Plan-Directed Architectural
Change for Autonomous Systems

Daniel Sykes, William Heaven, Jeff Magee, Jeff Kramer
dasO5@doc.ic.ac.uk
Imperial College London

September 39 2007

A linear plan

Motivation for adaptation
Generating reactive plans
Deriving configurations from plans
Ongoing work and conclusion

dasO5@doc.ic.ac.uk

Coping with reality

Autonomous systems need to cope with
the real world

The real world is unpredictable

Autonomy implies minimal contact with
programmer

Thus, need to adapt to changing
circumstances and potentially changing
goals

dasO5@doc.ic.ac.uk

Architectural adaptation

e Adaptations can range from small (continuous)
parameter adjustments to complete change of

software
 Focus on architectural reconfiguration
— Wide scope from ‘medium’ to ‘total’ change

— Can reason about adaptation independent of domain
specifics (components are black boxes)

e Much previous work Is too rigid

— Programmer specifies what to change in what

circumstances (can he predict all combinations of
circumstances?)

dasO5@doc.ic.ac.uk

Changing with intent

 Want to allow arbitrary change, but
change that serves our goals

 Use the system’s plan as a functional
specification

 If a component fails during operation we
need to find an alternative

dasO5@doc.ic.ac.uk

Replan

Failure

C
C

Overview

Goal Management G1

Change Management

oo,
O/@/gjc

Component Control

ci

C3

dasO5@doc.ic.ac.uk

Generate
plans

Generate
configs.

‘Failure’ may be
Implementation error,
environment problem
(network connections,
unexpected obstacles)

Hopefully find
alternative
component(s) and
continue same plan

Otherwise, replan (not
currently addressed)

dasO5@doc.ic.ac.uk 7

Reactive plans

« Desired behaviour of the system given as CTL goals,
over some domain description

 Planner (MBP) uses model-checking to generate a
reactive plan (as opposed to a linear plan)

e The plan contains all (world) states from which goal is

reachable
— handles non-determinism in environment — actual next state may
not be the expected result of an action

Linear plan Reactive plan
dasO5@doc.ic.ac.uk 8

Domain description

Domain description contains a set of actions, with their pre and post
conditions

— Pre: ball_at(locl), robot_at(locl)

— Action: pickup

— Post: robot_has(ball)

Can be regarded as an LTS where states are conjunctions of
predicates, which the planner prunes to generate a plan

O —— O—
> Q\O\

Domain description Reactive plan

dasO5@doc.ic.ac.uk

Plans

 (Generated plans are sets of condition-action rules
 Interpreter checks actual world state after every action

S1 | (case (and (= photographed targetl))
(done))

S2 (case (and (= photographed 0) (= koalal_location loc1l) (= targetl_location loc1))
(action koalal photograph_targetl))

S3 (case (and (= photographed 0) (= koalal_location locl) (= targetl location loc2))
(action koalal _goto_loc?2))

Sn (case (and (= photographed 0) (= koalal location loc3) (= targetl location loc3))
(action koalal photograph_targetl))
(else (fail))

(ordering of states is arbitrary)

dasO5@doc.ic.ac.uk

Managing state space

State explosion a problem for Plan tree
non-trivial domains

Use a hierarchy of partial
descriptions, and generate a
hierarchy of plans

Root plan contains only
‘abstract’ or ‘compound’
actions

Subplans contain ‘primitive’ @ ompound action
actions which elaborate or .

refine the compound actions g g
Subplans are generated at o >

runtime from the current state

Subplan

»
L

dasO5@doc.ic.ac.uk 11

Deriving configurations

Plan describes functional requirements in terms
of actions

— They do not refer to configurations explicitly

Primitive actions associated with interfaces
which the interpreter can call

Hence, need a set of components which
Implement every interface required by the plan

Components to interfaces is a many to many
relationship, providing alternatives

dasO5@doc.ic.ac.uk 12

Component selection

move(t) — - GoToTask
Motors Location
Repository
Motors Location Location
® ® @ Camera
Hardware SkyCamera SLAM O« —— @Webcam
Camera

Already instantiated

Unavailable,
network failure

dasO5@doc.ic.ac.uk

13

« Components already

Instantiated or already Req(lA)
selected are reused
— Assumes one instance
providing each interface
« Components marked as A2
Req(IB) Req(IC)

unavailable (or have

unsatisfiable reuse
requirements) are not
selected '

e Here, 2 solutions —
{A1,B2} or {A2,C} — Unavallable selected Req(IA)
which Is better?

dasO5@doc.ic.ac.uk 14

Component properties

{Al1,B2} and {A2,C} may have very different
characteristics

— Power usage, reliability, CPU use, network use,
number of changes to existing configuration

— Further structural constraints

|deal selection would account for these non-
functional attributes

Suppose Al has low reliability, but low CPU use;
A2 has high reliabllity, but high CPU use

Need to prioritise CPU use versus reliability to
make a choice

dasO5@doc.ic.ac.uk 15

Adaptation

Components that ‘fail’ at runtime invoke the selection process
‘Failed’ component marked as unavailable
If no alternatives can be used, replanning may be necessary

Robot = | Robot' = |

hardware : Koala 2} hardware : Koala

m% Sensors V Sensors
proxy : KoalaProxy proxy : KoalaProxy
remate task
remote task
t:GoToTask

t: FollowTask S

location
camera
cam : KoalaCamera 2

O ¥

Remotekoala LosGtionSering

O

dasO5@doc.ic.ac.uk Remotekoala 16

Implementation

Implemented component
selection from NPDDL plans
generated from goals on
Koala robotic platform

Components implemented In
Java, using the Backbone
system

Goals such as “ensure the
ball is in location 1”

Plans involve moving Videos at
around, picking up, and so www.doc.ic.ac.uk/~das05/
on

dasO5@doc.ic.ac.uk 17

Fy

T vopsm i 2T °C *
ELaflerp o bt H mams
Commmmplinn: £ mA o

Gufolmsk |* | Starimk - b ‘-
[T é 1

(0 e b L) = Oo'%
T W IRRNTWS, e s Fils Ei View Ohbpd Toom

[Suction 50| = =

- el
iistat] g | e | ot - | Ehmetend | B | M CoPOow. | W CiEmRos | T e o | bt e | g Kaitanet | Epancir-cie.. | @Gt | e [ettt (B R 5

dasO5@doc.ic.ac.uk 18

Ongoing work

Replanning when necessary
Dynamic modification of goals and domain

ncorporate non-functional properties into
selection process

Address safety issues in changing
components at runtime — quiescence

dasO5@doc.ic.ac.uk 19

Conclusions

Plans provide a convenient source of functional
requirements

Reactive plans cope with non-determinism in
environment

Components selected at runtime based on
mapping from action to interface and on
availability

Adaptation achieved by selecting alternatives
after a fault

Working towards ‘safer’ dynamic adaptation

dasO5@doc.ic.ac.uk

20

