Warnings in ESC/Java2

Joe Kiniry, Alan Morkan, and Barry Denby
presented by David Cok

ol o e nd iormancs (& Mobius

I'' K — L,L — DK ._, (L— P L)

* by design, neither sound nor complete

* popularity of similar tools growing as
(lightweight) static analysis tools become
more widely used (e.g, Eclipse & FindBugs)

* developer comprehension and confidence
are paramount (program safety via
programmer safety)

* complaints from “soundationalists” drives
a desire for “tool honesty” and disclosure

B — @ Mobius

* a fast, automatic tool must “cheat”

#* many scientific and engineering trade-offs

* several sources of soundness and
completeness problems

* Java and JML semantic incompleteness
unsound verification methodology
% [imitations of dependent tools (provers)

% problems with user specifications

A st @ Vobius

anﬁﬂg Subsystem

* contextually Warn the user (in detail) about
potential soundness and incompleteness

¥ e.g., must take into account the program
code, annotations, execution path in tool,
and theorem prover in use

* provide “tunable” feedback so as to not
overwhelm the user with warnings

* pe itself sound and complete

#* have no false positives or negatives

Systems Research Group
School of Computer Science and Informatics
University College Dublin 4

'K — L, L —]
24 F
* manually analyze and classity all
soundness and completeness issues

* define a type- and annotation-aware AST
pattern match for each issue

* each issue implemented as a single “smart”
visitor pattern (separation of concerns)

* customized warning levels, messages, and
criticality per issue

public class CreditCard {

public double balance = @, maxCredit = 100000;
public static int STANDARD = 1, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()

{ accountType = 4; }

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

public double balance = @,(maxCredit = 100000;)
public static int STANDARD = I, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()

{ accountType = 4; }

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

Incompleteness Warning:

T P AL L Simplify cannot deal with
I''K — L . —
? public class CreditCard {

large integer values.

public double balance = @,(maxCredit = 100000;)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()
{ accountType = 4; }

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

public double balance = @,(maxCredit = 100000;)
public static int STANDARD = I, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()

{ accountType = 4; }

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

(public)double balance = 0,(maxCredit = 100000;)
public static int STANDARD = I, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()

{ accountType = 4; }

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

Soundness Warning:
Exposed field may be used AL — AT
in other class invariants.

(public)double balance = @,(maxCredit = 100000;)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()

{ accountType = 4; }

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

(public)double balance = 0,(maxCredit = 100000;)
public static int STANDARD = I, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()

{ accountType = 4; }

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

(public)double balance = @,(@axCredit = 1@@@@0{)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()

{ accountType = 4; }

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

Soundness Warning:
Heuristics for class invariant
analysis are not sound.

Wy T vy

public _class CreditCafu

(public)double balance = 0,(maxCredit = 100000;)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()
{ accountType = 4; }

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

(public)double balance = @,(@axCredit = 1@@@@0{)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()

{ accountType = 4; }

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

(public)double balance = @,(@axCredit = 1@@@@0{)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()

{ accountType = 4; }

C

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

(public)Ydouble)balance = @,(maxCredit = 100000;)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()

{ accountType = 4; }

C

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

(public)Ydouble)balance = @,(maxCredit = 100000;)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()

{ accountType = 4; }

C

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

]?,.Pf'-—+ Lol .m . Iar L . AL\ — AT ‘*"1|[i=.;_+)

public class CreditCard {
F

(public)double)balance = @,(maxCredit = 100000;)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;
private int accountType = 1;

Incompleteness Warning;:
public void goldCard() Semantics for floating
{ accountType = 4; } point numbers.

C)

)

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

(public)Ydouble)balance = @,(maxCredit = 100000;)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;
private int accountType = 1;

public void goldCard()

{ accountType = 4; }

C

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

(public)Ydouble)balance = @,(maxCredit = 100000;)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;

pr‘ivateaccountType =1;

public void goldCard()
{ accountType = 4; }

C

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean isGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

(public)Ydouble)balance = @,(maxCredit = 100000;)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;

pr‘ivateaccountType =1;

public void goldCard()
{ accountType = 4; }

C

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean 1sGoldCard()
{ return accountType | GOLD; }

public class CreditCard {

(public)Ydouble)balance = @,(maxCredit = 100000;)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;

pr‘ivateaccountType =1;

public void goldCard()
{ accountType = 4; }

C

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean 1sGoldCard()
{ return(accountType | GOLD;)}

public class CreditCard {

(public)double)balance = @,(maxCredit = 100000;)
puUbLic Static int STANDARD = 1, SILVER = 2, GOLD = 4;

pr'ivateaccountType =1;

public void goldCard()
{ accountType = 4; }

C

public double purchase
{ return balance + co Incompleteness Warning:
Semantics for bitwise OR
> are not complete.

public /*@ pure @*/ b
{ return(accountType | GOLD;)}

public class CreditCard {

(public)Ydouble)balance = @,(maxCredit = 100000;)
public static int STANDARD = 1, SILVER = 2, GOLD = 4;

pr‘ivateaccountType =1;

public void goldCard()
{ accountType = 4; }

C

public double purchase(double cost)
{ return balance + cost; }

public /*@ pure @*/ boolean 1sGoldCard()
{ return(accountType | GOLD;)}

'K —LL—DP}

E F
jncrease user awareness of tool limitations

* no more “creeping toward functional
verification”

* increase in user confidence
* possible excess of user feedback

]Jeads to user confusion and frustration
* text-based warnings need refinement

#* prioritization, graphical feedback, etc.

* finish implementation

% only for default code paths

% gtrongest postcondition calculus, loop
unrolling and safe loops, simplify

* integration with the ESC/Java2 Eclipse
plugin and Mobius Tool

* use theorem proving during analysis

% automatic visitor generation

-— 8 @MObiUS

'K — L, L

5
MethodDecl
I
ModifierPragmaVector
/
BinaryExpr
/ \
..... BinaryExpr (<)
/ \
FieldAccess ParenExpr
(cost) I
BinaryExpr(-)
/ \
FieldAccess FieldAccess
(maxCredit) (balance)

R e

(& Mobius

