
Components, Objects, and Contracts

Olaf Owe
Department of Informatics
University of Oslo, Norway

olaf@ifi.uio.no

Gerardo Schneider
Department of Informatics
University of Oslo, Norway

gerardo@ifi.uio.no

Martin Steffen
Department of Informatics
University of Oslo, Norway

msteffen@ifi.uio.no

ABSTRACT
Being a composite part of a larger system, a crucial feature
of a component is its interface, as it describes the compo-
nent’s interaction with the rest of the system in an abstract
manner. It is now commonly accepted that simple syntac-
tic interfaces are not expressive enough for components, and
the trend is towards behavioral interfaces.

We propose to go a step further and enhance components
with deontic contracts, i.e., agreements between two or more
components on what they are obliged, permitted, and forbid-
den to do when interacting. This way, contracts are mod-
eled after legal contracts from conventional business or ju-
dicial arenas. Indeed, our work aims at a framework for
e-contracts, i.e., “electronic” versions of legal documents de-
scribing the parties’ respective duties.

We take the object-oriented, concurrent programming lan-
guage Creol as starting point and extend it with a notion
of components. We then discuss a framework where com-
ponents are accompanied by contracts and we sketch some
ideas on how analysis of compatibility and compositionality
could be done in such a setting.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.1.3
[Programming Techniques]: Concurrent programming;
D.1.5 [Programming Techniques]: Object-oriented pro-
gramming; F.3.1 [Logics and meanings of programs]:
Specifying and Verifying and Reasoning about Programs

General Terms
Verification

Keywords
Components, compositionality, contracts, interfaces, object-
orientation, Creol, deontic logic

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007, Cavtat
near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

We propose to combine components with deontic con-
tracts, i.e., agreements between two or more components
on what they are obliged, permitted, and forbidden to do
when interacting. This way, contracts are modeled after le-
gal contracts from conventional business or judicial arenas.
Indeed, our work aims at a framework for e-contracts, i.e.,
“electronic” versions of legal documents describing the par-
ties’ respective duties. They go beyond standard behavioral
interface descriptions, which typically describe sets of in-
teraction traces. In particular, contracts, in the intended
application domain, involve a deontic perspective, speaking
about obligations, permissions and prohibitions, and also
contain clauses on what is to happen in case the contract
is not respected. This deontic aspect is typical for natural
language legal contracts which we use as a starting point
and which we aim to formalize.

The problem
We are concerned with finding a good programming and
specification language, and appropriate abstractions for de-
veloping components in an integrated manner within the
object-oriented paradigm. We are interested in enhancing
components with more sophisticated structures than inter-
faces, targeted towards e-contracts. In that context, we ad-
dress the following questions.

Design: How to develop components in a programming en-
vironment facilitating rapid prototyping and testing?

Composition and compatibility: How do we know that
two or more components will not conflict with each
other when put together?

Substitutability: How to guarantee that replacing a com-
ponent will not introduce new unexpected behaviors?

Deontic specification: How to specify what a component
is supposed to do, what it may do, and what it should
not do?

Contract violation: How to react in case a component
does what it is not supposed to do?

These issues are crucial in component-based software de-
velopment and deployment. In fact, most of the questions,
perhaps apart from the deontic aspect, are not new to the
component-based software engineering community.

We propose a model combining the following ingredients:
1) As underlying object-oriented language, we use the con-
current language Creol. 2) As mentioned, we propose a no-
tion of deontic contract, written in a contract language. 3)

95

http://www.ifi.uio.no/~olaf
http://heim.ifi.uio.no/~gerardo
http://www.ifi.uio.no/~msteffen

The contract is associated with the component model, al-
lowing static and dynamic reasoning on component consis-
tency and conformance, using a contract logic. In the follow-
ing section we discuss some differences between objects and
components. In Section 3 we clarify the notion of “contract”
used on this paper. In Section 4 we sketch the three ingredi-
ents mentioned above, whereas in Section 5 we describe our
proposed framework. We conclude in the last section.

2. COMPONENTS VS. OBJECTS
Even if there is no clear-cut definition of what exactly

is a component, and what distinguishes the notion from a
software module or just an object, we highlight here some
essential differences between objects and components.

• Components are supposed to be self-contained units
and independently deployable. This is not the case in
general for objects, as they usually are not executable
by themselves.

• If developed using the object-oriented paradigm, a com-
ponent may contain many objects which are encap-
sulated and thus are not accessible from other com-
ponents. If an object creates another object inside a
component, this new object is not visible from the out-
side unless explicitly allowed by the interface. Objects
in most languages do not have this feature.

• Components are static entities representing the main
elements of the run-time structure, in contrast to ob-
jects, which are dynamic instantiations of classes. A
purely class-oriented program does not identify the
main elements of a system.1

In some sense the above may justify the definition of com-
ponents as being just a collection of“circles”(objects) encap-
sulated inside a “box”, which in turn could also be a kind of
object typed by an interface. It is now accepted that such in-
terfaces should not only take into account functional aspects
but should take into account the history of interactions, or
in other words be behavioral.

3. ON THE NOTION OF CONTRACTS
The term “contract” is understood in various ways by dif-

ferent research communities. We briefly recall some of its
more common definitions or informal meanings.

1. Conventional contracts are legally binding documents,
establishing the rights and obligations of different sig-
natories, as in traditional judicial and commercial ac-
tivities.

2. Electronic contracts are machine-oriented and may be
written directly in a formal specification language, or
translated from a conventional contract. The main
feature is the inclusion of certain normative notions
such as obligations, permissions, and prohibitions, be
it directly or by representing them indirectly. In this
context, the signatories of a contract may be objects,
agents, web services, etc.

1However, early OO languages, including Simula and Beta,
had a notion of block prefixing giving rise to static units
which resemble components.

3. Some researchers informally understand contracts as
behavioral interfaces, which specify the history of inter-
actions between different agents (participants, objects,
principals, entities, etc). The rights and obligations are
thus determined by legal (sets of) traces.

4. The term “contract” is sometimes used for specifying
the interaction between communicating entities (agents,
objects, etc). It is common to talk then about a con-
tractual protocol.

5. Programming by contract or design by contract is an
influential methodology popularized first in the con-
text of the object-oriented language Eiffel [6]. Contract
here means a relation between pre- and post-conditions
of routines, method calls, etc.

6. In the context of web services, “contracts” may be un-
derstood as a service-level agreement usually written
in an XML-like language like IBM’s Web Service Level
Agreement (WSLA [10]).

We are mostly concerned with the first two meanings,
though, to be able to reason and operate on contracts, it is
natural to have the contracts written in a formal language,
and thus the second meaning is more adequate. Obviously,
the mentioned interpretations are not absolutely disjoint.
The point we like to stress here is the importance of the
mentioned normative aspects, which is very typical for (elec-
tronic) contracts capturing the spirit in which legal contracts
are usually written. Besides those deontic aspects, electronic
contacts in our sense also include behavioral aspects (making
statements about the order of interactions at the interface),
and may also relate the pre- and post-conditions of meth-
ods, as in point 5. But what is missing in usual interface
and behavioral specifications are linguistic means to make
the consequences explicit; e.g. what happens (or should hap-
pen) when the normative requirements are violated.

4. COMPONENTS, OBJECTS AND
CONTRACTS

Creol
Creol is an object-oriented, concurrent programming and
modeling language developed at the University of Oslo. For
a deeper coverage of the language, its design and semantics,
we refer to the Creol web pages [3] and to [4, 5]. The choice
of Creol as underlying language is motivated as follows:

Concurrency: It is a language for open, distributed sys-
tems, supporting concurrency and asynchronous meth-
od calls. The concurrency model is that of loosely cou-
pled active objects with asynchronous communication.
This makes it an attractive basis for component-based
systems.

Object-orientation: Creol is an object-oriented, class-based
language, with late binding and multiple inheritance.
It is strongly typed, supporting subtypes and sub-inter-
faces.

Interfaces: Creol’s notion of co-interface allows specifica-
tion of required and provided interfaces. The lan-
guage supports behavioral interfaces, based on assume-
guarantee specifications expressed in terms of the com-
munication history.

96

Formal foundations: Creol has a formal operational se-
mantics defined in rewriting logic. The core of the
language has an operational semantics consisting of
only 11 rewrite rules. This makes it easy to extend
and modify the language and the semantics. We may
reuse the operational semantics when formalizing the
extension to components. Based on the formal seman-
tics, the language comes with a simple reasoning sys-
tem and composition rules.

Tool support: Creol has an executable interpreter defined
in the Maude language and rewriting tool. This pro-
vides a useful test-bed for the implementation and test-
ing of our component-based extension. The Maude
tool may be used for simulation, model checking, and
analysis.

Contract language
Formally, we let component interface descriptions be based
on the contract language CL developed in [9]. CL is a lan-
guage tailored for electronic contracts (e-contracts) with for-
mal semantics in an extension of the µ-calculus. The lan-
guage follows an out-to-do approach, i.e. where obligations,
permissions and prohibitions are applied to actions and not
to state-of-affairs. The language avoids the main classical
paradoxes of deontic logic, and it is possible to express (con-
ditional) obligations, permissions and prohibitions over con-
current actions keeping their intuitive meaning. Moreover, it
is possible to represent (nested) CTDs (contrary-to-duty, i.e.
what happens when an obligation is not fulfilled) and CTPs
(contrary-to-prohibitions, i.e which action to be performed
in case of violating a prohibition).

Components and Contracts
We list some of the main features of contracts in the context
of component-based development and deployment. Con-
tracts associated with components enhance behavioral in-
terfaces and give the following added value:

1. If written in a formal language with formal seman-
tics and proof system, a contract can be proved to be
conflict-free, both by model checking and logical de-
duction techniques. The automatic checks can also
reveal incompleteness in the specification, for instance
it may indicate that no escalation is agreed upon in
case one of the partners acts contrary to its contract.

2. The use of contracts may assist the developer during
the development phase to check whether a component
may enter into conflict with others, through a static
analysis of contract compatibility. The appropriate
notion of compatibility in the presence of obligations,
permissions, and prohibitions needs to be developed.

3. A well-founded theory of contracts should provide the
following kinds of analysis:

• Determine whether a contract is covered by an-
other one, i.e. a well-defined notion of sub-contract.
This will help deciding whether a component may
be replaced by another one in a safe manner.

• Allow decisions on whether paying a penalty in
case of one contract violation is beneficial or not
when sub-contracting. Assume component A has
a contract with component B where it is stipu-
lated that A must “pay” x to B in case of con-
tract violation. Suppose now that such violation

Conformance

Static Analysis Testing/Simulation (Maude)

Compatibitliy/Conflict−free

Development (Creol)

Co1

Co1

Co1

Con

Con

Cc1

Cc1

Cc1

Cc1

Ccn

Ccn

Ccn

Figure 1: Development phase.

depends on a service provided by C to A and that
there is a contract between A and C stating that
C must pay y to A in case of their own contract
violation. Then a theory of contracts would allow
A to determine whether it is good to compose
with B. During the development phase this kind
of information may help defining sub-contracting
which are not against a component’s own interest.

• A negotiation phase could be added prior to the
composition of two or more components. In this
phase a contract could be negotiated before the
final signature, as in the context of web services.

4. A run-time contract monitor will guarantee that the
contract is respected, including the penalties and esca-
lations in case of contract violation (CTDs and CTPs).
We expect such a monitor could be extracted from the
components contracts in a (semi-)automatic way.

5. PROPOSED FRAMEWORK
The logical semantics of CL opens the way to use the logic

proof system of µ-calculus, as well as existing model check-
ers. Initial work on model checking a contract has been pre-
sented in [8]. The combination of components, objects and
contracts may be done as sketched in our proposed frame-
work, involving both the component’s development and de-
ployment phase, using Creol as the development platform.

Development Phase.
During this phase our framework may be summarized as

follows (see Fig. 1):

Development: Each component has associated one or more
contracts in the sense discussed above, i.e., specifying
the obligations, permissions, and prohibitions in the
component’s interacting behavior.

Static Analysis: Before deployment, the contract is for-
mally analyzed to guarantee that it is contradiction

97

Pre−execution Analysis

Executing Platform

Monitor

Co1

Co1

Con

Con

Coi

Coi

Cc1

Cc1

Ccn

Ccn

Cci

Cci

Figure 2: Deployment phase.

free. This might be done by using a proof system or
by model checking. Static conformance between the
component and its contract is also proved.

Testing/Simulation: Static analysis techniques cannot val-
idate every aspect of a system. Testing and simulation
are thus needed to complement the above. Since Creol
has a formal semantics in rewriting logic, we propose to
use the Maude environment to simulate and test each
component separately and its interaction with other
components being developed.

Deployment Phase.
After the component is released there is still no complete

guarantee of it being well suited for the yet unknown plat-
form where it will be executed. We propose the following
framework to increase confidence on the component’s com-
patibility with its future environment. See Fig. 2.

Pre-execution Analysis: Before adding a new component
to an existing context of other components, the corre-
sponding contracts are checked to guarantee compat-
ibility. If there are disagreements, a phase of negoti-
ation may start, or the component is simply rejected.
This phase may be considered as a kind of static anal-
ysis on the side of the execution platform.

Execution: If the component is accepted after the analysis
of the previous phase, then it is deployed. A contract
monitor is launched to guarantee that the components
behave according to the contracts. In case of contract
violation, the monitor must take the corresponding ac-
tion as stipulated in the contract for such situation, or
cancel the contract and disable the component.

6. FINAL DISCUSSION
In this paper we sketched how to enhance components

with contracts as complementary to the latest ideas of using

behavioral interfaces. In our opinion this approach would
benefit from the fact that such contracts could be analyzed
logically and model checked in order to find (local) inconsis-
tencies, they could be negotiated and monitored. We believe
component-based development and engineering will in some
sense be reduced to the same kind of problems one finds in
web services and other application domains where contracts
are being studied.

The extension of Creol with primitives to define compo-
nents is not difficult to do as most of the basic constructs
are already defined in the language. For instance, contracts
might be included as data-types in the language.

The successful use of contracts as we have proposed de-
pends very much on the existence of a suitable formal con-
tract language. We intend to further explore CL and its
semantics to be used in this context. We expect to ben-
efit from its formal semantics in the µ-calculus to further
develop proof systems and to explore the possibility of use
existing model checking tools.

Though we believe the first phase of the deployment phase
could be achieved relatively easy, we are aware that ob-
taining a contract monitor, when executing a component
could represent a big challenge if we intend to do so in real-
time. We do not have a solution yet. A very interesting
research direction would be to study how to combine meta-
programming (e.g. in a reflective language) techniques with
a formal (logical) framework for extracting a monitor from
one or more contracts.

Related work and further details may be found in the ac-
companying technical report [7], representing the full version
of the paper.

Acknowledgment. This work is partially supported by
the Nordunet 3 project Contract-Oriented Software Devel-
opment for Internet Services [1] and the EU-project Credo,
A formal framework for reflective component modeling [2].
Marcel Kyas as well as the referees have contributed with
valuable comments.

7. REFERENCES
[1] COSDIS. www.ifi.uio.no/~gerardo/nordunet3,

2007.

[2] Credo. www.cwi.nl/projects/credo/, 2006.

[3] Creol. www.ifi.uio.no/~creol, 2007.

[4] E. B. Johnsen and O. Owe. An asynchronous
communication model for distributed concurrent
objects. In Proc. 2nd Intl. Conf. on Software
Engineering and Formal Methods (SEFM’04), pages
188–197. IEEE Computer Society Press, Sept. 2004.

[5] E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A
type-safe object-oriented model for distributed
concurrent systems. TCS, 365(1–2):23–66, Nov. 2006.

[6] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

[7] O. Owe, G. Schneider, and M. Steffen. Components,
objects, and contracts. Technical Report 363, Dept. of
Informatics, Univ. of Oslo, Norway, August 2007.

[8] G. Pace, C. Prisacariu, and G. Schneider. Model
checking contracts — a case study. In ATVA’07,
volume 4762 of LNCS, pages 82–97, 2007.

[9] C. Prisacariu and G. Schneider. A formal language for
electronic contracts. In FMOODS’07, volume 4468 of
LNCS, pages 174–189, 2007.

[10] WSLA. www.research.ibm.com/wsla/.

98

http://nordunet3.org/
http://heim.ifi.uio.no/~gerardo/nordunet3/
www.ifi.uio.no/~gerardo/nordunet3
www.cwi.nl/projects/credo/
www.ifi.uio.no/~creol
www.research.ibm.com/wsla/

	Introduction
	Components vs. Objects
	On the Notion of Contracts
	Components, Objects and Contracts
	Proposed Framework
	Final Discussion
	References

