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Road map

• JML: language & tools
• Requirements for Next-generation
• JML4 features
• JML4 architecture
• Early benefits 
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Java Modelling Language

• A language for describing behavior of code
• Tools to ensure they match
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Java Modelling Language

• A language for describing behavior of code
– DbC with lightweight specs
– Full BISL with heavyweight specs

• Tools to ensure they match
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Java Modelling Language

• A language for describing behavior of code
• Tools to ensure they match

– RAC JML compiler (jmlc)
– ESC ESC/Java2
– FSPV LOOP, JACK
– testing JmlUnit
– doc JmlDoc
– autogen JmlSpec, Daikon, Houdini
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Current State of affairs:
Limitations of current tools

Lots of good tools... but
• Not interoperable
• Own parsers, desugarers, etc.
• Out of date

– Java 5 released in September 2004
– Still no support for generics

• Mostly command-line driven
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Current State of affairs:
What worked well in JML 2

• Common JML tool suite
– Checker, RAC, JmlUnit

• Built on MultiJava compiler (MJ)
– MJ mostly independent of JML
– JML subclasses MJ classes & overrides methods
– Extension points

• Calls to empty methods

This idea used in JML 4
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Requirements for any
Next-generation JML tools

• Remove duplication of effort
– Tool developers
– Analysis

• No maintenance of a Java compiler
• Integrated (development and) Verification 

Environment (IVE) 
– Support RAC, ESC, and FSPV

JML4 achieves these



P.R. James, p. 9

JML4

• Built atop Eclipse, integrated with the JDT
• Currently supports

– Processes annotations in .java and .jml files
– Non-null type system

• Static enforcement
• RAC generation (desugared)

– Initial Design by Contract
• Initial integration with ESC/Java 2
• RAC generation
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High-level 
Package view

Platform 
Runtime

Workbench
Workspace
Team
Help

JML 4 changes / introduces
packages in bold

Everything’s a plug-in !
(except this small bit)

JML 4 replacement for
JDT plug-in
+ additional UI plug-in
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Compilation 
Phases

Inline & external
specs processed

Static verification 
before code 
generation so it can 
influence runtime 
checking
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Eclipse JDT:
Lexical analysis

• Hand crafted
• Tedious to modify

keywords
• JML in special 

comments
– Easy to switch to 

augmented 
keywords
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Eclipse JDT:
Parsing – 2 kinds 

• Diet parsing
– Method bodies skipped
– Only signature information

• Full parsing
– Method bodies processed
– All info available

• For memory efficiency
– All diet parsed
– Full parsed individually, then discarded
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Eclipse JDT:
Parsing

+ Parser generated using JikesPG
+ Grammar follows Java Language Specification
+ One semantic action per reduction
- Little support for token stacks
- Replaced calls to ASTNode constructors

with JML-specific versions
- Documentation only in German
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Eclipse JDT:
Customizing the lexer and parser

replaces 
manual 
process
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Eclipse JDT:
Part of the AST hierarchy

•No copy & change of code
•Only overriding & hooks

Jml types shadow originals
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Eclipse JDT:
Type checking & Flow analysis

• Changed to support non-null type system
• Extended with hooks (calls to empty methods)

added in original resolve and analyseCode

methods
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Eclipse JDT:
Static verification

• Originally delegated to ESC/Java2
• Now working to use

– Eclipse as a front end
– ESC/Java2 back end

• Later steps are to
– Optionally remove RAC for proved properties
– Add interface for FSPV
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Eclipse JDT:
RAC code generation   (part of a hook)
public static void generateNullityTest(

CodeStream codeStream, 
String exceptionType,
String msg) {

BranchLabel nonnullLabel = 
new BranchLabel(codeStream);

codeStream.dup();
codeStream.ifnonnull(nonnullLabel);
codeStream.newClassFromName(exceptionType,
codeStream.athrow();
nonnullLabel.place();

}
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JML 4 Validation

• Compiler is kept up to date with new features
– JDT already supports Java 6

• No copy & change of JDT code
– use subclassing and method extension points
– bracketing our changes with special comments

• CVS vendor branches
• Merging in weekly updates is painless

– takes on average < 10 min.
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JML 4: Early benefits

• Ran JML 4 on ESC/Java2
• New problems found in Main class
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JML 4: Early benefits
VcGenerator vcg = null; ...

try {

... // possible assignment to vcg

} 

// multiple catch blocks

catch (Exception e) {

...

}

...

fw.write(vcg.old2Dot()); // possible NPE
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JML 4: Early benefits
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JML 4: Early benefits

In a superclass of Main
static public Options options = null;

In Main
public static Options options() {

return (Options)options;
}

250+ occurrences of
options().someField

or options().someMethod()

fe.Options

esc.Options
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JML4: Next steps

• Continue adding support JML level 0 
(and above)

• Enhance ESC support
• Include interface for FSPV
• …
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Related work

• JML 3
– A proper plug-in → doesn’t use non-API classes
– Needs its own parser, type checker, etc.

• JML 5
– Specifications in ‘@’ annotations
– Can’t put annotations everywhere we want
– Needs its own parser, type checker, etc.
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Related work
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Conclusion

• Integrated (development and) Verification 
Environment (IVE) 

• Support RAC, ESC, and FSPV
• No need to maintain a Java compiler
• Unify support to remove duplication of effort
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An Integrated Verification 
Environment for JML

Thank you !


