase user awareness of tool limitations

no more “creeping toward functional
verification”

increase in user confidence

possible excess of user feedback

leads to user confusion and frustration

text-based warnings need refinement

prioritization, graphical feedback, etc.

7

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Future Work

finish implementation

only for default code paths

strongest postcondition calculus, loop
unrolling and safe loops, simplify

integration with the ESC/Java2 Eclipse
plugin and Mobius Tool

use theorem proving during analysis

automatic visitor generation

8

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Thank You!

Questions and
Comments?

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Extra Slides for
Questions

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Warning Levels

three options for warnings

standard warning mode

verbose warning mode

no warnings mode

11

Systems Research Group
School of Computer Science and Informatics
University College Dublin

Examining the AST:
The Precondition

 MethodDecl

 |

 ModifierPragmaVector

 /

 BinaryExpr

 /

 \

 BinaryExpr (<)

 /

 \

 FieldAccess

 ParenExpr

 (cost)

 |

 BinaryExpr(-)

 /

 \

 FieldAccess
FieldAccess

 (maxCredit)

 (balance)

Systems Research Group
School of Computer Science and Informatics
University College Dublin

The Postcondition

 MethodDecl

 |

 ModifierPragmaVector

 /

 ExprModifierPragma

 |

 BinaryExpr (==)

 /

 \

 ResExpr

 BinaryExpr(+)

 /

 \

 NaryExpr

 FieldAcccess

 (\old)

 (cost)

 |

 FieldAccess

 (balance)

Systems Research Group
School of Computer Science and Informatics
University College Dublin

The Invariant

 |

 BinaryExpr(<=)

 /

 \

 FieldAccess

 FieldAccess

 (balance)

 (maxCredit)

