
Specification and Verification of Trustworthy
Component-Based Real-Time Reactive Systems ∗

Vasu Alagar and Mubarak Mohammad
Department of Computer Science and Software Engineering

Concordia University
Montreal, Quebec, Canada H3G 1M8

{alagar,ms moham}@cse.concordia.ca

ABSTRACT
This paper presents a formal methodology for the development of
trustworthy real-time reactive systems (RTRS). Safety and secu-
rity are considered as the two significant properties for trustworthy
RTRS. The paper presents an overview of a component-based mod-
eling that involves formal descriptions for trustworthy components.
Then, Formal rules are introduced for the automatic generation of
behavior protocol based on the formal definitions of trustworthy
components. A model-checking method to formally verify security
and safety properties in the component model is presented.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specifications—
Methodologies; D.2.4 [Software Engineering]: Software / Pro-
gram Verification—Formal methods, Model checking

General Terms
Design, Security, Verification

Keywords
Trustworthiness, Components, Real-Time Reactive Systems

1. INTRODUCTION
In this paper we explain how trustworthiness can be exploited in the
specification and verification of component-based real-time reac-
tive systems (RTRS). In the context of RTRS development we iden-
tify safety and security as the two principal factors contributing to
trustworthiness. We propose a verification-oriented design method-
ology that involves (1) formal specification of component struc-
ture and functional/non-functional (trustworthiness) properties, (2)
automatic generation of component behavior using the specified
structure and restricted by the specified properties, and (3) veri-
fication of functional / non-functional component behavior using
model checking.

∗This research is supported by a Research Grant from Natural Sci-
ences and Engineering Research Council of Canada.(NSERC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007,
Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

Data Parameters

Services

Interface Types

Frame

Architecture Types

Connector Types

Data Constraints

Data Security

Service Security

User Identity

Reactivity

Time Constraints

Structure Contract

Component Template

Contract CompositionStructural Composition

Composition

Composite Component Template

Timed
Automata

RT
PROMELA Others...

Safety

Liveness

Data flow Security

Data Security

Service Security

Automatic Generation of Behavior Properties

UPPAAL KRONOS SPIN Others...

Model Checking

Figure 1: Formal Methodology

Figure 1 depicts our formal methodology. The idea is to formally
define the structure of simple components and to define functional
and trustworthiness properties at the structural level. There are
two benefits for architecting trustworthiness at the structural level.
First, it enables the automatic generation of component behavior
by analyzing the structure and its properties. Second, it enables
reasoning about trustworthiness at the architectural level which is
proven to be an important method for attaining trustworthiness [7].
The generated behavior can take different formats depending on
defined transformation rules. The defined transformation rules help
in (1) automating the process of generating the behavior so that no
expertise in behavior specification are required, (2) insuring consis-
tency between the structure and properties defined on one hand and
the generated behavior on the other hand, and (3) translating the
elements of the structure definitions and the defined properties to a
behavior specification format that suits different verification tools.
Our goal is to use different verification tools in order to verify a
wide range of properties and target different kinds of systems. This
is because different verification tools differ in their requirements
and abilities [6]: the expressive power of the modeling language,
the verification methods used by them, the size and complexity of
systems that they can handle, the capabilities suited to different
kinds of problems, and the behavior specification format. In this
paper we present rules for generating component behavior as ex-

tended timed automata suited for UPPAAL [4] model checker.

In our research, we are focusing on the trustworthiness aspect of
RTRS. Reactive systems belong to the class of computer systems
that maintain continuous interaction with their environment through
stimulus and response. The class of reactive systems in which the
response to a stimulus may be strictly regulated by timing con-
straints is called RTRS. Such systems are required to be trustworthy
due to its complexity and the critical contexts it operate in. Al-
though trust is a social concept which is hard to define formally,
there is some consensus recently in defining trustworthiness as the
degree of user confidence that the system will behave as expected
[5]. Safety and security are identified as essential elements for
achieving trustworthiness [3]. In the past, research in verifying
safety and security properties have progressed in parallel, due to
the finding that safety and security can’t be formally specified and
verified together in any one formal method [8]. We managed to
use component-based development as a basis for a unified formal
model for the specification and verification of safety and security
properties of RTRS [3].

Our contributions in this paper are: (1) a formal methodology for
developing trustworthy RTRS, (2) transformation rules for the au-
tomatic generation of component behavior based on component
structure and properties, and (3) model checking safety and secu-
rity using one method.

2. COMPONENT TEMPLATE - A FORMAL
DEFINITION

In our component model, a component template, component type,
is composed of a structure part and a contract part. The structure of
a template is an abstract external black-box view, called frame, and
its internal hierarchical structure, called architecture. The frame
consists of the interface types, the access points to the services pro-
vided/requested by the component. Each interface type is associ-
ated with a set of services. A service may be parameterized with
data parameters. An architecture is a collection of connector types,
an abstract view of the tie-ins between interface types. The contract
part of the template states the trustworthiness properties required of
the system for which the structure is a blue print.

A component is an instance of a component template. Every com-
ponent instantiated from a template has one instance of the struc-
ture part defined for the template. The frame of the component
is a set of interfaces, where each interface belongs to exactly one
interface type in the template frame. It is possible to instantiate
multiple interfaces of an interface type. An architecture instance
corresponding to a component frame is an instance of the architec-
ture corresponding to the frame in the template, having as many in-
stances of connector types as are required for linking the interfaces
in the component. A component’s contract constrains the commu-
nication pattern at its interfaces and is faithful to the contract part
in its template.

In [3] we have introduced a formal component model for trustwor-
thy systems. In this section we present a brief overview of the com-
ponent model. A component template can be formally specified in
terms of its frame and architecture specifications. We focus only on
the frame specification because of its relevance to the transforma-
tion rules presented in the next section. The internal architecture
specification has no impact on the component behavior communi-
cated at the external interfaces.

The frame specification is a tuple < Π, Σ, Λ, Ξ, σ, Θ, Γ, Ω, Υ, Ψ >
specifying services, interface types, and properties. The symbol Π
denotes a finite non-empty set of interface-types. An interface is
an instance of an interface type, it inherits the services listed in
the type definition. The symbol Σ denotes a finite set of events
where each event represents a service provided/requested by the
component. The set Σ is divided into a set of input events Σinput,
output events Σoutput, and internal events Σinternal such that Σ =
Σinput∪Σoutput∪Σinternal and Σinput∩Σoutput∩Σinternal =
∅. An event can carry data parameter values; therefore, we use Λ to
denote the finite set of data parameters and define Ξ : Σ → PΛ as
a function that associates with each event a set of data parameters.
Events are communicated at the interfaces of the frame; the func-
tion σ : Π → PΣ associates a finite non-empty subset of events
to each interface-type such that ∀P, Q ∈ Π, σ(P) ∩ σ(Q) = ∅
i.e. each event is associated with only one interface type. When a
request (stimulus) for service is received at an interface, it stimu-
lates the component to perform an action and respond either with
an internal processing or with an output event. Θ : Σinput →
Σoutput ∪ Σinternal is a total function that associates a set of
possible responses to each request received by the component. The
function Θ defines a causality relation between events i.e. Θ(e1) =
{e2, e3} means that if event e1 occurs then event e2 or e3 will oc-
cur as a response to e1. The responses of the component can be
constrained using (1) time constraints and (2) data parameter con-
straints. First, Γ denotes the finite set of timing constraints for the
events in Σ, where each time constraint involves conjuncts of the
form (t(r) − t(s)) ◦ n, where t(.) is the time function for event
occurrences, s ∈ Σ is an input event, r ∈ Σ, r ∈ Θ(s) is a re-
sponse to s, ◦ ∈ {<,≤, =,≥, >}, and n : N. Second, Ω denotes
a finite set of constraints for the data parameters associated with
the events in Σ, where each data constraint of an event s ∈ Σ is a
predicate defined over the values of the data parameters Ξ(s) asso-
ciated with s. If s has n number of responses in Θ(s) than there
must be n number of mutually exclusive data constraints defined
over the data parameters of s. This ensures that the responses of
s are mutually exclusive. The services provided by the component
can be secured and restricted only to authorized users. The intro-
duction of security properties at the frame enriches its behavior by
forcing (1) an analysis of the stimulus received before processing
it internally, and (2) an analysis of the response before sending it.
There are two prerequisites for ensuring security at the interfaces of
the component: (1) knowing the identity of the entity on whose be-
half the service is requested/provided, henceforth called user, and
(2) having an explicit definition of an access control matrix that
defines the access level of users to both events and information car-
ried by events. We assume that U denotes the set of users. For the
sake of simplicity we assume AC = {grant, deny} is the set of
access rights for events, and DA = {read, write} is the set of
allowed actions on data. The function Υ : U × Σ → AC defines
the event-security access by assigning for every pair (user, event)
an authorization which is either grant or deny. The function
Ψ : U × Λ → P DA enforces data-security access. It assigns
for every pair (user, dataparameter) an authorization which is
a subset of DA. If Ψ(u, d) = ∅ user u is denied access to data
d. The security property is defined in terms of event-security and
data-security. An interface of a component is event-secure if (1)
every input event is received from a user who is authorized to trig-
ger the input event, and (2) for every response event sent, the user
receiving the response is authorized to view the response. An in-
terface is data-secure if (1) the user has access rights for the data
parameters in every stimulus sent by the user, and (2) for every re-
sponse sent through the interface, the user receiving the response

has access rights for the data parameters in the response.

3. FORMAL VERIFICATION
In this section, we present brief information about UPPAAL model
checker. Then, we introduce transformation rules for the automatic
generation of component behavior. Finally, we describe how the
verification process is conducted using UPPAAL model checker.

3.1 UPPAAL
UPPAAL [4] is a mature model checker that has been used suc-
cessfully for more than a decade to model check several types of
concurrent real time systems. The UPPAAL modeling language is
based on timed automata TA = (L, l0, K, A, E, I) where L is the
set of locations denoting states, l0 is the initial location, K is the
set of clocks, A is the set of actions denoting events that cause tran-
sitions between locations, E is the set of edges, and I is the set of
invariants. Formally, E ⊆ L×A×B(K)× 2K ×L where B(K)
is the set of clock and data constraints denoting guard conditions
that restrict transitions, 2K is the set of clock initializations to set
clocks whenever required, and I : L → B(K) is a function assign-
ing clock constraints to locations as invariants. UPPAAL extends
timed automata with additional features. We present some of those
features that are relevant to the this paper:

• Templates: Timed automata are defined as templates with
optional parameters. Parameters are local variables that are
initialized during template instantiation in system declara-
tion.

• Global variables: Global variables and user defined func-
tions can be introduced in a global declaration section. Those
variables and functions are shared and can be accessed by all
templates.

• Binary synchronization: Two timed automata can have a
synchronized transition on an event when both move to new
state at the same time when the event occurs. An event that
causes synchronous transition is defined as a channel, a UP-
PAAL data type. A channel can have two directions: in-
put(labeled with ?) and output(labeled with!).

• Committed Location: Time is not allowed to pass when the
system is in a committed location. If the system state in-
cludes a committed location, the next transition must involve
an outgoing edge from the committed location.

• Expressions: There are three main types of expressions: (1)
Guard expressions are evaluated to boolean and used to re-
strict transitions; guard expressions may include clocks and
state variables, (2) Assignment expressions are used to set
values of clocks and variables, and (3) Invariant expressions
are defined for locations and used to specify conditions that
should be always true in a location.

• Edges: Edges denote transitions between locations. An edge
specification consists of four expressions: Select: assigns a
value from a given range to a defined variable, Guard: an
edge is enabled for a location if and only if the guard is eval-
uated to true, Synchronization: specifies the synchronization
channel and its direction for an edge, and Update: an assign-
ment statements that reset variables and clocks to required
values.

In UPPAAL, system properties are expressed formally using a sim-
plified version of CTL [4] as follows:

• Safety property is formulated positively stating that some
thing good is invariantly true. For example, let ϕ be a for-
mula, A2 ϕ means that ϕ should be always true.

• Liveness property states that some thing good will eventu-
ally happen. For example, A� ϕ means that ϕ will eventually
be satisfied.

3.2 Transformation Rules
In this section, we introduce the transformation rules for the au-
tomatic generation of component behavior based on the analysis
of component’s structure and contract defined in the component
frame specification. A component-based system is a network of
connected components. Every component is mapped to a UPPAAL
template in a one to one manner. We assign a parameter to every
UPPAAL template to denotes the identifier of the user on whose
behalf the component is running. This parameter will be used for
ensuring event and data security.

Let O = {o1, . . . , on} be the set of components in a RTRS, oi =<
ΠIi , Σi, Λi, Ξi, σi, Θi, Γi, Ωi, Υi, Ψi > such that:Σinput ⊆ Σi

denotes the set of stimulus events, Σoutput ⊆ Σi denotes the set of
output events, Σresponse ⊆ Σoutput denotes the set of responses,
Σrequests ⊆ Σi denotes the output events sent to other compo-
nents as requests for services, and Σinternal ⊆ Σi denotes the
set of internal events that are local to the component. Let TA =
(L, L0, K, A, E, I, u) be the definition of UPPAAL timed automata
where u denotes the user identity parameter associated with the
template at its instantiation. Then, the transformation rules con-
struct T = {t1, . . . , tn}, a set of UPPAAL templates, where ti is
the template constructed from component oi.

In the definition of a component frame, Π and σ are used in defining
the architecture. Therefore, Π and σ don’t affect the behavior of the
component, hence, are not used in the transformation process. In
brief, during the process of constructing TA = (L, l0, K, A, E, I)
from frame specification:

• Σ is used to construct L where every location in L denotes
the state of processing an event in Σ,

• Γ is used to construct K and I where a clock in K and an
invariant in I are defined for every time constraint in Γ,

• Σ is used to construct A where an action in A is defined for
every input or output event in Σ, and

• Σ, Λ, Ξ, Θ, Ω, Υ, and Ψ are used to construct E and its as-
sociated expressions. More precisely, Λ defines data param-
eters in Ξ which in turn are used in defining data constraints
in Ω that are used along with Υ to define Guard conditions
for edges. Σ and Θ are used in defining Sync expression. Ψ
is used to control data parameters access in Update expres-
sion.

We extend the UPPAAL formal template by adding security fea-
tures. In the global declaration section, we define: (1) a list of
system user identities U , (2) an event-access control matrix that
defines user access rights to events, (3) a data-access control ma-
trix that defines user access rights to events data parameters, (4) an

event security function EventSecurity : U × Σ → boolean that
searches the event-access control matrix of users-events and returns
boolean value indicating whither the user has access or not, (5) a
data security function DataSecurity : U × Λ → boolean that
searches the data-access control matrix of users-data and returns
a boolean indicating whither the user has the proper access right
(write for stimulus parameters and read for response parameters)
or not.

An informal discussion of the steps for constructing
TA = (L, L0, K, A, E, I, u) is given bellow:

Locations [L]. : A component provides and requests a set of
services. The details of service processing are hidden behind com-
ponent interfaces. Therefore, we use locations to denote the states
for processing services. Services are abstracted as events. The
function ∆ : Σ → L constructs for each event a location ∆(e) in
L. The location is the state for processing the event e. The set of
locations L can be constructed with the help of Σ as follows:

• [L.1] Create an initial location l0 to denote the idle state
where the component is waiting for a stimulus.

• [L.2] Stimulus events correspond to the services provided by
the component. For every stimulus event, create a location to
represent the service of processing the stimulus.

• [L.3] Output events that are not responses to stimulus corre-
spond to the services requested by the component. For every
output event that is not a response to a stimulus create a lo-
cation.

Clocks [K]. : Time constraints in Γ can be represented by clocks
in K and invariants representing clock constraints in I . The set of
clocks K can be constructed by creating a clock for every time
constraint that constrains the response of a stimulus. Clocks are
defined as template’s local variables.

Invariants [I]. : Time constraints are defined as location invari-
ants in I . We create an invariant in I for each time constraint in Γ
and assign it to ∆(e).

Actions [A]. : The set of actions A can be constructed by creat-
ing an action in A for every input and output event in Σ. Actions
are defined as synchronous channels. Input actions are decorated
with ? and output actions are decorated with !.

Edges [E]. : The behavior of a component is based on stimuli
and responses. Therefore, E can be constructed using Σ according
to the rules [E.1], [E.2], and [E.3] defined bellow. The specifica-
tion of edge expressions is derived from the data parameters Ξ and
the constraints Ω, Υ, and Ψ that are related to the action a, which
causes the transition, according to the following rules [E.Ex]:

• Select: It is used to get a value in a temporary variable for
each event data parameter in Ξ(a). These values will be as-

signed to their corresponding data parameters in the Update
expression.

• Guard: A guard condition is a conjunction Pr1 ∧ Pr2 such
that Pr1 ∈ Ω which is a predicate on data parameters in
Ξ(a) and Pr2 ∈ Υ which is the event security related to a.

• Sync: the action, the event causing the transition.

• Update: It includes assignment statements that update data
parameters in Ξ(a) and reset the clock in K related to the
time constraint in Γ that is defined for a. In order to ensure
data security, update statements are constrained by DataSecurity
function as follows:
∀d ∈ Ξ(a), d := DataSecurity(u, d)?Select(d) : Null,
which means that if the user u has access to the data param-
eter d then d will be assigned the selected value; otherwise,
d will be set to Null.

The following rules are used to construct template edges. After
constructing each edge, the rules in [E.Ex] are used to define its
expressions.

• [E.1] For every stimulus e create an edge from the initial lo-
cation l0 to ∆(e). If Θ(e) is time constrained then we should
reset the clock.
After finishing the processing of e by sending Θ(e), the com-
ponent can go back to idle state waiting for the next stimulus.
Therefore, for every response, we create an edge from ∆(e)
back to l0.

• [E.2] In order to provide the required services, the compo-
nent may request services from other components. When
a stimulus e has a response Θ(e) ∈ Σrequest then cre-
ate an edge from ∆(e) to ∆(Θ(e)) and a second edge from
∆(Θ(e)) to l0 .

• [E.3] the component may have a concurrent behavior. It
can receive stimuli while processing others. Therefore, we
create an edge from every location that represents stimulus
processing location lp1 to the other stimulus processing loca-
tions lp2. Use intermediate committed locations and split the
edge into two edges: (1) an edge from lp1 to the committed
location labeled with the stimulus and (2) an edge from the
committed location to lp2 labeled with the response of lp1.
The reason for having two edges is that UPPAAL doesn’t
allow having two synchronous channels on an edge.

EXAMPLE 1. Let < Π, Σ, Λ, Ξ, σ, Θ, Γ, Ω, Υ, Ψ > be a frame
specification where P = {p1}; Σ = {e1, e2, e3} such that Σinput =
{e1}, Σresponse = {e2}, Σrequest = {e3}; Λ = {d};Ξ(e1) =
{d}; σ(p1) = {e1, e2, e3}; Θ(e1) = e2, Θ(e1) = e3; Ω(e1, e2) :
d > 10, Ω(e1, e3) : d ≤ 10; Γ(e1, θ(e1)) = [0, 5]; U = {u1},
Υ(u1, e1) = Υ(u1, e2) = Υ(u1, e3) = grant, Ψ(u1, d) =
{read, write}. Figure 2 shows the extended time automata gen-
erated for this example using the transformation rules. The con-
struction is done as follows:
Locations: l0 is created according to rule [L.1], l1 according to
[L.2], the invariant at l1 according to [I], and l2 according to [L.3].
Edges: created according to the following rules and [E.Ex]: (1)
(l0, e1, l1) is created according to [E.1], (2) (l1, e2, l0) is created
according to [E.1], (3) (l1, e3, l3) is created according to [E.2],
and (4) (l2, e3, l0) is constructed according to [E.2].

Select: x:int
Guard: EventSecurity(user,e1)
Sync: e1?
Update: c1:=0,
 d:=(DataSecurity(user,d)?x:Null)

Guard: d>10 && EventSecurity(user,e2)
Sync: e2!

Guard: d<=10 && EventSecurity(user,e3)
Sync: e3!

l0

l1 l2Invariant: c1<=5

Figure 2: Example

Clocks: c1 and the invariant at l1 are created according to rules
[K] and [I].
Actions: e1?, e2!, e3! are created according to [A] and [E.Ex]

3.3 Verification Process
In [2] we have applied the methodology successfully to specify
and model check a simplified version of the steam boiler controller
case study [1]. The system consists of 3 components: (1) controller
has 10 locations, (2) level measuring has 3 locations, and (3) mon-
itoring has 5 locations. The steps of performing the verification
process are:

• using UPPAAL editor, we specified the components as UP-
PAAL templates using the automatic transformation rules.
Then, in the system declaration section of the editor, we cre-
ated instances of the templates and defined the RTRS as the
parallel composition of the instances,

• using UPPAAL verifier, we specified safety, liveness, event
security, and data security properties.

– Event security: An event can be triggered only by a
user whose access level is grant. This is expressed as:
A2 for all(i:int[1,NoOfUsers]) C.user==i && C.eventx

imply EventSecurity(i,eventx)==grant. It means: in-
variantly, in all system executions, eventx can be trig-
gered by authorized users only.

– Data security: A data parameter value should be vis-
ible only to authorized users. This is expressed as the
invariant:
A2 for all(i:int[1,NoOfUsers]) C.user==i && Data-
Parameter!=Null imply DataSecurity(i,DataParameter)
==read. It means: invariantly, in all system executions,
the value of DataParameter can be visible only to
authorized users; otherwise, it is set to Null.

• We executed the model checker to verify the properties against
the defined system.

The experiment was performed on two machines: (1) An average
PC workstation with 512MB of memory and Pentium IV processor
running Windows XP Home Edition, and (2) a powerful server with
3GB of memory and Pentium Xeon 3GH running Windows Server
2003. Table 1 presents the time duration of model checking each
property using the two machines. The time ranges between 1 to 2
minutes on the workstation.

Table 1: Time Duration of Model Checking
Result workstation server
Safety 1.49 min 0.12 min

Liveness 1.29 min 0.12 min
Event Security 1.21 min 0.11 min
Data Security 2.06 min 0.12 min

4. CONCLUSION
We have introduced (1) a formal methodology for developing trust-
worthy systems and (2) formal set of rules for generating the behav-
ior of a component-based model, and (3) model check functional
and non-functional properties using UPPAAL model checker. We
have applied our method for a simple version of the steam boiler
controller problem. We plan to evaluate our method on problems
from different domains where both safety and security are critical.
Our research directions include: (1) investigating the requirements
of an ADL for expressing trustworthiness and (2) building a visual
interface tool that enables software architects to specify trustwor-
thy component-based systems. Then, we will derive the formal de-
scription automatically from the visual notations and generate sys-
tem behavior in different formats. The generated behavior will be
input into model checkers to perform the verification process. This
will hide the complexity of formal specification and enable soft-
ware architects to easily design and verify trustworthy systems.

5. REFERENCES
[1] Jean-Raymond Abrial, Egon Börger, and Hans Langmaack.

Formal methods for industrial applications, specifying and
programming the steam boiler control. London, UK, 1996.
Springer-Verlag.

[2] Vasu Alagar and Mubarak Mohammad. A formal approach for
the development of trustworthy component-based rtrs - case
study. http://users.encs.concordia.ca/[tilda]ms moham/sv.pdf.

[3] Vasu Alagar and Mubarak Mohammad. A component model
for trustworthy real-time reactive systems development. In
FACS’07, Sophia-Antipolis, France, Sept 2007.

[4] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A
tutorial on uppaal. In Proceedings of SFM-RT’04, 2004.

[5] Ivica Crnkovic and Magnus Larsson, editors. building reliable
component-based Software Systems. Artech House, 2002.

[6] John C. Knight Elisabeth A. Strunk, M. Anthony Aiello. A
survey of tools for model checking and model-based
development. Technical Report CS-2006-17, Dept. of
Computer Science, University of Virginia, June 2006.

[7] Cristina Gacek and Rogrio de Lemos. Structure for
Dependability: Computer-Based Systems from an
Interdisciplinary Perspective, chapter Architectural
description of dependable software systems, pages 127–142.
Springer London, 2006.

[8] John McLean. A general theory of composition for a class of
“possibilistic” properties. IEEE Trans. on Software
Engineering, 22(1):53–67, 1996.

