
SSE

A Concept for Dynamic Wiring 
of Components

Specification and Verification of

Component-Based Systems Workshop 

Clausthal University of Technology
Institute of Computer Sciences – Software Systems Engineering
Chair of Prof. Dr. Andreas Rausch

© Dirk Niebuhr

Component-Based Systems Workshop 



Motivation

SSEMotivation

• Following common approaches, component 
wiring (System Configuration) is defined at 
development time

• Upcoming trends of dynamic systems 

– Pervasive Computing 

A Concept for Dynamic Wiring of Components

– Pervasive Computing 

– Ubiquitous Computing

– Organic Computing

Wiring needs to be changeable at runtime

Decision, which components fit together 
(Matching) has to be made at runtime

© Dirk Niebuhr
203.09.2007



Problem

SSEProblems for Runtime Matching of Components

A Concept for Dynamic Wiring of Components 303.09.2007

© Dirk Niebuhr



Approach

SSESolutions for the Semantical Match

• Several options for semantical match:

– Prove holds(prov, req) 

• only possible when using a restricted specification 
language

– Bisimulation

• Excessive simulation overhead

A Concept for Dynamic Wiring of Components

• Excessive simulation overhead

• Correct behavior only proven for next execution step

– Runtime-testing (our favorite approach)

• Test cases need to be good enough

• Testbed needs to simulate the „real“ system

403.09.2007

© Dirk Niebuhr



Approach

SSE

• Test cases:
• tc1: square(0): 0

• tc2: square(3): 9

• tc3: square(-3): 9

Runtime-testing at an Example

«component»

ComponentA

«component»

ComponentC

2

A Concept for Dynamic Wiring of Components 503.09.2007

© Dirk Niebuhr

OKOK

OK

OK

tc1: x=0 à square(x)=0

tc2: x=3 à square(x)=6≠9

tc3: x=-3 à square(x)=Exception

tc1: x=0 à square(x)=0

tc2: x=3 à square(x)=6+3=9

tc3: x=-3 à square(x)=square(-x)=9

«interface»

InterfaceC

+square(int): int

Syntax Match

requiresprovides

1

assures requires

Sem.

Match

3

«interface»

InterfaceA

+square(int): int

+sum(int, int): int



Conclusions

SSE

• Proving the correctness of a component wiring at runtime 
is not possible in general

• Runtime-testing enables us to detect mismatches in 
interface semantics

• Test cases need to be „good enough“!

• Testbed needs to be specified (Duplicate the Components 
vs. Generating Test-Components) in detail

Conclusions

A Concept for Dynamic Wiring of Components

vs. Generating Test-Components) in detail

• Test case optimization may be worthwile 
(Local Testing <-> Global Testing, test only new 
components)

• Cyclic Dependencies and hierarchical composition has not 
been considered yet

603.09.2007

© Dirk Niebuhr


