
P.R. James © P.Chalin et al. 1

An Integrated Verification
Environment for JML:
Architecture and Early Results

Patrice Chalin, Perry R. James,
and George Karabotsos

Dependable Software Research Group
Computer Science and Software Engineering Dept.
Concordia University, Montreal, Canada
{chalin, perry, george}@dsrg.org

P.R. James, p. 2

Road map

• JML: language & tools
• Requirements for Next-generation
• JML4 features
• JML4 architecture
• Early benefits

P.R. James, p. 3

Java Modelling Language

• A language for describing behavior of code
• Tools to ensure they match

P.R. James, p. 4

Java Modelling Language

• A language for describing behavior of code
– DbC with lightweight specs
– Full BISL with heavyweight specs

• Tools to ensure they match

P.R. James, p. 5

Java Modelling Language

• A language for describing behavior of code
• Tools to ensure they match

– RAC JML compiler (jmlc)
– ESC ESC/Java2
– FSPV LOOP, JACK
– testing JmlUnit
– doc JmlDoc
– autogen JmlSpec, Daikon, Houdini

P.R. James, p. 6

Current State of affairs:
Limitations of current tools

Lots of good tools... but
• Not interoperable
• Own parsers, desugarers, etc.
• Out of date

– Java 5 released in September 2004
– Still no support for generics

• Mostly command-line driven

P.R. James, p. 7

Current State of affairs:
What worked well in JML 2

• Common JML tool suite
– Checker, RAC, JmlUnit

• Built on MultiJava compiler (MJ)
– MJ mostly independent of JML
– JML subclasses MJ classes & overrides methods
– Extension points

• Calls to empty methods

This idea used in JML 4

P.R. James, p. 8

Requirements for any
Next-generation JML tools

• Remove duplication of effort
– Tool developers
– Analysis

• No maintenance of a Java compiler
• Integrated (development and) Verification

Environment (IVE)
– Support RAC, ESC, and FSPV

JML4 achieves these

P.R. James, p. 9

JML4

• Built atop Eclipse, integrated with the JDT
• Currently supports

– Processes annotations in .java and .jml files
– Non-null type system

• Static enforcement
• RAC generation (desugared)

– Initial Design by Contract
• Initial integration with ESC/Java 2
• RAC generation

P.R. James, p. 10

High-level
Package view

Platform
Runtime

Workbench
Workspace
Team
Help

JML 4 changes / introduces
packages in bold

Everything’s a plug-in !
(except this small bit)

JML 4 replacement for
JDT plug-in
+ additional UI plug-in

P.R. James, p. 11

Compilation
Phases

Inline & external
specs processed

Static verification
before code
generation so it can
influence runtime
checking

P.R. James, p. 12

Eclipse JDT:
Lexical analysis

• Hand crafted
• Tedious to modify

keywords
• JML in special

comments
– Easy to switch to

augmented
keywords

P.R. James, p. 13

Eclipse JDT:
Parsing – 2 kinds

• Diet parsing
– Method bodies skipped
– Only signature information

• Full parsing
– Method bodies processed
– All info available

• For memory efficiency
– All diet parsed
– Full parsed individually, then discarded

P.R. James, p. 14

Eclipse JDT:
Parsing

+ Parser generated using JikesPG
+ Grammar follows Java Language Specification
+ One semantic action per reduction
- Little support for token stacks
- Replaced calls to ASTNode constructors

with JML-specific versions
- Documentation only in German

P.R. James, p. 15

Eclipse JDT:
Customizing the lexer and parser

replaces
manual
process

P.R. James, p. 16

Eclipse JDT:
Part of the AST hierarchy

•No copy & change of code
•Only overriding & hooks

Jml types shadow originals

P.R. James, p. 17

Eclipse JDT:
Type checking & Flow analysis

• Changed to support non-null type system
• Extended with hooks (calls to empty methods)

added in original resolve and analyseCode

methods

P.R. James, p. 18

Eclipse JDT:
Static verification

• Originally delegated to ESC/Java2
• Now working to use

– Eclipse as a front end
– ESC/Java2 back end

• Later steps are to
– Optionally remove RAC for proved properties
– Add interface for FSPV

P.R. James, p. 19

Eclipse JDT:
RAC code generation (part of a hook)
public static void generateNullityTest(

CodeStream codeStream,
String exceptionType,
String msg) {

BranchLabel nonnullLabel =
new BranchLabel(codeStream);

codeStream.dup();
codeStream.ifnonnull(nonnullLabel);
codeStream.newClassFromName(exceptionType,
codeStream.athrow();
nonnullLabel.place();

}

P.R. James, p. 20

JML 4 Validation

• Compiler is kept up to date with new features
– JDT already supports Java 6

• No copy & change of JDT code
– use subclassing and method extension points
– bracketing our changes with special comments

• CVS vendor branches
• Merging in weekly updates is painless

– takes on average < 10 min.

P.R. James, p. 21

JML 4: Early benefits

• Ran JML 4 on ESC/Java2
• New problems found in Main class

P.R. James, p. 22

JML 4: Early benefits
VcGenerator vcg = null; ...

try {

... // possible assignment to vcg

}

// multiple catch blocks

catch (Exception e) {

...

}

...

fw.write(vcg.old2Dot()); // possible NPE

P.R. James, p. 23

JML 4: Early benefits

P.R. James, p. 24

JML 4: Early benefits

In a superclass of Main
static public Options options = null;

In Main
public static Options options() {

return (Options)options;
}

250+ occurrences of
options().someField

or options().someMethod()

fe.Options

esc.Options

P.R. James, p. 25

JML4: Next steps

• Continue adding support JML level 0
(and above)

• Enhance ESC support
• Include interface for FSPV
• …

P.R. James, p. 26

Related work

• JML 3
– A proper plug-in → doesn’t use non-API classes
– Needs its own parser, type checker, etc.

• JML 5
– Specifications in ‘@’ annotations
– Can’t put annotations everywhere we want
– Needs its own parser, type checker, etc.

P.R. James, p. 27

Related work

P.R. James, p. 28

Conclusion

• Integrated (development and) Verification
Environment (IVE)

• Support RAC, ESC, and FSPV
• No need to maintain a Java compiler
• Unify support to remove duplication of effort

P.R. James, p. 29

An Integrated Verification
Environment for JML

Thank you !

