
On Timed Components and their Abstraction

Oded Maler

CNRS-VERIMAG
Grenoble, France

September 2007

Timed components and their abstraction Oded Maler

Plan

• Introduction: the importance of the timed level of abstraction
• A crash course in timed automata

• Scheduling with Timed Automata

• Abstraction

• Ongoing Work

1

Timed components and their abstraction Oded Maler

Levels of Abstraction in Dynamic Description

It is well known that the same phenomenon can be described at different
levels of abstraction

The more detailed level should give better predictions but would
be computationally harder to analyze (and will require more detailed
observations).

The trick of science/math has always been to find the level which is sufficiently
refined to give meaningful results and sufficiently abstract to be tractable
computationally

Physics, chemistry, biology, physiology, psychology, sociology, economy, ...

2

Timed components and their abstraction Oded Maler

From Grenoble to Nancy: Continuous View

Let x = (x1, x2, x3) be a real-valued vector representing the location of my
center of mass in a coordinate system adapted to the surface of the earth

The trip is specified as a 3-dimensional signal x(t)

t

x1

t

x2

t

x3

Such behaviors (signals, trajectories) are generated by differential equations
(or hybrid automata)

3

Timed components and their abstraction Oded Maler

From Grenoble to Nancy: Discrete View

The trip is described as a sequence of states and transitions:

Grenoble bus
−→ Lyon

plane
−→ Metz bus

−→ Nancy

Transitions are considered as atomic, instantaneous events

Such behaviors are generated by automata, transition systems, discrete-
event systems, petri nets, process algebra, and worse

Sometimes we want to keep some of the continuous information, to express
the fact that things take time

4

Timed components and their abstraction Oded Maler

From Grenoble to Nancy: Timed View

The process of moving from one place to another is abstracted from it
numerical details, but the time from initiation and termination is maintained

Grenoble bus
−→ on.bus 50

−→ Lyon
plane
−→ on.plane 70

−→ Metz bus
−→ on.bus 25

−→ Nancy

t t

s1

s2

s1

s2

Continuous Timed Dirscrete

5

Timed components and their abstraction Oded Maler

Mathematically Speaking

Discrete behaviors are viewed as sequences of events without metric timing
information, only order or partial-order between the events.

A timed behavior involves the embedding of the sequence into the real time
axis.

a, b, a, b, a, b, a, b
a

b

a a a

b b b

a a

bb

a a

b b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

6

Timed components and their abstraction Oded Maler

Timed Dynamical Systems

What is the appropriate dynamical system model for the intermediate timed
level?

We do not need arbitrary continuous variables

We need discrete states that tell us where we are (in the abstract state space)

We need additional information that tell us how long we have been in this or
that state

This additional information is encoded using “clock” variables

7

Timed components and their abstraction Oded Maler

Timed Automata are n-Tuples...

A timed automaton is A = (Q,C, I,∆) where...

The above is a sad fact that dooms timed automata into the formal verification
circles and prevents it from being comprehensible to those who really need it

I’ll try to avoid this as much as possible by giving intuitive explanations (hope
you will not be offended)

8

Timed components and their abstraction Oded Maler

Adding Time to Automata

Consider two processes that take 3 and 2 times units, respectively, after they
start. We model the passage of 1 unit of time by a special tick transition.

0

start1

tick

tick

end1

1

3

tick

start2

1

tick

22

end2

0

tick

tick

tick

tick tick

p1

p
1

p2

p
2

9

Timed components and their abstraction Oded Maler

Possible Behaviors of the Processes

0

start1

tick

tick

end1

1

3

tick

start2

1

tick

22

end2

0

tick

tick

tick

tick tick

p1

p
1

p2

p
2

P1 waits one time unit and then starts:

p1
tick
−→ p1

start1
−→ 0

tick
−→ 1

tick
−→ 2

tick
−→ 3

end1
−→ p

1

10

Timed components and their abstraction Oded Maler

The Two Processes in Parallel

end1

tick

tick

tick

start1

end2

tick

end2

tick

tick

end1

tick

tick

end2tick start1tickticktickstart2

tick

start2tick

tick

start1

start2 start1 tick

start1 start2

tick

p
1

p
2

3 p
2

2 p
2

p1 p
2

p
1

2

p
1

1 1 p
2

0 p
23 1

3 p2 0 21 22 22 12 0

p1 p2

0 0

1 0 1 1 p1 2

1 p2

0 p2 p1 0

0 12 p2

p11

11

Timed components and their abstraction Oded Maler

Possible Joint Behaviors

Both processes start at time 2:
(p1, p2)

tick
−→ (p1, p2)

tick
−→ (p1, p2)

start1
−→ (0, p2)

start2
−→ (0, 0)

tick
−→ (1, 1)

tick
−→ (2, 2)

end2
−→ (2, p

2
)

tick
−→ (3, p

2
)

end1
−→

(p
1
, p

2
)

P1 starts at 0 and P2 starts at 2:
(p1, p2)

start1
−→ (0, p2)

tick
−→ (1, p2)

tick
−→ (2, p2)

start2
−→ (2, 0)

tick
−→ (3, 1)

end1
−→ (p

1
, 1)

tick
−→ (p

1
, 2)

end2
−→ (p

1
, p

2
)

P2 starts at 0 and P1 starts after P2 ends:
(p1, p2)

start2
−→ (p1, 0)

tick
−→ (p1, 1)

tick
−→ (p1, 2)

end2
−→ (p1, p

2
)

start1
−→ (0, p

2
)

tick
−→ (1, p

2
)

tick
−→ (2, p

2
)

tick
−→ (3, p

2
)

end1
−→

(p
1
, p

2
)

Interleaving:
(p1, p2)

start1
−→ (0, p2)

start2
−→ (0, 0) = (p1, p2)

start2
−→ (p2, 0)

start1
−→ (0, 0)

12

Timed components and their abstraction Oded Maler

Using Clock Variables

tick

start2

tick

end2

tick

tick

start1

tick

tick

end1

tick

tick

tick

start1

end1

tick

tick

tick

end2

start2

tick

tick

tick

(p2, 2)

(p2, 1)

(p2, 0)

(p2,⊥)

(p
2
,⊥)(p1, 3)

(p1, 2)

(p1, 1)

(p1, 0)

(p1,⊥)

(p
1
,⊥)

p1

x2 = 2

x2 := x2 + 1

x2 := 0

p2

p1

p
2p

1

x1 := 0

x1 = 3

x1 := x1 + 1

p2

13

Timed components and their abstraction Oded Maler

Clock Variables: the Composition

start1

end2

start2

end1

end2
end1

start2

start2

tick

start1

tick

start1

tick

tick

end2

tick

tick

tick tick

tick

end1

p1 p
2

p
1

p2

p1 p2

p
1

p
2

p1 p
2

x2 := 0

x2 = 2

x2 = 2

x2 = 2

p1 p2

p1 p2

p
1

p2

x2 := x2 + 1p1 p2

x1 := 0 x2 := 0

x1 = 3
x1 := 0

x2 := 0
x1 = 3

x1 := 0

x1 = 3

x2 := x2 + 1
x1 := x1 + 1

x1 := x1 + 1

x1 := x1 + 1
x2 := x2 + 1

14

Timed components and their abstraction Oded Maler

The Notion of a State

Warning: in automata augmented with variables, the state is encoded in both
the discrete state (location) and the values of the variables.

The merging into (p1, p2) is misleading: via different paths you reach different
clock valuations.

start1

tick

start2

start2

tick tick

start1

p1 p2

x2 := 0

x1 := x1 + 1 p1 p2

p1 p2

p1 p2

x1 := 0 x2 := 0

x1 := 0

x2 := x2 + 1

15

Timed components and their abstraction Oded Maler

The Joy of Clock Variables

They allow succinct and natural representation of the system.

Transitions are labeled by guards and resets .

Different clocks represent the time elapsed since certain events.

In the worst-case, however, one needs to expand the automaton by adding
clock values to states.

You can use symbolic rather than enumerative encoding of the set of
reachable states.

You can work in dense time without committing a-priori to time granularity.

16

Timed components and their abstraction Oded Maler

Symbolic Representation
Assume the two processes with durations d1 and d2 such that d1 < d2 and
that p2 starts 2 time units after p1.

tick

start1

start2

start2

tick

start1

tick

x1 = d1 x2 = d2

p1 p2

x2 := 0

p1 p2

p1 p2

p1 p2

x1 := 0 x2 := 0

x1 := 0

x2 := x2 + 1x1 := x1 + 1 d1 < d2

The set of clock values that can be reached at state (p1, p2) is
{(2, 0), (3, 1), (4, 2), . . . (d1, d1 − 2)} and its size depends on d1.

It can be, however, represented by a fixed size formula X1−X2 = 2∧X1 ≤ d1

17

Timed components and their abstraction Oded Maler

From Discrete to Dense Time

So far we have assumed a fixed time granularity ∆ associated with a tick.

Discrete time flows in ∆ quanta by the tick transitions. These transitions
induce self-loops on the states of all automata.

Other transitions can be taken only at time points n∆, n ∈ N.

By considering clocks as continuous variables we can use time-passage of
arbitrary length.

Time passage, instead of being represented by tick transitions, can be
modeled by all active clocks advancing with derivative 1 when the automaton
stays in a state.

The timed automaton is viewed as a simple kind of a hybrid automaton whose
evolution alternates between passage of time and discrete transitions.

18

Timed components and their abstraction Oded Maler

The Two Processes as Two Timed Automata

end2end1

start1 start2

x2 = 2x1 = 3

x2 := 0x1 := 0

ẋ2 = 1ẋ1 = 1 p2

p
2

p
1

p1

p1 p2

start1

end1end2

end2

start2

start1

start2

end2end1

start1

end1

start2

ẋ1 = 1

ẋ2 = 1

x2 = 2

x2 = 2

p1 p2

p1 p2

p1 p2

p
1

p2

p
1

p
2

p1 p
2

p1 p
2

p1 p2

x2 := 0x1 := 0

x1 := 0
x1 = 3

x1 = 3

x2 := 0

x2 = 2

x1 := 0

x1 = 3

ẋ1 = 1

ẋ2 = 1

ẋ2 = 1

ẋ1 = 1
p

1
p2

x2 := 0

19

Timed components and their abstraction Oded Maler

Modeling Temporal Uncertainty

The major strength of timed automata is their ability to express temporal
uncertainty .

“The duration of a task (or the distance between two events) is somewhere in
the interval [l, u]”

Using dense time this means anywhere in [l, u] not just l or u

Verification can be done with respect to all choices of values in the interval

This CS non-determinism is an alternative/complement to probabilistic
modeling of uncertainty (for example exponential distribution of durations)

20

Timed components and their abstraction Oded Maler

Modeling Temporal Uncertainty with TA
There are different ways to model urgency/non-urgency in TA:

1) Invariants (staying conditions) that the clocks must satisfy in order to
remain in a state and “let” time progress.

2) Deadlines on transitions.

Example: a task whose duration is between 3 and 7 time “units”:

3 ≤ x < 7x := 0
p

x := 0

pp

3 ≤ x
p pp

Invariants Deadlines

x < 7

(p,⊥)
2.5
−→ (p,⊥)

start
−→ (p, 0)

3.8
−→ (p, 3.8)

end
−→ (p,⊥)

(p,⊥)
t1−→ (p,⊥)

start
−→ (p, 0)

t2−→ (p, t2)
end
−→ (p,⊥)

t1 ∈ [0,∞), t2 ∈ [3, 7].

21

Timed components and their abstraction Oded Maler

Verification (Reachability) of Timed Automata

q1 q2 q3

2 ≤ y ≤ 6/y := 01 ≤ x ≤ 3/x := 0

q1
x = y = 0

q1
x = y
0 ≤ x ≤ 3

q1
x = y
1 ≤ x ≤ 3 1 ≤ y ≤ 3

q2
x = 0

q2
1 ≤ y ≤ 6
1 ≤ y − x ≤ 3 1 ≤ y − x ≤ 3

q2
2 ≤ y ≤ 6

q3
y = 0
0 ≤ x ≤ 5

init guard reset guard resettime time

0

3

6

y

x

22

Timed components and their abstraction Oded Maler

Timed Automata are n-Tuples...

A timed automaton is A = (Q,C, I,∆) Q: a set of states, C: a set of clocks,

I: staying condition (invariant), assigning to every q a conjunction Iq of
inequalities of the form c ≤ u, for some clock c and integer u

∆: a transition relation consisting of tuples (q, φ, ρ, q′) where q and q′ are
states,

ρ ⊆ C is the set of clocks reset by the transition, and

φ (the transition guard) is a conjunction of formulae of the form c ≥ l for some
clock c and integer l.

A clock valuation is a function v : C → R+ ∪ {0} and a configuration is a pair
(q, v) consisting of a discrete state (location) and a clock valuation.

23

Timed components and their abstraction Oded Maler

Runs of Timed Automata

A step of the automaton is one of the following:

• A discrete step: (q, v)
δ

−→ (q′, v′), for some transition δ = (q, φ, ρ, q′) ∈ ∆,
such that v satisfies φ and v′ = Rρ(v).

• A time step: (q, v)
t

−→ (q, v + t1), t ∈ R+ such that v + t1 satisfies Iq.

A run of the automaton starting from a configuration (q0, v0) is a finite
sequence of steps

ξ : (q0, v0)
t1−→ (q1, v1)

t2−→ · · ·
tn−→ (qn, vn).

24

Timed components and their abstraction Oded Maler

Symbolic Reachability Computation

A symbolic state is (q, Z) where q is a discrete state and Z is a zone, a set of clock valuations
satisfying a conjunction of inequalities ci − cj ≥ d or ci ≥ d.
Symbolic states are closed under the following operations:

• The time successor of (q, Z), the configurations reachable from (q, Z) by letting time
progress without violating the staying condition of q:

Postt(q, Z) = {(q, z + r1) : z ∈ Z, r ≥ 0, z + r1 ∈ Iq}

• The δ-transition successor of (q, Z) is the configurations reachable from (q, Z) by taking
the transition δ = (q, φ, ρ, q′) ∈ ∆:

Postδ(q, Z) = {(q′, Rρ(z)) : z ∈ Z ∩ φ}

• The δ-successor of a time-closed symbolic state (q, Z) is the set of configurations
reachable by a δ-transition followed by passage of time:

Succ
δ
(q, Z) = Post

t
(Post

δ
(q, Z))

25

Timed components and their abstraction Oded Maler

The Reachability Graph

The basic verification algorithm for TA consists of on-the-fly generation of the
reachability (simulation) graph, S = (N,→)

The nodes are symbolic states computed starting from Postt(s, {0}) and
applying Succδ until termination (guaranteed due to finitely-many zones)

There is a path from (q, Z) to (q′, Z ′) in S iff for every v′ ∈ Z ′ there exists
v ∈ Z and a run of A from (q, v) to (q′, v′).

Hence the union of all symbolic states in S is exactly the set of reachable
configurations.

This is the computation we want to do more efficiently

26

Timed components and their abstraction Oded Maler

The Sources of Difficulty

Assume we have n interacting timed automata, each with m states and one
clock ranging over [0, d]

The number of states can be up to mn and the number of zones can be up to
dnn!, summing up to mndnn! symbolic states. Each zone takes O(n2) space

The representation of (convex) zones is fine but there is no nice
representation for a union of zones and, even worse, the representation is
not symbolic for the discrete states: symbolic states are of the form (q, Z)
with q being an explicit n-vector.

27

Timed components and their abstraction Oded Maler

Scheduling with Timed Automata (Y. Abdeddaim, 98-00)

As mentioned earlier, timed automata exhibit dense non-determinism: a
transition can be taken at any point in an interval [l, u]

In verification, where the non-determinism is associated with the external
uncontrolled world, we need to take all these choices into consideration

In synthesis/optimization where the choice of when to take a transition
depends on us, sometimes we need not consider the whole interval but only
some points in it that “dominate” the others

This turned out to be the case in optimal scheduling problems where it is
sufficient to consider only a small subset of the runs

28

Timed components and their abstraction Oded Maler

Deterministic Job-Shop Scheduling: the Problem

J1 : (m1, 4), (m2, 5) J2 : (m1, 3)

Determine the execution times of the tasks such that:

The termination time of the last task is minimal

Precedence and resource constraints are satisfied

0 4 7 0 3 7 12
J2

J1

J2

m1 m2

m1 m1

m1 m2

9

J1

Sometimes it is better not to start a task although the machine is idle

29

Timed components and their abstraction Oded Maler

Modeling with Timed Automata

Start

Waiting

Active

End

Finished

c1 := 0 c1 = 4 c1 := 0 c1 = 5

c2 := 0

c2 = 3

?

m1

m1

m1 m1 m2 m2 ?

Each automaton represents the set of all possible behaviors of each task/job
in isolation (respecting the precedence constraints)

The Start transitions are issued by the controller/scheduler and the End
transitions by the environment

30

Timed components and their abstraction Oded Maler

The Global Automaton
Resource constraints expressed via forbidden states in the product
automaton

c1 = 4 c1 := 0c1 := 0 c1 = 5

c2 := 0 c2 := 0 c2 := 0 c2 := 0

c1 := 0 c1 = 5

c2 = 3 c2 = 3

c1 := 0 c1 = 4 c1 := 0 c1 = 5

?m1 ?m1 ?m2

c2 = 3 c2 = 3

???m2

m1m2 m1?m1m2

m1?m1m2m1m2m1m1m1m1

m1m1

Optimal scheduling = shortest path problem for timed automata

31

Timed components and their abstraction Oded Maler

Finding the Shortest Path

Add an additional clock T which is never reset to zero, hence it measures the
absolute time since the beginning

Naive approach: perform zone-based reachability computation on the
extended clock space (the graph is acyclic and all paths lead to the final
state); Find the minimal value of T over all symbolic states associated with
the final state

However, it can be shown that postponing a start transition from t to t′ is
useless if the machine is not used by anyone else during [t, t′]

Hence the optimum can be found among a finite number of schedules/runs
where a transition not taken in a state at the first moment it was enabled will
not be taken at that state at all

32

Timed components and their abstraction Oded Maler

Scehduling with Timed Automata

(⊥,⊥, 0)

(⊥,⊥, 4)

? m1(⊥,⊥, 9)

? m1

? ? ? ? ? ?

m1 ?

m1 ?

m1 m1

m1 m1

m2 m1

m2 m1(0,⊥, 4)

(⊥, 0, 9)

(0,⊥, 0)

(⊥,⊥, 12)

(0, 0, 4)

(3,⊥, 7)

(⊥,⊥, 9)

m2 ?

m1 m1 (⊥, 0, 0)

(⊥,⊥, 3)

(⊥,⊥, 7)

(0,⊥, 7)

(⊥,⊥, 12)

m2 ?

m2 ?

(⊥, 0, 4) (0,⊥, 3)m2 m1

m2 m1

start2 end1

Lessons: there is life after operations research

33

Timed components and their abstraction Oded Maler

Abstraction (R. Ben Salah, M. Bozga, 02-07)

Principle is simple: the system S = S1||S2|| · · · ||Sn is made of components
whose product explodes

Replace each (or some) Si by and S′
i such that S′

i < Si in syntax and S′
i > Si

in semantics

Correctness of S′ = S′
1||S

′
2|| · · · ||S

′
n implies correctness of S and may be

computationally easier

We developed an automatic methodology to create such abstractions,
specialized (bot not restricted to) Boolean circuits with delays

34

Timed components and their abstraction Oded Maler

Circuits with Bi-bounded Inertial Delays

x1

y1

x2

y2

z

0 10 25 40 70

x1

y1

x2

y2

z

0 403020

x1

y1

x2

y2

z

0 10 25

y1

y2

[10, 30]

[20, 40]

[10, 50]

x1

x2

z

35

Timed components and their abstraction Oded Maler

Modeling Circuits with Timed Automata

Our modeling approach, based on [Maler and Pnueli 95]: Decompose any gate into an
instantaneous Boolean function and a bi-bounded (non-deterministic) inertial delay element

Model every delay element as a timed automaton with 4 states and 1 clock

x = 0/C := 0

0

1

x = 1

x = 0

x = 1∧
l ≤ C∧
C ≤ u

x = 0 ∧ C < u

x = 1 ∧ C < u

x = 1/C := 0

x = 0∧
l ≤ C∧
C ≤ u

1′

0′

x = 1∧
C < u

x = 0∧
C < u

Composing all these automata we obtain a timed automaton with O(2n) states and n clocks

36

Timed components and their abstraction Oded Maler

Abstraction of Acyclic Circuits

Start with a stable states, primary inputs change only once at start. This induces a non-
countable number of possible behaviors

Each behavior admits a finite number of changes and stabilizes in a bounded amount of time.
We want to compute the maximal stabilization time, that of the worst behavior

The basic idea: take a sub-circuit on the left, use TA technology to generate an approximate
timed model of its output. It is then plugged as an input model to the rest of the circuit.

...

...

...

...

Abstract Model

37

Timed components and their abstraction Oded Maler

The Reachability Graph

The reachability graph of a timed automaton can be viewed as an
“interpretation” of the automaton:

On on one hand we split some discrete states according to clock values

On the other, we remove transitions that are infeasible due to timing
constraints.

By associating with each symoblic state (q, Z) the staying condition Z and
with each outgoing transition the intersection of Z with the guard we obtain
a TA equivalent to the original one where all states are reachable from the
initial state.

The abstraction is done by applying certain transformation to this timed
automaton

38

Timed components and their abstraction Oded Maler

y1

y2

[10, 30]

[20, 40]

[10, 50]

x1

x2

z

10010

00010

 -x1

01010

 +x2

00010

exc y1

01010

exc y2

01010

exc y1

01010

exc y1

01010

time

time

01000

 -y2

01110

 +y1

time

01100

 +y1

01100

time

time

-y2

01110

exc z

01110

time

01100

-y2

time

01111

+z

01100

-y2

time

01101

-y2

01101

exc z

01101

time

time

01100

-z

01100

time

time

01100

reg z

01100

time

 time

time

01100

reg z

time

exc y2

+x2

39

Timed components and their abstraction Oded Maler

The Nature of the Abstraction

First, the obvious thing: hiding internal actions such as excitation and “regrets” of the outputs
and all transitions of internal wires.

Relaxation of timing constraints by allowing things to happen at impossible times (but not in
impossible orders!)

We project the TA obtained from the reachability graph on a subset of the clocks. The
constraints related to the other clocks are removed.

For acyclic circuits it is natural to project only on the auxiliary clock T that measures absolute
time. This way we keep the information about the time each transition can be taken (but lose
some inter-dependence information).

T ∈ [l1 + l2, u1 + u2]T ∈ [l1, u1]

/C2 := 0

C1 ∈ [l1, u1] C2 ∈ [l2, u2]

40

Timed components and their abstraction Oded Maler

10010

00010

 -x1

01010

 +x2

00010

exc y1

01010

exc y2

01010

exc y1

01010

exc y1

01010

time

time

01000

 -y2

01110

 +y1

time

01100

 +y1

01100

time

time

-y2

01110

exc z

01110

time

01100

-y2

time

01111

+z

01100

-y2

time

01101

-y2

01101

exc z

01101

time

time

01100

-z

01100

time

time

01100

reg z

01100

time

 time

time

01100

reg z

time

exc y2

+x2

10

10

10 10

10 10

10

10

00

-y2 :[20,30]

10

00

00

00

-y2 :[20,30]

10

10

00

-y2 :[20,30]

11

+z :[20,40]

00

-y2 :[20,40]

01

-y2 :[20,40]

01

01

00

-z :[30,90]

00

00

00

00

00

41

Timed components and their abstraction Oded Maler

Minimization

After minimization we obtain the following small-description abstraction for
the observed behavior of the circuit:

y1

y2

[10, 30]

[20, 40]

[10, 50]

x1

x2

z

10

00

-y2 :[20,40]

11

+z :[20,40]

01

-y2 :[20,40]

-z :[30,90]

42

Timed components and their abstraction Oded Maler

Abstraction - Current Status

For acyclic circuits we could treat circuits with up to 100 gates. Still a far cry
from static methods used in industry

We have developed a very interesting novel method for abstracting open
timed components (the inputs may arrive anytime, not only in time zero)

Each event generates its own clock (which is killed after the event propagates
through the system)

After projecting on those input clocks we obtain a reduced model where
output events are constrained by the time elapsed since the events that
triggered them

This way we obtain an approximation of the timed input-output behavior of
the system (work in progress)

43

Timed components and their abstraction Oded Maler

Thank You

44

