
Plan-Directed Architectural 
Change for Autonomous Systems

Daniel Sykes, William Heaven, Jeff Magee, Jeff Kramer

das05@doc.ic.ac.uk

Imperial College London

September 3rd 2007



das05@doc.ic.ac.uk 2

A linear plan

• Motivation for adaptation
• Generating reactive plans
• Deriving configurations from plans
• Ongoing work and conclusion



das05@doc.ic.ac.uk 3

Coping with reality

• Autonomous systems need to cope with 
the real world

• The real world is unpredictable
• Autonomy implies minimal contact with 

programmer
• Thus, need to adapt to changing 

circumstances and potentially changing 
goals



das05@doc.ic.ac.uk 4

Architectural adaptation
• Adaptations can range from small (continuous) 

parameter adjustments to complete change of 
software

• Focus on architectural reconfiguration
– Wide scope from ‘medium’ to ‘total’ change
– Can reason about adaptation independent of domain 

specifics (components are black boxes)
• Much previous work is too rigid

– Programmer specifies what to change in what 
circumstances (can he predict all combinations of 
circumstances?)



das05@doc.ic.ac.uk 5

Changing with intent

• Want to allow arbitrary change, but 
change that serves our goals

• Use the system’s plan as a functional 
specification

• If a component fails during operation we 
need to find an alternative



das05@doc.ic.ac.uk 6

Overview

Goal Management

Change Management

Component Control

G1

G2 G3

C1 C2 C3

Generate 
plans

Generate 
configs.

Replan

Failure



das05@doc.ic.ac.uk 7

• ‘Failure’ may be 
implementation error, 
environment problem 
(network connections, 
unexpected obstacles)

• Hopefully find 
alternative 
component(s) and 
continue same plan

• Otherwise, replan (not 
currently addressed)



das05@doc.ic.ac.uk 8

Reactive plans
• Desired behaviour of the system given as CTL goals, 

over some domain description
• Planner (MBP) uses model-checking to generate a 

reactive plan (as opposed to a linear plan)
• The plan contains all (world) states from which goal is 

reachable
– handles non-determinism in environment – actual next state may 

not be the expected result of an action

Reactive planLinear plan



das05@doc.ic.ac.uk 9

Domain description
• Domain description contains a set of actions, with their pre and post 

conditions
– Pre: ball_at(loc1), robot_at(loc1)
– Action: pickup
– Post: robot_has(ball)

• Can be regarded as an LTS where states are conjunctions of 
predicates, which the planner prunes to generate a plan

… …
Domain description Reactive plan



das05@doc.ic.ac.uk 10

Plans
• Generated plans are sets of condition-action rules
• Interpreter checks actual world state after every action

(case (and (= photographed target1))
(done))

(case (and (= photographed 0) (= koala1_location loc1) (= target1_location loc1))
(action koala1_photograph_target1))

(case (and (= photographed 0) (= koala1_location loc1) (= target1_location loc2))
(action koala1_goto_loc2))

…

…

(case (and (= photographed 0) (= koala1_location loc3) (= target1_location loc3))
(action koala1_photograph_target1))

(else (fail))

S1

S2

S3

Sn

(ordering of states is arbitrary)



das05@doc.ic.ac.uk 11

Managing state space
• State explosion a problem for 

non-trivial domains
• Use a hierarchy of partial 

descriptions, and generate a 
hierarchy of plans

• Root plan contains only 
‘abstract’ or ‘compound’
actions

• Subplans contain ‘primitive’
actions which elaborate or 
refine the compound actions

• Subplans are generated at 
runtime from the current state

Plan tree

Compound action

Subplan



das05@doc.ic.ac.uk 12

Deriving configurations

• Plan describes functional requirements in terms 
of actions
– They do not refer to configurations explicitly

• Primitive actions associated with interfaces 
which the interpreter can call

• Hence, need a set of components which 
implement every interface required by the plan

• Components to interfaces is a many to many 
relationship, providing alternatives



das05@doc.ic.ac.uk 13

Component selection
GoToTask

Motors Location

move(t)

Repository

Hardware

Motors

SkyCamera

Location

SLAM

Location

Camera
Unavailable,
network failure

Already instantiated

Webcam
Camera



das05@doc.ic.ac.uk 14

• Components already 
instantiated or already 
selected are reused
– Assumes one instance 

providing each interface
• Components marked as 

unavailable (or have 
unsatisfiable
requirements) are not 
selected

• Here, 2 solutions –
{A1,B2} or {A2,C} –
which is better?

Req(IA)

A1
Req(IB)

A2
Req(IC)

C
Req(IA)B1

Unavailable
B2

reuse

selected



das05@doc.ic.ac.uk 15

Component properties
• {A1,B2} and {A2,C} may have very different 

characteristics
– Power usage, reliability, CPU use, network use, 

number of changes to existing configuration
– Further structural constraints

• Ideal selection would account for these non-
functional attributes

• Suppose A1 has low reliability, but low CPU use; 
A2 has high reliability, but high CPU use

• Need to prioritise CPU use versus reliability to 
make a choice



das05@doc.ic.ac.uk 16

Adaptation
• Components that ‘fail’ at runtime invoke the selection process
• ‘Failed’ component marked as unavailable
• If no alternatives can be used, replanning may be necessary



das05@doc.ic.ac.uk 17

Implementation
• Implemented component 

selection from NPDDL plans 
generated from goals on 
Koala robotic platform

• Components implemented in 
Java, using the Backbone 
system

• Goals such as “ensure the 
ball is in location 1”

• Plans involve moving 
around, picking up, and so 
on

Videos at
www.doc.ic.ac.uk/~das05/



das05@doc.ic.ac.uk 18



das05@doc.ic.ac.uk 19

Ongoing work

• Replanning when necessary
• Dynamic modification of goals and domain
• Incorporate non-functional properties into 

selection process
• Address safety issues in changing 

components at runtime – quiescence



das05@doc.ic.ac.uk 20

Conclusions
• Plans provide a convenient source of functional 

requirements
• Reactive plans cope with non-determinism in 

environment
• Components selected at runtime based on 

mapping from action to interface and on 
availability

• Adaptation achieved by selecting alternatives 
after a fault

• Working towards ‘safer’ dynamic adaptation


