Reasoning about Iterators with Separation Logic

Neelakantan R. Krishnaswami

November 8, 2006

Overview

- Multiple iterators traversing a collection in parallel
- Safe changes to the collection (e.g. caching) OK; only logical state needs to be immutable
- Can separately check client and implementation for conformance to abstract interface

Overview

- Multiple iterators traversing a collection in parallel
- Safe changes to the collection (e.g. caching) OK; only logical state needs to be immutable
- Can separately check client and implementation for conformance to abstract interface
- Specification language developed in collaboration with John Reynolds, Jonathan Aldrich, and Lars Birkedal

Conjunction, Regular and Separating

Conjunction, Regular and Separating

Conjunction, Regular and Separating

Conjunction, Regular and Separating

Separating Conjunction

Separating Conjunction

A is true $\quad A \rightarrow B$ is true

Separating Conjunction
A is true $\quad A \rightarrow B$ is true
B is true

The Iterator Protocol, In Separation Logic

$$
\begin{aligned}
& \exists \text { coll }:\left(\tau_{c} \times \text { seq } \times \text { prop }\right) \Rightarrow \text { prop. } \\
& \{\top\} \text { new_coll }()\left\{a: \tau_{c} . \exists P . \operatorname{coll}(a,[], P)\right\} \text { and }
\end{aligned}
$$

The Iterator Protocol, In Separation Logic

$$
\begin{aligned}
& \exists \text { coll }:\left(\tau_{c} \times \text { seq } \times \text { prop }\right) \Rightarrow \text { prop. } \\
& \{T\} \text { new_coll }()\left\{a: \tau_{c} . \exists P . \operatorname{coll}(a,[], P)\right\} \text { and } \\
& \forall P, c, x s .\{\operatorname{coll}(c, x s, P)\} \\
& \quad \text { empty }(c) \\
& \{a: \operatorname{bool} . \operatorname{coll}(c, x s, P)\} \text { and }
\end{aligned}
$$

The Iterator Protocol, In Separation Logic

$$
\begin{aligned}
& \exists \text { coll }:\left(\tau_{c} \times \text { seq } \times \text { prop }\right) \Rightarrow \text { prop. } \\
& \{T\} \text { new_coll() }\left\{a: \tau_{c} \cdot \exists P . \operatorname{coll}(a,[], P)\right\} \text { and } \\
& \forall P, c, x s .\{\operatorname{coll}(c, x s, P)\} \\
& \text { empty(c) } \\
& \{a \text { : bool. coll }(c, x s, P)\} \text { and } \\
& \forall P, c, x, x s .\{\operatorname{coll}(c, x s, P)\} \\
& \operatorname{add}(c, x) \\
& \left\{a: 1 . \exists P^{\prime} . \operatorname{coll}\left(c, x:: x s, P^{\prime}\right)\right\} \text { and }
\end{aligned}
$$

The Iterator Protocol, In Separation Logic

ヨiter : $\left(\tau_{i} \times \tau_{c} \times\right.$ seq \times prop $) \Rightarrow$ prop.
$\forall c, x s, P .\{\operatorname{coll}(c, x s, P)\}$
new_iter(c)
$\left\{a: \tau_{i} . \operatorname{iter}(a, c, x s, P)\right\}$ and

The Iterator Protocol, In Separation Logic

\exists iter : $\left(\tau_{i} \times \tau_{c} \times\right.$ seq \times prop $) \Rightarrow$ prop.
$\forall c, x s, P .\{\operatorname{coll}(c, x s, P)\}$ new_iter(c)
$\left\{a: \tau_{i} . \operatorname{iter}(a, c, x s, P)\right\}$ and
$\forall i, c, x s, P . \quad\{\operatorname{iter}(i, c, x s, P)\}$
next(i)
$\{a: 1+$ nat. iter $(i, c, x s, P)\}$ and

The Iterator Protocol, In Separation Logic

\exists iter : $\left(\tau_{i} \times \tau_{c} \times\right.$ seq \times prop $) \Rightarrow$ prop.
$\forall c, x s, P .\{\operatorname{coll}(c, x s, P)\}$ new_iter(c) $\left\{a: \tau_{i} . \operatorname{iter}(a, c, x s, P)\right\}$ and
$\forall i, c, x s, P .\{\operatorname{iter}(i, c, x s, P)\}$ next(i) $\{a: 1+$ nat. iter $(i, c, x s, P)\}$ and
$\forall i, c, x s, P .\{\operatorname{iter}(i, c, x s, P) \supset \operatorname{coll}(c, x s, P) *$ $\operatorname{coll}(c, x s, P)-* \operatorname{iter}(i, c, x s, P)\}$

A Client Program

$1\{\operatorname{coll}(c, x s, P)\}$

A Client Program

$1 \quad\{\operatorname{coll}(c, x s, P)\}$
2 let $b=\operatorname{empty}(c)$;

A Client Program

1	$\{\operatorname{coll}(c, x s, P)\}$
2	let $b=\operatorname{empty}(c) ;$
3	$\{\operatorname{coll}(c, x s)\}$

A Client Program

$1 \quad\{\operatorname{coll}(c, x s, P)\}$
2 let $b=\operatorname{empty}(c)$;
3 \{coll(c, xs)\}
4 let $i_{1}=$ new_iter($\left.c\right)$;

A Client Program

$1 \quad\{\operatorname{coll}(c, x s, P)\}$
2 let $b=\operatorname{empty}(c)$;
3 \{coll $(c, x s)\}$
4 let $i_{1}=$ new_iter(c);
5 iter $\left.\left(i_{1}, c, x s, P\right)\right\}$

A Client Program

```
\(1 \quad\{\operatorname{coll}(c, x s, P)\}\)
2 let \(b=\operatorname{empty}(c)\);
3 \{coll( \(c, x s)\}\)
4 let \(i_{1}=\) new_iter ( \(c\) );
5 iter \(\left.\left(i_{1}, c, x s, P\right)\right\}\)
\(6 \quad\left\{\left(\operatorname{coll}(c, x s, P) *\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}\right.\)
```


A Client Program

$1 \quad\{\operatorname{coll}(c, x s, P)\}$
2 let $b=\operatorname{empty}(c)$;
3 \{coll $(c, x s)\}$
4 let $i_{1}=$ new_iter($\left.c\right)$;
5 \{iter $\left.\left(i_{1}, c, x s, P\right)\right\}$
$6 \quad\left\{\left(\operatorname{coll}(c, x s, P) *\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}\right.$
7 let $i_{2}=$ new_iter($\left.c\right)$;

A Client Program

$1 \quad\{\operatorname{coll}(c, x s, P)\}$
2 let $b=\operatorname{empty}(c)$;
3 \{coll $(c, x s)\}$
4 let $i_{1}=$ new_iter($\left.c\right)$;
5 \{iter $\left.\left(i_{1}, c, x s, P\right)\right\}$
$6 \quad\left\{\left(\operatorname{coll}(c, x s, P) *\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}\right.$
7 let $i_{2}=$ new_iter(c);
$8\left\{\operatorname{iter}\left(i_{2}, c, x s, P\right) *\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}$

A Client Program

$1 \quad\{\operatorname{coll}(c, x s, P)\}$
2 let $b=\operatorname{empty}(c)$;
3 \{coll $(c, x s)\}$
4 let $i_{1}=$ new_iter(c);
5 iter $\left.\left(i_{1}, c, x s, P\right)\right\}$
$6 \quad\left\{\left(\operatorname{coll}(c, x s, P) *\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}\right.$
7 let $i_{2}=$ new_iter(c);
$8 \quad\left\{\operatorname{iter}\left(i_{2}, c, x s, P\right) *\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}$
9 \{coll $(c, x s, P) *$
(coll $\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *$ $\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$

A Client Program

$1 \quad\{\operatorname{coll}(c, x s, P)\}$
2 let $b=\operatorname{empty}(c)$;
3 \{coll $(c, x s)\}$
4 let $i_{1}=$ new_iter (c);
5 iter $\left.\left(i_{1}, c, x s, P\right)\right\}$
$6 \quad\left\{\left(\operatorname{coll}(c, x s, P) *\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}\right.$
7 let $i_{2}=$ new_iter(c);
$8\left\{\operatorname{iter}\left(i_{2}, c, x s, P\right) *\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}$
9 \{coll $(c, x s, P) *$
(coll $\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *$ (coll(c, xs, P) -* iter $\left.\left.\left(i_{2}, c, x s, P\right)\right)\right\}$
10 let $b^{\prime}=\operatorname{empty}(c)$;

A Client Program

$1 \quad\{\operatorname{coll}(c, x s, P)\}$
2 let $b=\operatorname{empty}(c)$;
3 \{coll $(c, x s)\}$
4 let $i_{1}=$ new_iter($\left.c\right)$;
5 \{iter $\left.\left(i_{1}, c, x s, P\right)\right\}$
$6 \quad\left\{\left(\operatorname{coll}(c, x s, P) *\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}\right.$
7 let $i_{2}=$ new_iter(c);
$8\left\{\operatorname{iter}\left(i_{2}, c, x s, P\right) *\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}$
9 \{coll $(c, x s, P) *$
(coll $\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *$ (coll(c, xs, P) -* iter $\left.\left.\left(i_{2}, c, x s, P\right)\right)\right\}$
10 let $b^{\prime}=\operatorname{empty}(c)$;
11 \{coll($c, x s, P) *$
(coll(c, xs, P) -* iter $\left.\left(i_{1}, c, x s, P\right)\right) *$ $\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$

A Client Program, Continued

```
11 {coll(c,xs,P)*
    (coll(c,xs,P) -* iter(i, c, xs, P))*
    (coll(c,xs,P) -* iter(i2, c, xs, P))}
```


A Client Program, Continued

11 \{coll(c, xs, P)*
(coll $\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *$
$\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$
12 \{iter $\left.\left(i_{1}, c, x s, P\right)\right) *$
$\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$

A Client Program, Continued

11 \{coll(c, xs, P)*
(coll $\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *$
$\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$
12 \{iter $\left.\left(i_{1}, c, x s, P\right)\right) *$
$\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$
13 let $v=\operatorname{next}\left(i_{1}\right)$;

A Client Program, Continued

$11\{\operatorname{coll}(c, x s, P) *$
(coll $\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *$
$\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$
12 \{iter $\left.\left(i_{1}, c, x s, P\right)\right) *$
$\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$
13 let $v=\operatorname{next}\left(i_{1}\right)$;
14 \{iter $\left.\left(i_{1}, c, x s, P\right)\right) *$
$\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$

A Client Program, Continued

```
\(11\{\operatorname{coll}(c, x s, P) *\)
    (coll \(\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
\(12\left\{\operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
13 let \(v=\operatorname{next}\left(i_{1}\right)\);
14 \{iter \(\left.\left(i_{1}, c, x s, P\right)\right) *\)
    (coll \(\left.\left.(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
15 \{coll(c, xs, P)*
    (coll \(\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
```


A Client Program, Continued

```
\(11\{\operatorname{coll}(c, x s, P) *\)
    (coll \(\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
\(12\left\{\operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *\)
    (coll(c, xs, P) -*iter (i2, c, xs, P))\}
13 let \(v=\operatorname{next}\left(i_{1}\right)\);
14 \{iter \(\left.\left(i_{1}, c, x s, P\right)\right) *\)
    (coll \(\left.\left.(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
15 \{coll( \(c, x s, P)\) *
    (coll \(\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
16 \{iter \(\left.\left(i_{2}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}\)
```


A Client Program, Continued

```
\(11\{\operatorname{coll}(c, x s, P) *\)
    (coll \(\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
\(12\left\{\operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
13 let \(v=\operatorname{next}\left(i_{1}\right)\);
14 \{iter \(\left.\left(i_{1}, c, x s, P\right)\right) *\)
    (coll \(\left.\left.(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
15 \{coll( \(c, x s, P)\) *
    (coll \(\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
16 \{iter \(\left.\left(i_{2}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}\)
17 let \(v=\operatorname{next}\left(i_{2}\right)\);
```


A Client Program, Continued

```
\(11\{\operatorname{coll}(c, x s, P) *\)
    (coll \(\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
12 \{iter \(\left.\left(i_{1}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
13 let \(v=\operatorname{next}\left(i_{1}\right)\);
14 \{iter \(\left.\left(i_{1}, c, x s, P\right)\right) *\)
    (coll \(\left.\left.(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
15 \{coll(c, xs, P)*
    (coll \(\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}\)
\(16\left\{\operatorname{iter}\left(i_{2}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}\)
17 let \(v=\operatorname{next}\left(i_{2}\right)\);
\(18\left\{\operatorname{iter}\left(i_{2}, c, x s, P\right)\right) *\)
    \(\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}\)
```


A Client Program, Continued Again

$18\left\{\operatorname{iter}\left(i_{2}, c, x s, P\right)\right) *$ $\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}$

A Client Program, Continued Again

$18\left\{\right.$ iter $\left.\left(i_{2}, c, x s, P\right)\right) *$ $\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}$
$19\{\operatorname{coll}(c, x s, P) *$
(coll $\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *$ $\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$

A Client Program, Continued Again

$18\left\{\right.$ iter $\left.\left(i_{2}, c, x s, P\right)\right) *$ $\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}$
$19\{\operatorname{coll}(c, x s, P) *$
(coll $\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *$ (coll $\left.\left.(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$
$20 \operatorname{add}(c, x)$

A Client Program, Continued Again

$18\left\{\right.$ iter $\left.\left(i_{2}, c, x s, P\right)\right) *$
$\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right)\right\}$
$19\{\operatorname{coll}(c, x s, P) *$
(coll $\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *$ $\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$
$20 \operatorname{add}(c, x)$
$21\{\exists Q . \operatorname{coll}(c, x s, Q) *$
(coll $\left.(c, x s, P)-* \operatorname{iter}\left(i_{1}, c, x s, P\right)\right) *$
$\left.\left(\operatorname{coll}(c, x s, P)-* \operatorname{iter}\left(i_{2}, c, x s, P\right)\right)\right\}$

Questions?

Any questions?

Implementing the Module - Invariants

\exists coll : $\left(\tau_{c} \times\right.$ seq \times prop $) \Rightarrow$ prop.

Implementing the Module - Invariants

\exists coll : $\left(\tau_{c} \times\right.$ seq \times prop $) \Rightarrow$ prop. $\operatorname{coll}(c, x s, P) \equiv \exists n$. snd $c \hookrightarrow n *($ linked_list $(f s t c, x s) \wedge P)$

Implementing the Module - Invariants

\exists coll : $\left(\tau_{c} \times\right.$ seq \times prop $) \Rightarrow$ prop.
$\operatorname{coll}(c, x s, P) \equiv \exists n$. snd $c \hookrightarrow n *($ linked_list $(f s t c, x s) \wedge P)$
linked_list $(c, x:: x s) \equiv \exists c^{\prime} . c \hookrightarrow \operatorname{cons}\left(x, c^{\prime}\right) *$ linked_list $\left(c^{\prime}, x s\right)$ linked_list(c, []) $\equiv c \hookrightarrow$ nil

Iterator Invariants

ヨiter : $\left(\tau_{i} \times \tau_{c} \times\right.$ seq \times prop $) \Rightarrow$ prop.

Iterator Invariants

ヨiter : $\left(\tau_{i} \times \tau_{c} \times\right.$ seq \times prop $) \Rightarrow$ prop.
$\operatorname{iter}(i, c, x s, P) \equiv \exists l, n, x s_{1}, x s_{2}$.

$$
\begin{aligned}
& \left(P \wedge\left(\operatorname{seg}\left(\text { fst } c, I, x s_{1}\right) * \operatorname{coll}\left(I, x s_{2}\right)\right)\right) * \\
& i \hookrightarrow I * \operatorname{snd} c \hookrightarrow n \wedge \\
& x s=x s_{1} \cdot x s_{2}
\end{aligned}
$$

Iterator Invariants

ヨiter : $\left(\tau_{i} \times \tau_{c} \times\right.$ seq \times prop $) \Rightarrow$ prop.
iter $(i, c, x s, P) \equiv \exists l, n, x s_{1}, x s_{2}$.
$\left(P \wedge\left(\operatorname{seg}\left(f s t c, I, x s_{1}\right) * \operatorname{coll}\left(I, x s_{2}\right)\right)\right) *$
$i \hookrightarrow l * \operatorname{snd} c \hookrightarrow n \wedge$
$x s=x s_{1} \cdot x s_{2}$
$\operatorname{seg}\left(I, I^{\prime}, x:: x s\right) \equiv \exists I^{\prime \prime} . I \hookrightarrow \operatorname{cons}\left(x, I^{\prime \prime}\right) * \operatorname{seg}\left(I^{\prime \prime}, x s\right)$
$\operatorname{seg}\left(I, I^{\prime},[]\right) \equiv I=I^{\prime}$

