

Seventh International Workshop on
Specification and Verification of

Component-Based Systems
(SAVCBS 2008)

SIGSOFT 2008/FSE 16
16th ACM SIGSOFT Symposium on the Foundations of

Software Engineering
Atlanta, Georgia, USA
November 9-10, 2008

Technical Report CS-TR-08-07,
School of Electrical Engineering and Computer Science, University of Central Florida,

4000 Central Florida Blvd., Orlando, Florida, 32816-2362 USA

ii

iii

SAVCBS 2008
PROCEEDINGS

Specification and Verification of Component-

Based Systems

http://www.eecs.ucf.edu/SAVCBS/

November 9-10, 2008
Atlanta, Georgia, USA

Workshop at SIGSOFT 2008/FSE 16
16th ACM SIGSOFT Symposium on the

Foundations of Software Engineering

iv

Copyright for each contribution to the workshop is held by the workshop’s authors.

v

SAVCBS 2008
TABLE OF CONTENTS

ORGANIZING COMMITTEE vii

PROGRAM COMMITTEE viii

WORKSHOP INTRODUCTION ix

PAPERS 1

Distributed Multi-threaded Verification of Java Programs 3
Perry R. James (Concordia University, Canada)
Patrice Chalin (Concordia University, Canada)
Leveda Giannas (Concordia University, Canada)
George Karabotsos (Concordia University, Canada)

JML and Aspects: The Benefits of Instrumenting JML Features with AspectJ 11
Henrique Rebêlo (UPE, Brazil)
Sergio Soares (UPE, Brazil)
Ricardo Lima (Universidade de Pernambuco, Brazil)
Paulo Borba (Federal University of Pernambuco, Brazil)
Márcio Cornélio (UPE, Brazil)

Total Correctness of Recursive Functions using JML4 FSPV 19
George Karabotsos (Concordia University, Canada)
Patrice Chalin (Concordia University, Canada)
Perry R. James (Concordia University, Canada)
Leveda Giannas (Concordia University, Canada)

Adapting JML to generic types and Java 1.6 27
David Cok (Eastman Kodak Company, USA)

Using Analysis Patterns to Uncover Specification Errors 35
William Heaven (Imperial College London, UK)
Alessandra Russo (Imperial College London, UK)

Extensions of the theory of observational purity and a practical design for JML 43
David Cok (Eastman Kodak Company, USA)
Gary T. Leavens (University of Central Florida, USA)

vi

Component-Based Design in Tako: A Case Study 51
Arun Sudhir (Virginia Tech, USA)
Gregory Kulczycki (Virginia Tech, USA)
Jyotindra Vasudeo (Hillcrest Laboratories, USA)

Integrating Math Units and Proof Checking for Specification and Verification 59

Hampton Smith (Clemson University, USA)
Kim Roche (Clemson University, USA)
Murali Sitaraman (Clemson University, USA)
Joan Krone (Denison University, USA
William F. Ogden (Ohio State University, USA)

Using Isabelle Theories to Help Verify Code That Uses Abstract Data Types 67

Jason Kirschenbaum (Ohio State University, USA)
Bruce Adcock (Ohio State University, USA)
Derek Bronish (Ohio State University, USA)
Paolo Bucci (Ohio State University, USA)
Bruce Weide (Ohio State University, USA)

CHALLENGE PROBLEM SOLUTIONS 75

Formalizing Design Patterns: A Comprehensive Contract for Composite 77

Jason Hallstrom (Ohio State University, USA)
Neelam Soundarajan (Ohio State University, USA)

Verifying the Composite Pattern using Separation Logic 83
Bart Jacobs (Katholieke Universiteit Leuven, Belgium)
Jan Smans (Katholieke Universiteit Leuven, Belgium)
Frank Piessens (Katholieke Universiteit Leuven, Belgium)

Permissions to Specify the Composite Design Pattern 89
Kevin Bierhoff (Carnegie Mellon University, USA)
Jonathan Aldrich (Carnegie Mellon University, USA)

Model Programs for Preserving Composite Invariants 95
Steve Shaner (Iowa State University, USA)
Hridesh Rajan (Iowa State University, USA)
Gary T. Leavens (University of Central Florida, USA)

vii

SAVCBS 2008
ORGANIZING COMMITTEE

Jonathan Aldrich (Carnegie Mellon University, USA)
Jonathan Aldrich is an assistant professor in the School of Computer Science at Carnegie
Mellon University. His research contributions include techniques for verifying object
interaction protocols and architectures, modular reasoning techniques for aspects and
stateful programs, and new object-oriented language models. He received his Ph.D. from
the University of Washington in 2003.

Mike Barnett (Microsoft Research, USA)
Mike Barnett is a Research Software Design Engineer in the Foundations of Software
Engineering group at Microsoft Research. His research interests include software
specification and verification, especially the interplay of static and dynamic verification.
He received his Ph.D. in computer science from the University of Texas at Austin in
1992.

Dimitra Giannakopoulou (RIACS/NASA Ames Research Center, USA)
Dimitra Giannakopoulou is a RIACS research scientist at the NASA Ames Research
Center. Her research focuses on scalable specification and verification techniques for
NASA systems. In particular, she is interested in incremental and compositional
model checking based on software components and architectures. She received
her Ph.D. in 1999 from the Imperial College, University of London.

Gary T. Leavens (School of EECS, University of Central Florida, USA)
Gary T. Leavens is a professor in the School of Electrical Engineering and Computer
Science at the University of Central Florida. He moved to Orlando in Fall 2007.
Previously he was a professor of Computer Science at Iowa State University. His
research interests include programming and specification language design and semantics,
program verification, and formal methods, with an emphasis on the object-oriented and
aspect-oriented paradigms. He received his Ph.D. from MIT in 1989.

Natasha Sharygina (CMU and SEI, USA; Lugano, Switzerland)
Natasha Sharygina is a senior researcher at the Carnegie Mellon Software Engineering
Institute and an adjunct assistant professor in the School of Computer Science at Carnegie
Mellon University, and an assistant professor at the University of Lugano. Her research
interests are in program verification, formal methods in system design and analysis,
systems engineering, semantics of programming languages and logics, and automated
tools for reasoning about computer systems. She received her Ph.D. from The University
of Texas at Austin in 2002.

viii

SAVCBS 2008
PROGRAM COMMITTEE

Robby (Department of Computing and Information Sciences, Kansas State
University, USA)
Robby chaired the program committee for SAVCBS 2008. He is an assistant professor
in the Department of Computing and Information Sciences, Kansas State University.
His research interests are in software specification, analysis, transformation, and
model-driven software development. He received his Ph.D. in Computer Science from
Kansas State University in 2004.

Workshop Program Committee:
Patrice Chalin (Concordia University, Canada)
Ivica Crnkovic (Mälardalen University, Sweden)
Cormac Flanagan (University of California, Santa Cruz, USA)
Alex Groce (Jet Propulsion Laboratory, USA)
Joseph Kiniry (University College Dublin, Ireland)
Eric Madelaine (INRIA, Sophia Antipolis, France)
Rupak Majumdar (UCLA, USA)
Darko Marinov (University of Illinois at Urbana-Champaign, USA)
Marius Minea ("Politehnica" University of Timisoara, Romania)
Mauro Pezzè (University of Lugano, Switzerland)
Arnd Poetzsch-Heffter (University of Kaiserlautern, Germany)
Andreas Rausch (T.U. Clausthal, Germany)
Natarajan Shankar (SRI, USA)
Yannis Smaragdakis (University of Oregon, USA)
Nigamanth Sridhar (Cleveland State University, USA)
Serdar Tasiran (Koc University, Turkey)

ix

SAVCBS 2008
WORKSHOP INTRODUCTION

This volume contains the proceedings of the Seventh Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2008), affiliated with the Sixteenth ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE 2008). SAVCBS 2008 took place in
Atlanta, Georgia, USA on November 9-10, 2008.

SAVCBS is a venue for discussing how formal (i.e., mathematical) techniques can be or should be used
to establish a suitable foundation for the specification and verification of component-based systems.
Component-based systems are a growing concern for the software engineering community. Specification
and reasoning techniques are urgently needed to permit composition of systems from components.
Component-based specification and verification is also vital for scaling advanced verification techniques
such as extended static analysis and model checking to the size of real systems. The workshop considers
formalization of both functional and non-functional behavior, such as performance or reliability.

SAVCBS aims to bring together researchers and practitioners in the areas of component-based software
and formal methods to address the open problems in modular specification and verification of systems
composed from components. The workshop seeks to bridge the gap between principles and practice on
this research area. The intent of bringing participants together at the workshop is to help form a
community-oriented understanding of the relevant research problems and to help steer formal methods
research in a direction that will address the problems of component-based systems. For example,
researchers in formal methods have only recently begun to study principles of object-oriented software
specification and verification, but do not yet have a good handle on how inheritance can be exploited in
specification and verification. Other issues are also important in the practice of component-based
systems, such as concurrency, mechanization and scalability, performance (time and space), reusability,
and understandability. SAVCBS aims to provide a venue to brainstorm about these and related topics to
understand both the problems involved and how formal techniques may be useful in solving them.

The goals of the workshop are to produce:

1. Contacts and discussion among researchers and practitioners, and
2. A web site that will be maintained after the workshop to act as a central clearinghouse for

research in this area.

We enthusiastically thank the authors of submitted papers; their quality contributions and participation
are what make a workshop like SAVCBS successful. We thank the program committee for their careful
reading and reviewing of the submissions. Our PC members have expertise in a wide variety of sub-
disciplines related to specification and verification of component-based systems; they include

x

established research leaders and promising recent Ph.D.s; they come from academia and esteemed
research institutes, and hail from all over the world.

We received 15 research paper submissions. All papers were reviewed by 3 PC members, with PC
member papers reviewed by 4 PC members. After PC discussions, 6 papers were accepted. As in
previous years, we accepted additional submissions as short and poster presentations, reflecting the role
of SAVCBS to promote discussion and incubation of new ideas for which a full paper may be premature;
this year, we accepted 3 papers for short presentations and 4 papers for poster presentations. Two of the
accepted poster presentations were withdrawn. Among all of the 15 papers submitted, 2 submissions
were rejected.

This year's program also includes a solution to a specification and verification challenge problem based
on the "composite pattern". A composite object is one that organizes objects into a tree structure in order
to represent a part-whole hierarchy. The point of the pattern is that clients have a uniform interface
whether they have a reference to a sub-tree (i.e., a composite object) or a leaf (a single object). The
focus of the challenge problem is to specify and verify an invariant that relates each composite node to
its children. This invariant is broken when a new child is added, and it remains broken until all the
transitive parents of the new node are traversed and adapted. The main challenge is to give a concise
specification, especially for the operation that re-establishes the invariant. After the reviewing process,
we accepted all 4 submissions to the challenge problem.

This year, we are pleased to have an invited presentation by Wolfgang Emerich of University College
London titled "Verification Challenges for Components in Federated Distributed Systems".

Robby (Program Committee Chair)

Jonathan Aldrich (Organizing Committee)
Mike Barnett (Organizing Committee, Challenge Problems Chair)
Dimitra Giannakopoulou (Organizing Committee)
Gary T. Leavens (Organizing Committee)
Natasha Sharygina (Organizing Committee)

SAVCBS 2008
PAPERS

1

2

Distributed, Multi-threaded Verification of Java Programs

Perry R. James, Patrice Chalin, Leveda Giannas, George Karabotsos
Dependable Software Research Group

Department of Computer Science and Software Engineering
Concordia University, Montreal, Canada
{perry,chalin,leveda,george}@dsrg.org

Abstract

Extended Static Checking (ESC) is a fully automated formal
verification technique and is generally quite efficient, as far as
verification tools go, but it is still orders of magnitude slower than
simple compilation. Verification in ESC is achieved by translat-
ing programs and their specifications into verification conditions
(VCs). Proof of a VC establishes the correctness of the program.
As can be imagined, proving VCs is computationally expensive:
While small classes can be verified in seconds, verifying larger
programs of 50 KLOC can take hours. To help address this lack of
scalability, we present the multi-threaded version of ESC4 and its
distributed prover back-end.

1. Introduction

Extended Static Checking (ESC) [14] is a fully automatic form
of static analysis that provides more checks than are available from
standard type checking but less than from Full Static Program Ver-
ification (FSPV) [11]. It does this by translating source code that
has been annotated with specifications to Verification Conditions
(VCs), which are boolean expressions in first-order logic. If the
VC corresponding to a given method can be discharged then the
method is correct with respect to its specification. In ESC, VCs are
discharged with the help of Automated Theorem Provers (ATPs).

Technology has progressed incredibly since the first ESC tools
were developed. We can formally verify non-trivial applications.
While small classes can be verified in seconds, larger programs of
50 KLOC can sometimes take hours to verify. We believe that this
is an impediment to widespread adoption of ESC: used to modern
incremental software development models, developers have come
to expect that the compilation (and ESC) cycles are very quick.

Copyright 2008 by Perry R. James, Patrice Chalin, Leveda Giannas, and
George Karabotsos.

In this paper we describe how ESC4 [11] is able alleviate this
problem. ESC4 is the ESC component of JML4 [10], a next-
generation research platform that provides an Eclipse-based In-
tegrated Verification Environment (IVE) for JML-annotated Java
[18]. It offers a full range of verification techniques, including
Runtime Assertion Checking (RAC), ESC, and FSPV. More back-
ground information is given in Section 2, and an overview of ESC4
is given in Section 3.

ESC4 [11] is able to verify programs faster than its predecessor,
ESC/Java2 [12], and other ESC tools such as Boogie [7]. Our
contributions are as follows:

• We take advantage of the modular nature of the verification
techniques underlying ESC [19] to analyze the methods in a
given compilation unit in parallel. This is possible because
the ESC analysis done for a given method is independent of
that for any others. (Section 4.1)

• We take advantage of ESC4’s proof strategies to develop
distributed discharging so that non-local resources can be
used to reduce the time to verify a set of classes. (Sec-
tion 4.2)

• The previous two points are achieved by means of OS inde-
pendent “proof services”: If an executable version of a given
prover is not available for a given platform, that prover can
be exposed through a service and used remotely as if it were
local. (Section 4.3)

While tools exist for verifying distributed and multi-threaded
code, we have not found another verifier that makes use of these
techniques to speed up its own analysis. We believe that ESC4 is
the first fully automatic static-verification tool to do so.

2. Background

ESC4 is a from-scratch rewrite that builds on the lessons learned
from earlier projects, principally ESC/Java2. It is part of the JML4
project.

3

2.1 ESC/Java and ESC/Java2

ESC/Java2 [12] is the successor to the earlier ESC/Java project
[14], the first ESC tool for Java. ESC/Java’s goal was to provide
a fully automated tool to point out common programming errors.
The cost of being fully automated and user friendly required that it
be—by design—neither sound nor complete. Soundness was lost
by not checking for some kinds of errors (e.g., arithmetic overflow
of the integral types is not modeled because it would have required
what was felt to be an excessive annotation burden on its users).
ESC/Java provides a compiler-like interface, but instead of trans-
lating the source code to an executable form, it transforms each
method in a Java class to a VC that is checked by an ATP. Re-
ported errors indicate potential runtime exceptions or violations of
the code’s specification. “The front end produces abstract syntax
trees (ASTs) as well as a type-specific background predicate for
each class whose routines are to be checked. The type-specific
background predicate is a formula in first-order logic encoding
information about the types and fields that routines in that class
use” [14]. The ESC/Java2 project first unified the original pro-
gram’s input language with JML before becoming the platform
developed by many research groups.

2.2 JML4

First-generation tools such as ESC/Java and ESC/Java2 are stand-
alone command-line applications that use their own custom Java-
compiler front ends to produce an AST. Since the research interest
of the maintainers of these tools is JML, and not the underlying
Java font end, these tools have not kept up with the latest develop-
ments of the Java language.

After much discussion, both within our own research group and
with other members of the JML community, it was decided that
basing a next-generation JML tooling framework on the Eclipse
JDT was the most promising approach.

The result is JML4 [10], a Integrated Verification Environment
(IVE) for JML-annotated Java that is built atop the Eclipse Java
Development Tooling (JDT).

JML4’s first feature set enhanced Eclipse with scanning and
parsing of nullity modifiers (nullable and non-null), enforcement
of JML’s non-null type system (both statically and at runtime) [9]
and the ability to read and make use of the extensive JML API
library specifications. These include

• recognizing and processing JML syntax inside specially marked
comments, both in .java files as well as .jml files,

• storing JML-specific nodes in an extended AST hierarchy,

• statically enforcing a non-null type system, and

• generating runtime assertion checking (RAC) code.

Since then, work has been underway by several research groups
to flesh out JML4 so that it can process all of JML language-level
0 [18].

Figure 1. Compiler phases for JML4

The framework has also been enhanced to support static analy-
sis [11], including both ESC and Full Static Program Verification
(FSPV). The main compiler phases can be seen in Figure 1.

3. Overview of ESC4

ESC4 [11, 16] is the ESC component of JML4 and is a ground-
up rewrite of ESC. Its VC generation is based on Barnett and
Leino’s innovative and improved approach to a weakest-precondition
semantics for ESC [8]. One of the most significant results of this
approach is that the size of the VCs produced are linear in the size
of the method being analyzed, where earlier approaches generate
VCs whose size can be exponential in the worst case.

Figure 2 shows the data flow in ESC4. The fully resolved and
analyzed AST produced by the JDT’s front end is taken as input.
Only those with no front-end-reported errors are processed fur-
ther by ESC4. The source AST is first converted to a control-flow
graph (CFG) as described in [8]. This CFG is similar to Dijkstra’s
Guarded Command Language [13], except that the guards have
been replaced with assume statements and the choice operator has

4

Figure 2. Data flow in ESC4

been replaced with gotos. A VC for each source method is gen-
erated from this intermediate form. ESC4’s Proof Coordinator is
responsible for discharging the VC or reporting why it cannot be
discharged. A post-processor reports unprovable VCs to the user
through the IVE as failed assertions and attaches the results of the
analysis to the original AST. Depending on the compiler options
in effect, the code-generation phase may make use of these results
to optimize runtime checks.

3.1 Prover back-end

A class diagram for the Prover back-end is shown in Figure 3.
A Prover Coordinator is used to discharge VCs. It obtains a proof
strategy from a factory whose behavior is governed by compiler
options. The default strategy is a sequence of two strategies: The
first tries to prove the entire VC using a single ATP. If it fails, the
second, ProveVcPiecewise, is used. Both use adapters to access
the theorem provers. These adapters hide the mechanism used to
communicate with the provers. They use visitors to pretty print the
VC to produce input for each ATP’s native language. To eliminate
wasting time re-discharging a previously discharged VC (or sub-
VC), the strategies can make use of a VC cache, which is persisted.

ProveVcPiecewise implements 2D VC Cascading: VCs are
broken down into sub-VCs, giving one axis of this 2D technique,
and proofs are attempted for each sub-VC using each of the sup-
ported ATPs, giving the second axis.

The conjunction of the set of sub-VCs is equivalent to the orig-
inal VC. Discharging all of the sub-VCs shows that the method is
correct with respect to its specification. Any sub-VCs that cannot

Figure 3. ESC4’s prover back-end

be discharged reflect either limitations of the provers or faults in
the source.

Currently, three ATPs are used: Simplify, CVC3, and Isabelle/HOL.
The first two of these are much faster than Isabelle, but Isabelle is
able to discharge VCs containing many constructs that the others
are not. After trying both Simplify and CVC3 on a sub-VC, we
try to prove its negation before resorting to Isabelle. Only after all
other attempts fail is Isabelle invoked.

4. Faster ESC

Applying ESC to industrial-scale applications has been diffi-
cult because of the time existing tools require. In this section we
highlight the enhancements that have been added to ESC4 that re-
duce the time needed to verify JML-annotated Java code.

4.1 Multi-threading

Using the arguments in Leino’s thesis, Toward Reliable Mod-
ular Programs [19], it can be shown that each JML-annotated
method in a system can be verified independently of the others.
Where there are no dependencies, it is easy to introduce concur-
rency.

First-generation tools such as ESC/Java [14] and ESC/Java2 [12]
were written before multi-threaded and multi-core computers were
commonplace. Multi-threading operating systems were already
available then, but writing the code to use them would have only
increased its complexity without making the processing any faster.
This encouraged a serialized approach to the problem, even though
the modular nature of ESC is inherently parallelizable. Today,

5

however, multiple-core machines are becoming the norm. Each
thread could, in theory, run on its own core and thus reduce the
time needed to verify a system to the most time needed to verify
a single method. While the number of cores needed to achieve
this level of speedup will not be available in the foreseeable fu-
ture, having such small-grained units of work should make effi-
cient scheduling easier for the operating system and/or virtual ma-
chine.

Modifying ESC4 to take advantage of ESC’s inherent concur-
rency simply required adding a thread pool: Instead of processing
each method sequentially, we packaged the processing (the body
of an inner loop) as a work item and added it to the thread pool’s
task list. Finally, we added a join point to wait until all of the work
for a compilation unit’s methods finished before ending the ESC
phase for it. This last step is necessary because the results of ESC
may be used during code generation.

Version 3.4 of the Eclipse Java compiler added the ability to use
separate threads to compile individual source files concurrently
[3]. Since ESC4 and JML4 are built on top of this compiler, all
we had to do to gain this benefit was to ensure that JML4 is thread
safe.

The vast majority of the time doing ESC is spent discharging
VCs. Specifically, it is the underlying theorem provers that use the
most time. For this reason, most ESC tools only make use of a
single ATP per verification session. As mentioned above, ESC4
uses 3 by default, and 2D VC Cascading can cause those 3 to be
invoked multiple times for each method. Just as the methods in a
class can be verified in parallel, the sub-VCs for a method can be
discharged in parallel. We just need to put a join point so that we
know when the processing of a method’s VC has finished.

This gives ESC4 3 layers of parallelism: source files, methods
within those files, and sub-VCs for those methods.

4.2 Distributed VC Processing

Once we were able to take advantage of all of the CPU re-
sources on a local machine, it became interesting to ask if we could
make use of resources on remote machines. The design of ESC4’s
Prover Coordinator led to quick discovery of a few deployment
scenarios for the distributed discharging of VCs. It was easy to
support distributed provers by adding new strategy communica-
tion infrastructure, as shown in Figure 4.

1. Prove whole VC remotely. The first deployment scenario
offloads the work of the Prover Coordinator for an entire
method. This was done by developing a new subclass of
IProverStrategy that sends the VC generated for a method
to a remote server for processing. (see Figure 5). A Proof
Coordinator is instantiated on the remote server along with
its strategies. We initially had it behave like a local Prover
Coordinator and discharge the VC itself with its own local
provers.

2. Prove sub-VCs remotely. A second deployment scenario
was to split the VC into sub-VCs and send each of them
off for remote discharging. This was done by extending

Figure 5. Deployment

the ProveVcPiecewise strategy discussed in Section 3.1 and
having it use remote services to discharge the sub-VCs in
parallel.

3. Doubly Remote Prover Coordinator. Combining the two
previous approaches, so that the remote Prover Coordinator
itself delegates the responsibility for discharging the sub-
VCs to remote services by using the ProveVcPiecewiseDis-

tributed strategy, provides yet another alternative. A de-
ployment view can be seen in Figure 5.

Scenario 1 uses the least bandwidth, since only the original VC
is transmitted. Scenario 2 uses the next least, although it can be
exponentially more than 1. Scenario 3 uses the most, the sum of 1
and 2, but it is split into two groups: the same is used between the
the local machine and the remote Prover Coordinator as in 1, and
between the remote Prover Coordinator and its servers as in 2.

Splitting a VC into sub-VCs can cause exponential growth in
size, since these sub-VCs each represent a single acyclic path from
the method’s precondition, through its implementation to an asser-
tion.

As a result, scenarios 1 and 3 would be preferred over 2 when
the remote machines are not on the same local area network. Sce-
nario 3 can be thought of as providing the best parts of the other
two: low bandwidth requirements to reach the prover service, and
2D VC Cascading.

In addition, scenario 3 is the most likely to be used when a large
farm of servers is available or when the Prover Coordinator service
provides a façade that hides load balancing and other details from
ESC4.

4.3 Prover service

Independent of the strategy used, the proving resources may be
local or remote. The initial prover adapters communicated with lo-
cal resources using Java’s Process mechanism. After facing some
difficulties installing some provers on all of our development plat-
forms, we hit on the idea of Prover Services.

6

Figure 4. ESC4’s distributed back-end

The adapters that use the provers locally can be taken as base
classes to subclasses that access them remotely. Part of the purpose
of the adapter classes is to hide the interface with the provers. Ap-
plying the same concept lets us hide whether the prover is hosted
locally or on a remote machine.

This has the advantage of making the provers OS independent.
If a prover is needed on an OS for which there is no executable, it
can be hosted on another machine with the appropriate OS and an
adapter can hide the extra communication needed to access it.

5. Validation

To confirm that our approach produces speedups, we performed
some preliminary timing tests. The source tested was a single
Java class with 51 methods. For this code, ESC4 produced 235
VCs. Table 1 shows the number of times each of provers was in-
voked. Simplify was able to discharge over 80% of the VCs. It
was also able to show as false almost 80% of those that were in-
deed false (23 + 6). In this sample, CVC3 was not able to prove
any of the VCs that Simplify was also unable to prove, and Isabelle
was needed for just over 5% of the original VCs.

We ran the test with two deployment scenarios, both based on
the Doubly Remote Prover Coordinator described in Section 4.2.
In the first, the Prover Coordinator was hosted on the same PC as
ESC4. In the second, it was hosted on a faster remote machine.

ESC4 was run on a 2.4 GHz Pentium 4. The Prover Coordina-
tor was hosted either locally to the ESC4 machine or on a 3.0 GHz
Pentium 4. Neither of these machines’ CPUs is hyperthreaded.

The provers were hosted on servers, each with a 2.4 GHz Quad-
core Xeon processor. The timing results are shown in Table 2 and
Figure 6. Each entry in the last two columns is the average of
three test runs, which were made after an initial run with the con-
figuration being tested to remove initialization costs. Even so, the
timings varied from 0.5 s to 1.6 s. Network usage may account for
some of this variation.

For comparison, running the test with the Prover Coordinator
and provers were all on the same PC as ESC4 took 72 s. It should
be noted that when using remote provers, the CPU of the local ma-
chine stayed at 100% during the first few seconds and then dropped
to below 20% while gathering the results. When the Prover Coor-
dinator was on a separate machine, that machine’s CPU was never
went above 50%.

The data gathered indicate that there is little difference be-
tween hosting the Prover Coordinator locally or remotely. We had
thought that hosting it remotely would allow the VCs to reach the
provers faster, thus giving a greater speedup. Surprisingly, as more
processing cores were made available, it was actually faster to send
the VCs directly. Further testing will have to be done to confirm
this. For the sample shown, the timing difference between the two
scenarios is within the range of error.

A function from the number of processors used to the time
taken to analyze a given piece of code can be derived by apply-
ing simple algebra to Amdahl’s law [6, 17]. It should have the
form

t = C1 +
C2

n
,

7

Table 1. VCs discharged with provers
Prover No. VCs No. Proved (%)
Simplify 235 193 82
CVC3 42 0 0
Negationa 42 23 55b

Isabelle 19 13 68
failed 6

where C1 is the time taken to complete the portion that cannot be
serialized and C2 is the time for the portion that can. Replacing
n with 4 and 8 cores and t with the times for the remote Prover
Coordinators gives a system of 2 linear equation with 2 unknowns.
Solving this system gives

t = 7.4+
76.0

n
The experimental result of 13.3 s for 12 cores is within the error
range of the predicted time of 13.7 s.

These initial results with up to 12 cores suggest that over 90%
of the ESC analysis is amenable to parallelization. One question
that future study will have to address is, “Can the 7.4 s that was
not parallelized by using distributed provers be made paralleliz-
able by hosting ESC4 on a multi-core machine?” Contained in
the serial part is the JDT’s front-end generation of the AST and
ESC4’s generation of VCs from it.

After adding 12 cores, the serial portion takes longer than the
portion that is parallelized. We did not test the generation of VCs
on a multi-core system. Doing so may show that at least part, and
maybe even most, of this segment is parallizable.

6. Related Work

As noted in the introduction, we have not been able to find other
existing tools that make use of distributed or parallel processing to
enhance fully automatic program verification. Two related aspects
of the work presented here have been previously examined: multi-
threaded, distributed compilation and interactive, distributed theo-
rem proving for program verification. These are discussed in the
following subsections.

6.1 Compilation

As mentioned in Section 4.1, Eclipse 3.4 supports mutithreaded
compilation of Java programs. The Gnu make command gmake has
a -jobs[==n] option that executes up to n build tasks concurrently.
If an integer n is not supplied then as many tasks are started as
possible [2]. Microsoft’s Visual C++ compiler has the “Build with
Multiple Processes” option (/MP) that launches multiple compiler
processes. If no argument is given, the number of effective pro-
cessors is used. The number of effective processors is the number
of threads that can be executed simultaneously and considers the
number of processors, cores per processor and any hyperthreading
capabilities.

Several open-source projects and commercial products are avail-
able that can distribute the tasks in a build process to networked

Table 2. Timing results
Time (s) with

No. No. Prover Coordinator
servers cores local remote

1 4 26.6 26.4
2 8 16.9 16.2
3 12 12.8 13.3

machines. These only launch a process on a remote machine and
do not make use of a service-based approach. Open-source projects
include distcc [4] and Icecream [1]. Xoreax sells a product called
IncrediBuild [5] that coordinates distributed builds from within
with Microsoft’s VisualStudio.

6.2 Interactive, distributed theorem prov-
ing for program verification

Vandevoorde and Kapur describe the Distributed Larch Prover
(DLP), “a distributed and parallel version of LP, an interactive
prover” [20]. Like LP, DLP is not an ATP, as users must guide
the proof-discovery process. It achieves parallelism by allowing
users to simultaneously try several techniques to prove a subgoal.
This is done by distributing the attempts among computers on a
network. Some automation is provided by heuristics that chose
the inference methods to be launched in parallel.

Hunter et al. attempt to use distributed provers to increase the
adoption of formal techniques in industry [15]. Like the DLP, their
approach requires interaction, but their goal is to reduce that in-
teraction. Reducing the amount of user interaction would reduce
the cost of using formal tools to prove software correct and thus
remove one of the impediments to its more widespread use. A
user interacts with software agents that try to automatically prove
a goal. User interaction is needed when one of these agents is
unable to automatically prove subgoals.

7. Conclusion

Applying ESC to industrial-scale applications has been diffi-
cult because of the time required. Invoking a theorem prover for
every method in a system is computationally expensive.

We attacked this by applying the “divide and conquer” strategy
to allow processing by multiple computing resources, both local
and remote. Generating and discharging the VC for Java methods
is a problem that can be easily decomposed into many indepen-
dent tasks. This makes it very amenable to multi-threading and
distributed processing.

Given the power of today’s desktop PCs, most of an organi-
zation’s desktop computers’ CPUs are under-utilized. Installing
a distributed proving service on these machines would allow the
organization’s developers to tap into existing resources without re-
quiring the acquisition of additional hardware.

8

Figure 6. Time (s) vs. Cores

The Eclipse JDT compiler is able to process multiple source
files in parallel. We showed how we modified ESC4 to support
verifying multiple methods in parallel. Similarly, a method’s sub-
VCs are discharged in parallel. Because of the potential reduction
in time to verify a system, it became useful to explore distributed
prover resources. This in turn led to exposing individual provers as
distributed resources. All of these combined make the verification
of Java programs scalable: The time ESC4 needs to verify a sys-
tem should be inversely proportional to the CPU resources made
available to it.

7.1 Next steps

We modified ESC4 to take advantage of many local and non-
local computing resources. The implementation was done to quickly
get a usable and stable framework in place, without much regard
for optimization. While we are pleased with the initial results,
there are ample opportunities for improvement. These include us-
ing more efficient communication mechanisms to interact with re-
mote resources. Load balancing and other techniques from service-
oriented architectures are obvious candidates for consideration.

Proof-status caching, as described in [11], would also improve
performance during iterative development since only methods that
were changed would need to be re-verified.

After making the obvious enhancements, we plan to conduct
timing studies to evaluate the deployment scenarios mentioned in
this paper, varying the number and kinds of local and remote re-
sources as well as the characteristics (speed and reliability) of the
network.

Acknowledgements

We gratefully acknowledge Stuart Thiel’s configuration of the
servers and other assistance in gathering data for the Validation.

8. References
[1] Icecream - openSUSE, 2006. Homepage at

http://en.opensuse.org/Icecream.

[2] Parallel - GNU ‘make’, 2006. Homepage at
http://www.gnu.org/software/automake/man-

ual/make/Parallel.html.
[3] Bug 142126 - utilizing multiple CPUs for Java compiler,

2008. Homepage at
https://bugs.eclipse.org/bugs/show_bug.-

cgi?id=142126.
[4] distcc: a fast, free distributed C/C++ compiler, 2008.

Homepage at distcc.org.
[5] IncrediBuild by Xoreax Software - Distributed Visual

Studio Builds, 2008. Homepage at
http://www.xoreax.com/solutions_vs.htm.

[6] AMDAHL, G. M. Validity of the single processor approach
to achieving large scale computing capabilities. In
Proceedings of AFIPS Conference (San Francisco, CA,
1967), pp. 79–81.

[7] BARNETT, M., CHANG, B.-Y. E., DELINE, R., JACOBS,
B., AND LEINO, K. R. M. Boogie: A modular reusable
verifier for object-oriented programs. In Formal Methods for
Components and Objects (FMCO) 2005, Revised Lectures
(2006), vol. 4111 of LNCS, Springer-Verlag, pp. 364–387.

[8] BARNETT, M., AND LEINO, K. R. M.
Weakest-precondition of unstructured programs. In PASTE
’05: The 6th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering (New
York, NY, 2005), ACM Press, pp. 82–87.

[9] CHALIN, P., AND JAMES, P. R. Non-null references by
default in Java: Alleviating the nullity annotation burden. In
Proceedings of the 21st European Conference on
Object-Oriented Programming (ECOOP’07) (Berlin,
Germany, July-August 2007). to appear.

[10] CHALIN, P., JAMES, P. R., AND KARABOTSOS, G. An
integrated verification environment for JML: Architecture
and early results. In SAVCBS ’07: Proceedings of the 2007
Workshop on Specification and Verification of
Component-Based Systems (2007), pp. 47–53.

[11] CHALIN, P., JAMES, P. R., AND KARABOTSOS, G. JML4:
Towards an industrial grade IVE for Java and next
generation research platform for JML. In VSTTE ’08:
Proceedings of the 2008 Conference on Verified Systems:
Tools, Techiniques, and Experiments (2008).

[12] COK, D. R., AND KINIRY, J. R. ESC/Java2: Uniting
ESC/Java and JML. In Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices (2005),
vol. 3362/2005 of LNCS, Springer Berlin, pp. 108–128.

[13] DIJKSTRA, E. W. A Discipline of Programming.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1976.

[14] FLANAGAN, C., LEINO, K. R. M., LILLIBRIDGE, M.,
NELSON, G., SAXE, J. B., AND STATA, R. Extended static
checking for java. In PLDI ’02: Proceedings of the ACM
SIGPLAN 2002 Conference (New York, NY, 2002), ACM
Press, pp. 234–245.

[15] HUNTER, C., ROBINSON, P., AND STROOPER, P.
Agent-based distributed software verification. In ACSC ’05:
Proceedings of the Twenty-eighth Australasian Conference
on Computer Science (Darlinghurst, Australia, 2005),
pp. 159–164.

[16] JAMES, P. R., AND CHALIN, P. Enhanced extended static
checking in JML4: Benefits of multiple-prover support. In

9

ACM SAC 2009 (24th Annual ACM Symposium on Applied
Computing) (2009).

[17] KRISHNAPRASAD, S. Uses and abuses of Amdahl’s law.
The Journal of Computing in Small Colleges 17, 2 (2001),
288–293.

[18] LEAVENS, G. T., POLL, E., CLIFTON, C., CHEON, Y.,
RUBY, C., COK, D. R., MÜLLER, P., KINIRY, J. R., AND
CHALIN, P. JML reference manual, 2008. Available at
http://www.jmlspecs.org.

[19] LEINO, K. R. M. Toward reliable modular programs. PhD
thesis, California Institute of Technology, Pasadena, CA,
1995.

[20] VANDEVOORDE, M. T., AND KAPUR, D. Distributed
Larch Prover (DLP): An experiment in parallelizing a
rewrite-rule based prover. In RTA ’96: Proceedings of the
7th International Conference on Rewriting Techniques and
Applications (London, UK, 1996), Springer-Verlag,
pp. 420–423.

10

JML and Aspects: The Benefits of Instrumenting
JML Features with AspectJ

Henrique Rebêlo
Sérgio Soares

Department of Computing and
Systems

University of Pernambuco
Recife, Pernambuco, Brazil
{hemr,sergio}@dsc.upe.br

Ricardo Lima
Paulo Borba

Informatics Center
Federal University of

Pernambuco
Recife, Pernambuco, Brazil
{rmfl,phmb}@cin.ufpe.br

Márcio Cornélio
Department of Computing and

Systems
University of Pernambuco

Recife, Pernambuco, Brazil
{marcio}@dsc.upe.br

ABSTRACT
The Java Modeling Language (JML) is used to specify de-
signs of Java classes and interfaces. To this end, JML has a
rich set of features for specifying methods, including specifi-
cation inheritance. Thus, the most fundamental motivation
for employing JML is to improve functional software cor-
rectness of Java applications, and helps to reduce corrective
maintenance effort of those applications. Previously, we pre-
sented a new JML compiler (ajmlc) that generates aspects
(AspectJ) for contract enforcement. This paper describes
the main reasons to instrument JML features with AspectJ,
with particular emphasis on issues related to instrumenta-
tion code size — we also defined guidelines to use ajmlc
that always generate compact instrumented code than the
classical JML compiler (jmlc). In addition, we discuss the
analogy between JML and AspectJ, and how the ajmlc also
deals with Java ME applications, which is not possible with
jmlc. Moreover, we implemented other JML features such
as the new the new assertion semantics based on “strong
validity” presented elsewhere. The paper includes studies
to compare the final code generated by ajmlc with the one
produced by jmlc. Results indicate that the overhead in
code size produced by our compiler is very small when us-
ing the proposed guidelines, which is essential for Java ME
applications.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Aspect-Oriented
Programming ; D.3.2 [Programming Languages]: Lan-
guages Classifications—JML

General Terms
Languages, Experimentation

Keywords
Design by contract, JML language, JML compiler, JML new
assertion semantics, aspect-oriented programming, AspectJ,
AspectJ weaving

1. INTRODUCTION
The Java Modeling Language (JML) [19, 18] is a formal

behavioral interface specification language for Java. The
JML compiler (jmlc) reads a Java program annotated with

JML specification and produces instrumented bytecodes. Such
additional code checks the correctness of the program against
restrictions imposed by the JML specifications.

In a previous work [24], we proposed a new JML compiler
known as ajmlc (AspectJ JML compiler). The ajmlc em-
ploys AspectJ [14, 15] (generative programming) to imple-
ment JML features (specifications) without generics. The
AspectJ compiler translates such features into an instru-
mented bytecode, which performs a runtime checking of
those features. The ajmlc generates code compliant with
both Java SE and Java ME [23] applications. Similarly,
Jose [10] is a tool that uses AspectJ to instrument Java pro-
grams. Jose tool adopts a different specification language
to specify Java programs. Thus, its semantics is different
from that of JML. However, the instrumentation provided
by the Jose tool is not complaint with Java ME applications,
whereas ajmlc does. Moreover, the language JCML [9] is a
subset of the JML language targeting Java Card applica-
tions. Different from ajmlc, the JCML compiler does not
use Aspect Oriented Programming. As with the original
JML compiler, it instruments JML features using standard
Java code with a few restrictions imposed by the Java Card
platform.

Based on our previous results and the new results ad-
dressed by this paper, we try to answer properly the follow-
ing research questions:

• Does AOP represent the JML features (specifications)
conveniently?

• When is it beneficial to aspectize JML features in re-
lation to both source and bytecode instrumentation?
When it is not?

• How to check JML features during runtime?

• How to modify properly the code generation of the
JML compiler for generating aspects that support run-
time assertion checking of JML features in Java ME
applications (in a constrained environment)?

• What is the relationship between the generated as-
pects?
What is the order of aspects generation to provide an
effect like the wrapper approach present in the classical
JML compiler (jmlc)?

11

The main contributions of this paper are: (1) answering
the above research questions throughout the paper; (2) de-
scribing the analogy between JML and aspects (AspectJ);
(3) extending ajmlc to support the new assertion semantics;
(4) generating instrumented bytecode to verify constrained
methods during class initialization (this feature is not sup-
ported by jmlc); (5) generating instrumented bytecode when
necessary (this feature is also not supported by jmlc); (6)
Conducting study between ajmlc with two different AspectJ
weavers and the original JML compiler to investigate the
overhead in the code size.

This paper is organized as follows. The next section 2
presents the background of Java Modeling Language (JML).
Section 3 describes the ajmlc compiler as well as its new
issues addressed. Some results of conducted studies between
our and original JML compiler are discussed in Section 4.
Section 5 discusses related work. The last section contains
the conclusions and points directions for future work.

2. JML: BACKGROUND
The Java Modeling Language (JML) [19, 18] is a specifi-

cation language to describe the expected behavior of Java
modules — Java modules are classes and interfaces. It com-
bines the Design By Contract (DBC) approach [21] of Eif-
fel [22] and the model-based specification approach of the
Larch family [12] of interface specification languages, with
some elements of the refinement calculus. Hence, JML spec-
ifications contains pre-, postconditions, and invariant pred-
icates based on Hoare-style [13].

Java comments beginning with the symbol @, which are
interpreted as JML annotations (see example in Figure 1).
One can use JML to specify the behavior of types (type spec-
ifications) or methods (method specifications). An invariant

clause is a type specification. For instance, the predicate I

denotes an invariant condition that must be true after the
execution of all constructors of the class Foo. Moreover, this
predicate is supposed to be true before and after the exe-
cution of all methods of the class Foo. On the other hand,
requires, ensures, and signals clauses represent method
specifications. Requires specify the method precondition,
whereas ensures and signals are respectively used to define
the normal and exceptional postconditions of the method
foo.

pub l i c c l a s s Foo {
//@ inva r i an t I ;
/∗@ r eq u i r e s P ;

@ ensure s Q;
@ s i g n a l s (FooException e) R(e) ;
@∗/

pub l i c void foo () throws FooException
{ . . . }

}

Figure 1: Example of JML specification.

2.1 JML assertion semantics
The current JML compiler implements the assertion se-

mantics based on “strong validity” proposed by Chalin’s
work [25]. Thus, instead of using the classical two-valued
logic in the older approach proposed by Cheon’s work [4],

the JML compiler uses now a three-valued logic semantics.
In this way all logical operators behave similarly in both
Java and JML. Using the new semantics, an assertion can
be satisfied (true), violated (false) or invalid (when evalu-
ation does not complete successfully). More details about
the new assertion semantics, refer to [25].

2.2 The JML compiler
The JML compiler (jmlc) [3] was developed at Iowa State

University. It is a runtime assertion checking compiler that
converts JML annotations into automatic runtime checks.

Design
Jmlc is built on top of the MultiJava compiler [6]. It reuses
the front-end of existenting JML tools [2] to verify the syn-
tax and semantics of the JML annotations and produces a
typechecked abstract syntax tree (AST). The compiler intro-
duces two new compilation passes: the “runtime assertion
checker (RAC) code generation”; and the “runtime asser-
tion checker (RAC) code printing”. The former modifies
the AST to add nodes for the generated checking code; the
latter writes the new AST to a temporary Java source file.

For each Java method three assertion methods are gen-
erated into a temporary Java source file: one for precon-
dition checking, and two for postcondition checking (for
normal and exceptional termination). They are invoked
before method call (precondition checking), after method
call (normal postcondition checking) and when an excep-
tion is thrown by the called method (exceptional termina-
tion checking). Finally, instrumented bytecode is produced
by compiling the temporary Java source file through the
MultiJava compiler. The instrumented bytecode produced
contains assertion methods code embedded to check JML
contracts at runtime.

Wrapper approach
The wrapper approach [3, 4.1.3] is a strategy used by the
JML compiler to implement the assertion checking. Each
method is redeclared as private with a new name. Then,
a method known as wrapper method is generated with the
name of the original method. Its surrounds the original
method (now with a new name) with the assertion meth-
ods. Hence, client method calls the wrapper method, which
is responsible for calling the original method with appropri-
ate assertion checks (e.g., precondition checking). The JML
compiler is responsible for controlling the order of execution
of assertion methods.

Figure 2 depicts the wrapper approach strategy. If a
client calls the original method, the call goes to the wrap-
per method. In this way, the precondition assertion method
is the first assertion method called, and then only if the
precondition is satisfied, it calls the original method. Af-
ter calling the original method, if it terminates normally,
the normal postcondition assertion method is called; other-
wise, the exceptional postcondition assertion method will be
called.

3. AJMLC: A JML COMPILER TARGET-
ING ASPECTJ CODE

In this section we present the analogy of JML and AspectJ
aspects. We explain the reason to aspectize JML features.
The remaining reasons only will be understood in the Sec-

12

Wrapper
method

Normal
postcondition

method

Original
method

Precondition
method

Exceptional
postcondition

method

Normal termination

Abnormal termination

Figure 2: Wrapper approach strategy.

tion 4 with the studies results. Furthermore, we concentrate
on new assertion semantics verification recently provided by
the ajmlc, the reason that ajmlc can be used with Java ME
applications, and among other issues. Some implementation
details of our compiler will also be considered. A detailed
implementation mechanism has already been available in a
previous work [24].

3.1 AspectJ Overview
AspectJ [14, 15] is a general purpose aspect-oriented ex-

tension to Java. The aspect-oriented constructs support the
separate definition of units of a program which affect (cross-
cut) other concerns. Such units are called crosscutting con-
cerns. These concerns often cannot be cleanly decomposed
from the rest of the system in both the design and implemen-
tation, and result in either scattering or tangling code, or
both. Thus, this separation of concerns allows better mod-
ularity, avoiding tangled code and code spread over several
units. Consequently, the system maintainability is also in-
creased. Programming with AspectJ explores both objects
and aspects concepts to separate concerns. Object-oriented
programming can be used when the concern are well mod-
eled as objects. If it is not the case, concerns that cross-
cut the objects are separated using units called aspects, and
those are composed with the objects of a system by a process
called weaving. By weaving AspectJ aspects with standard
Java code, we obtain a new AspectJ application.

The main construct of the AspectJ [14, 15] language is
called aspect. Each aspect defines a functionality that cross-
cuts others (crosscutting concerns) in a system. An aspect
can declare attributes and methods, and can extend another
aspect by defining concrete behavior for some abstract dec-
larations. An aspect can affect both static and dynamic
structure of Java programs. The static structure might be
changed by introducing new methods and fields to an ex-
isting class, as well as converting checked exceptions into
unchecked exceptions, and changing the class hierarchy. The
dynamic structure is changed by intercepting specific points,
called join points, of the program execution flow and adding
behavior before, after, or around the join point.

3.2 Ajmlc design
Similarly to Cheon [3], we reuse the front-end of the JML

compiler, known as JML Type Checker [2]. Then, we mod-

ify the code generation part of the original JML compiler1

to introduce other two new compilation passes: the Aspect
RAC code generation; and the Aspect RAC code print-
ing. The former produces assertion checker code from the
typechecked AST, whereas the latter writes the assertion
checker code to a temporary Aspect source file. We traverse
the typechecked AST generating Aspect Assertion Methods
(AAM) for each Java method in a temporary Aspect source
file: one for precondition checking, and another for both
kinds of postconditions in JML (normal and exceptional).
Eventually (when necessary) we also generate AAM for both
kinds of invariants in JML (instance and static). These
AAM are compiled through the AspectJ compiler (ajc or
abc [1]), which weaves the AAM with the Java code. The
result, unlike jmlc, is an instrumented bytecode compliant
to both Java SE and Java ME applications.

3.3 Ajmlc runtime environment
The instrumented bytecode produced by the ajmlc con-

tains not only its normal content (usually generated by javac),
but also has embedded code (assertion methods) to checks
JML’s features during runtime.

In order to run and check those assertion methods of the
bytecode generated by ajmlc, we use part of the AspectJ
runtime environment library (answer to research question 3
discussed in Section 1). We need only part of the AspectJ
library, because only a few AspectJ constructs must be used
during runtime. This is due to compatibility needed by the
instrumented code to deal with Java ME applications. For
more information about ajmlc with Java ME applications
and its required AspectJ library refer to section 3.7 and 4.

3.4 The analogy between JML and Aspects
As pointed out by Filman and Friedman [11], the Figure

3, is an example of quantification. Aspect-oriented program-
ming languages such as AspectJ [14, 15] allow programmers
to define quantified programmatic assertions.

To this end, AspectJ provides property-based crosscutting
to affect from small to a large number of Java modules (e.g.,
classes, interfaces, and methods). To perform such property-
based crosscutting, by using AspectJ, one can use a feature
known as wildcarding (∗) in pointcut designators. Consider
the following example:

execution(* T.*(..))

This AspectJ construct identifies executions to any method
(with any return and any parameters type) defined on type
T.

The invariants analogy
The behavior of quantification can be addressed similarly
by using JML invariants. For example the JML instance
invariants must be satisfied by all instance methods of the
current type and also subtypes (quantification). In Figure 3,
we have a behavior of instance invariant checking by using
aspects (note the use of wildcards). On the other hand, if
we use pure JML, the following clause replaces both before

and after AspectJ advices [14, 15] depicted in Figure 3.

//@ instance invariant i == 10;

1Part of the code of the original JML compiler
that we used to implement the ajmlc was based
on the JML 5.5 version available to download at
http://sourceforge.net/projects/jmlspecs.

13

http://sourceforge.net/projects/jmlspecs

As mentioned before, this JML clause defines a quantifi-
cation property (i == 10) that must hold by all instance
methods in type T and also in its subtypes (see Figure 3).

Behavioral subtyping analogy
Regarding specification inheritance in JML, instance meth-
ods with specification cases (e.g., pre- and postconditions)
must be satisfied by the current type and also subtypes.
For example, suppose a scenario with a JML precondition
declared in method m of type T and we have an subtype of T
(that extends it) called S that overrides the method m with
other specification cases. Thus, if we have an object of type
S, we must satisfy the current specification cases of method
m in combination with the inherited ones (from type T), re-
sulting in disjunction for preconditions and conjunction for
postconditions [17]. Thus, we can also specify this behav-
ior know as behavioral subtyping using aspects — aspects
that checks conditions (assertions) defined in the specifica-
tion cases locally by the method m in combination with the
inherited conditions (from the type T).

Other analogies
We discussed two points in JML and AspectJ that their be-
havior work in the same way. We also showed and argued
that those points identified in JML are in fact quantification
points that can be implemented using AspectJ. However,
there are other quantification points in JML that certainly
can be expressed with AspectJ. Examples of such quantifi-
cation points [19] that can be found in JML not limited to:

• instance and static constraint specifications (is a JML
type specifications like invariants);

• refinement;

• model-programs;

• non-functional properties;

• so forth.

AspectJ and JML a perfect match
Based on the above argumentations, we showed that JML
has properties that cutting across several modules — the
concern know as contract enforcement present in JML which
is classified as a crosscutting concern [20, 7]. Since AspectJ
provide means to deal with crosscutting properties, we con-
clude that AspectJ can implement properly various JML
features (answer to research question 1 discussed in Sec-
tion 1).

Feldman’s work [10] provides another evidence that As-
pectJ can be used to implement contract enforcement con-
cern [20, 7]. Section 5 presents the main points related to
such a work.

3.5 Expression evaluation with new assertion
semantics

Ajmlc was restructured to deal with the new assertion
semantics proposed by Chalin’s work [25] and implemented
by the current JML compiler. Considering this semantics,
a clause can be entirety executable or not. In this way, we
generate into aspects two try-catch blocks:

• one to handle non-executable exceptions discovered at
runtime;

pub l i c c l a s s T {
i n t i = 10 ;

pub l i c void m() { . . . }
pub l i c void n () { . . . }
pub l i c void o () { . . . }

}

p r i v i l e g e d Aspect T{
be f o r e (T cur ren t) :

ex ecu t ion (! s t a t i c ∗ T. ∗ (. .)) &&
with in (T+) &&
th i s (cu r r en t){

i f (! (cu r r en t . i == 10)) {
throw new RuntimeException (” ”) ;

}
}

a f t e r (T cur ren t) :
ex ecu t ion (! s t a t i c ∗ T. ∗ (. .)) &&
with in (T+) &&
th i s (cu r r en t){

i f (! (cu r r en t . i == 10)) {
throw new RuntimeException (” ”) ;

}
}

}

Figure 3: Example of AspectJ quantification.

pub l i c c l a s s T{
pub l i c i n t x , y ;
//@ r e q u i r e s b && x < y ;
pub l i c void m(boolean b)
{ . . . }

}

Figure 4: Simple method with a precondition.

• another to handle all other exceptions, such as Null-
PointerException raised during assertion checking by
a method.

In order to see an example of this approach, consider a
method m declared in a type T with a simple precondition
(see Figure 4).

An AspectJ before advice [14] is generated by the ajmlc
to instrument such a precondition. This before advice con-
tains the above mentioned two try-catch blocks. In Figure 5,
we can observe the resulting instrumentation code generated
by ajmlc. Note that the presence of the JMLEvaluationError,
which is a new JML assertion error [25] responsible for han-
dling invalid assertion evaluations.

3.6 Ordering of advice executions into an as-
pect

One AspectJ aspect can have several advices (e.g., before)
to apply to a particular named or anonymous pointcut. As
the advices are declared into the same aspect, we should
take into account their order declaration. In this way, the
advice that appears first lexically inside the aspect executes

14

pub l i c boolean T. checkPremT(boolean b){
re turn ((b) && (x < y)) ;

}

be f o r e (T current , boolean b) :
execut ion (void T.m(boolean)) &&
with in (T) &&
th i s (current) && args (b) {

boolean rac$b = true ;
t ry {

rac$b = current . checkPre$m$T(b) ;
i f (! rac$b){

throw new
JMLInte rna lPrecond it ionError (” ”) ;

}
} catch (JMLNonExecutableException

rac$nonExec) {
rac$b = true ;

} catch (Throwable rac$cause) {
i f (rac$cause i n s t anc eo f

JMLInte rna lPrecondit ionError) {
throw (JMLInte rna lPrecondi t ionError)

rac$cause ;
}
e l s e {

throw new JMLEvaluationError (” ”) ;
}

}
}

Figure 5: Evaluation of precondition in the new as-
sertion semantics.

first. “The only way to control precedence between multiple
advice in an aspect is to arrange them lexically [16].” Thus,
ajmlc generate AspectJ advices carefully in order to respect
the JML semantics (answer to research question 5 discussed
in Section 1). The order of generation is as follow:

1. generate a before advice to check static invariants;

2. generate a before advice to check instance invariants;

3. generate before advice to check preconditions of ex-
isting methods (including constructors);

4. generate after returning advices and after throwing

advices or around advices (if we have old expressions)
to check postconditions (normal and exceptional post-
conditions) of existing methods (including construc-
tors);

5. generate a after returning and a after throwing ad-
vices to check instance invariants;

6. generate a after returning and a after throwing ad-
vices to check static invariants;

The above ordering to generate AspectJ code is extremely
important to keep the classical ordering of contract checking
posed by JML semantics. For example, a method to be
executed must obey some conditions in a certain order:

1. check invariants (static and instance invariants) before
method execution;

2. check preconditions before method execution;

3. check postconditions after method execution (normal
postconditions when the method terminates normally
and exceptional postconditions when the method ter-
minates abnormally);

4. check invariants (static and instance invariants) after
method execution.

These ordering is respected by generated aspects to check
JML features during runtime — such aspects ordering have
an analogy with the Cheon’s wrapper appraoch [4], because
they have the same effect during runtime checking (ordering
to call the assertion methods, such as precondition checking
method).

3.7 Ajmlc and Java ME applications
The main benefit in using ajmlc is that one can specify

and verify during runtime Java ME applications [23] with
JML. To this end our compiler only generates aspects that
avoids AspectJ constructs that are not supported by Java
ME, such as cflow pointcut [14, 16] (answer to research
question 4 discussed in Section 1).

3.8 Ajmlc optimizations
Concerning Java ME applications, we introduced several

optimizations in ajmlc in order to generate small instrumen-
tation code as much as possible due to constrained environ-
ments like Java ME platform.

Compiling empty classes
The jmlc compiler assumes a standard configuration for classes.
Thus, even if one defines an empty class, basic instrumen-
tation is generated [19, 18] for:

1. class verification

• Static and non-static invariant/constraint check-
ing;

• Static and non-static constraint pre-state expres-
sions checking.

2. default constructor verification

• Assertion checking wrapper;

• Precondition checking;

• Normal postcondition checking;

• Exceptional postcondition checking.

3. other methods (e.g., for dynamic calls using reflection)

In this way, the jmlc compiler generates 11.0 KB (source
code instrumentation) and 5.93 KB (bytecode instrumenta-
tion) even for a empty class like:

public class Empty { }

In contrast to jmlc compiler, our compiler does not generate
code for empty classes.

Code instrumentation
Code size is an important issue for Java ME applications.
Our compiler avoids code generation as much as possible.
Table 1 compares the jmlc and ajmlc compilers when no
specification is provided.

Limitation of the jmlc compiler solved by the ajmlc
compiler
The current implementation of the jmlc compiler has one
limitation:

15

JML clauses jmlc generates ajmlc generates
requires yes no
ensures yes no
signals yes no
invariant yes no

Table 1: Difference between jmlc and ajmlc during
the generation code.

pub l i c s t a t i c x ;
//@ s t a t i c i n v a r i an t x > 0 ;

pub l i c s t a t i c void m() { x = −3; }

s t a t i c {
m() ;

}

Figure 6: Example of non checked type invariant
when it is called.

1. When constrained methods are called into static blocks
during the class initialization, jmlc does not check the
constrains and the method is always executed even if
the condition is false.

Figure 6 shows an example where the method m is con-
strained with the invariant (x > 0) and a call (m()) that
violates the invariant is made inside a static block. As a
result, no assertion violation is raised. Cheon’s compiler [3]
does not generate instrumented bytecode properly to deal
with this limitation. However, the ajmlc always verifies con-
strained methods when called into static blocks. This benefit
is automatically gained just by using aspects to instrument
the JML features.

4. STUDY
In our previous work [24], we evaluated our compiler (ajmlc)

by using a Java ME application. This was fundamental to
investigate our proposed approach in a Java ME environ-
ment. In this section we evaluate our compiler employing
three Java applications. Such applications was extracted
from the JML literature, as described bellow.

Scenario
We have compiled three Java programs annotated with JML
using both ajmlc (our compiler), and the jmlc compiler (Cheon’s
compiler [3]). Such programs are described in three works:
(1) the hierarchy classes Animal, Person, and Patient [17];
(2) the class IntMathOps [19], and (3) the class StackAsArray [3].
Moreover, we have used our ajmlc with two different weav-
ing processes: using the standard AspecJ compiler (ajc) [14];
and the abc compiler [1], which is a complete implementa-
tion of AspectJ with some optimizations.

As a important point for our study, we removed the JML
specifications from the class Person. This choice is to show
that our compile only generate instrumented code when nec-
essary.

Results
Considering the scenario described above, Table 2, Table 3
and Table 4 present the results of the compilation size that

we obtained by using both compilers. As can be seen, we
analyzed instrumented source code size, instrumented byte-
code size, and Jar size all in kbytes (KB). Considering our
compiler (ajmlc), we used the same AspectJ aspect code
(source) generated for both weaving processes (using ajc,
and abc compilers). We observed that the ajmlc compiler
using the ajc weaver introduces a big overhead in the in-
strumented bytecode size (see Table 3), whereas in relation
to instrumented source code size, ajmlc generates a smaller
code (see Table 2). On the other hand, our approach pro-
duces a far smaller instrumented bytecode and source code
when the abc weaver is employed (see Tables 3 and 2). Con-
cerning Jar size we observed that the final deployed appli-
cations for both ajmlc with ajc and abc weavers are smaller
to ones related to the jmlc. This happens because the lib
Jar size necessary to evaluate assertions during runtime for
our compiler is smaller than the lib Jar size for jmlc. It is
important to note that we take into account only the JML
features available by our compiler. Thus, we removed the
from the jmlc runtime library the part that is nor supported
yet by our compiler — this gives a more fair comparison.
Therefore, the user is free to choose the AspectJ weaver.
However, based on the results, we recommend the usage of
ajmlc with the abc weaver (for most cases). This choice is
particulary important for Java ME applications.

Guidelines
Based on the results presented in Tables 2, 3, and 4, we
briefly present steps to use our ajmlc compiler (answer to
research question 2 discussed in Section 1). These steps are
the guidelines for its usage:

1. If the application is not compiled in its entirety by the
JML compiler — if at least ≈ 33% of the application is
free of the JML instrumentation effect (as occurs with
the Hierarchy application showed above), we recom-
mend to use ajmlc with both ajc or abc weavers. Even
if the application is a Java ME application. But, be
aware that by always using abc we got better results;

2. If the application is compiled in its entirety by the
JML compiler — we recommend only in the case of
Java ME applications to use ajmlc with abc weaver;

3. If the user always need to take maximum of the As-
pectJ optmization — we alwys recommend to use ajmlc
with abc weaver.

These guidelines is to provide a way to choose the best
AspectJ weaver to use. Although, our compiler always need
smaller memory space during deploying (because the dis-
crepancy of the size of the runtime libraries from ajmlc and
jmlc).

5. RELATED WORK
JMLC (Java Card Modeling Language) [9] is a is a subset

of the JML language. The JCML compiler (jcmlc) gener-
ates bytecode compliant with Java Card applications. How-
ever, its instrumentation does not employ AspectJ to im-
plement the JML contracts. The jcmlc translates only JML
lightweight specifications, whereas our compiler handles both
lightweight and heavyweight specifications. The jcmlc does
not support inheritance of specifications, which our compiler

16

Table 2: Instrumentation source code size results
ajmlc

jmlc (ajc) (abc)
(KB) (KB) (KB)

Animal 28.8 4.8 4.8
Person 27.4 0.5 0.5
Patient 26.2 9.6 9.6

IntMathOps 18.2 2.0 2.0
StackAsArray 55.7 9.2 9.2

Table 3: Instrumentation bytecode size results

ajmlc
jmlc (ajc) (abc)
(KB) (KB) (KB)

Animal 13.3 17.0 5.5
Person 11.7 2.3 0.7
Patient 12.7 25.3 7.4

IntMathOps 9.39 5.4 2.3
StackAsArray 21.7 23.2 6.2

does. On the other hand, the jcmlc handles quantifiers such
as forall, which are not treated by our compiler.

Feldman et al. [10] presents a DBC tool for Java, known
as Jose. This tool adopts a private DBC language for ex-
pressing contracts. Similar to our approach, Jose adopts
AspectJ for implementing contracts. The semantics of post-
conditions and invariants in Jose are distinct from JML. Jose
states that postconditions are simply conjoined without tak-
ing into account the corresponding preconditions. Moreover,
it establishes that private methods can modify invariant as-
sertions. In the JML semantics, if a private method violates
an invariant, an exception must be thrown. Unlike our com-
piler, Jose generates bytecode not compliant with Java ME.

Pipa [26] is a behavioral interface specification language
(BISL) tailored to AspectJ. It uses the same approach (based
on annotations) of JML language to specify AspectJ classes
and interfaces, and extends JML with a few new constructs
in order to specify AspectJ programs. The Pipa language
also supports aspect specification inheritance and crosscut-
ting. Pipa specifies AspectJ programs with pre-, postcondi-
tions, and invariants. Moreover, Pipa also can specify aspect
invariants and the “decision” whether or not to call the pro-
ceed method within the around advice (using the proceed
extended annotation). The aim in designing Pipa based on
JML is to reuse the existing JML-based tools. In order to
make this possible the authors developed a tool (compiler)
to automatically transform an AspectJ program with Pipa
specifications into a standard Java program with JML spec-
ifications. To this end, the authors modified the AspectJ
compiler (ajc) to retain the comments during the weaving
process. After the weaving process, all JML-based tools can
be applied to AspectJ programs. Therefore, the main goal
of Pipa is to facilitate the use of JML language to verify
AspectJ programs. On the other hand, we use AspectJ to
implement JML features and verify Java programs.

6. CONCLUDING REMARKS
In this paper we discussed the benefits to use AOP to

instrument JML features. We also discussed the analogy

Table 4: Jar size results
ajmlc

jmlc (ajc) (abc)
(KB) (KB) (KB)

hierarchy classes 33.6 18.7 10.7
IntMathOps 20.6 7.5 4.7

StackAsArray 25.2 11.7 6.6

between JML and AspectJ that justify the use of AspectJ
to instrument JML features (treated as crosscutting con-
cern). In this way the issues covered throughout the paper
provide means to answer the research questions pointed out
in Section 1.

Another major contribution of this paper is that, unlike
jmlc, our compiler (ajmlc) generates instrumented bytecode
to verify constrained methods within static blocks during
the class initialization. We also present three examples of
Java programs annotated with JML to investigate the over-
head in code size produced by two different AspectJ weavers.
Such results provide an evidence that our approach gener-
ates smaller code than the original JML compiler when using
the abc AspectJ weaver. Moreover, such results showed that
in relation to application Jar sizes, ajmlc with either ajc and
abc produces a smaller application size than jmlc. These re-
sults are essential when considering Java ME applications.
We also presented some guidelines useful to choose properly
which AspectJ weaver to employ.

We believe that the usage of aspects to implement a JML
compiler introduces a new level of modularity. In other
words, our approach is not invasive (the Java source code
is not tangled and scattered with the generated assertion
methods to check JML features during runtime). This gives
more flexibility to extend the compiler with other JML con-
structs and to optimize the current implementation (since
our source code instrumentation is less complexity resulting
in a smaller source code instrumentation). In addition, opti-
mizations in the weaven process are automatically inherited
by our compiler when using abc.

As a future work, we also plan to address a problem sug-
gested by Cheon [3]: to support assertion checking in a
concurrent environment (e.g., multi-threaded program). We
also intend to conduct more experiments using weavers that
implement optimization techniques for AspectJ, including
the work by Cordeiro [8]. Such a work provide some opti-
mizations in the AspectJ abc compiler, which can improve
the instrumented code generated by the ajmlc. As another
future work, we intend to perform quantitative studies to
compare the instrumented code generated by the classical
jmlc compiler and the ajmlc compiler. These quantitative
studies will respect to important software engineering at-
tributes [5], such as composability, coupling, cohesion, num-
ber of attributes and operations. Finally, in addition to
quantitative studies and code size conducted in this paper,
a performance comparison would also be an interesting fu-
ture work to investigate, especially in the Java ME context.

7. ACKNOWLEDGMENTS
We would like to thank Professor Gary Leavens for his

comments and stimulating discussions on earlier topics of
this paper. We would also like to thank Professor Patrice
Chalin, and Perry James for their several and helpful dis-

17

cussions about JML and its semantics. Special thanks to
Fernando Calheiros, he shared a substantial amount of do-
main knowledge related to Java ME with AspectJ.

This work was partially supported by CAPES and FINEP,
brazilian research agencies.

8. REFERENCES
[1] P. Avgustinov, A. S. Christensen, L. Hendren,

S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. abc: an
extensible AspectJ compiler. In AOSD ’05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 87–98,
New York, NY, USA, 2005. ACM.

[2] L. Burdy et al. An overview of JML tools and
applications. International Journal on Software Tools
for Technology Transfer (STTT), 7(3):212–232, June
2005.

[3] Y. Cheon. A runtime assertion checker for the Java
Modeling Language. Technical report 03-09, Iowa State
University, Department of Computer Science, Ames,
IA, April 2003. The author’s Ph.D. dissertation.

[4] Y. Cheon and G. T. Leavens. A contextual
interpretation of undefinedness for runtime assertion
checking. In AADEBUG’05: Proceedings of the sixth
international symposium on Automated
analysis-driven debugging, pages 149–158, New York,
NY, USA, 2005. ACM.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Softw. Eng.,
20(6):476–493, 1994.

[6] C. Clifton et al. Multijava: modular open classes and
symmetric multiple dispatch for java. In OOPSLA ’00:
Proceedings of the 15th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 130–145, New York, NY, USA,
2000. ACM Press.

[7] C. Constantinides and T. Skotiniotis. Reasoning about
a Classification of Cross-cutting Concerns in
Object-Oriented Systems. In Second Workshop on
Aspect-Oriented Software Development (Workshop
Aspektorientierte Softwareentwicklung der
GI-Fachgruppe 2.1.9 Objektorientierte
Software-Entwicklung), Bonn, Germany, February
21-22, 2002.

[8] E. Cordeiro et al. Optimized compilation of around
advice for aspect oriented programs. Journal of
Universal Computer Science, 13(6):753–766, 2007.

[9] U. Costa et al. Specification and Runtime Verification
of Java Card Programs. In Brazilian Symposium on
Formal Methods (SBMF), Oct. 2008.

[10] Y. A. Feldman et al. Jose: Aspects for design by
contract80-89. sefm, 0:80–89, 2006.

[11] R. E. Filman and D. P. Friedman. Aspect-oriented
programming is quantification and obliviousness.
pages 21–35. Addison-Wesley, 2000.

[12] J. V. Guttag and J. J. Horning, editors. Larch:
Languages and Tools for Formal Specification. Texts

and Monographs in Computer Science.
Springer-Verlag, 1993. With Stephen J. Garland,
Kevin D. Jones, Andrés Modet, and Jeannette M.
Wing.

[13] C. A. R. Hoare. An axiomatic basis for computer
programming. Commun. ACM, 12(10):576–580, 1969.

[14] G. Kiczales et al. Getting Started with AspectJ.
Commun. ACM, 44(10):59–65, 2001.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. In ECOOP ’01: Proceedings of the 15th
European Conference on Object-Oriented
Programming, pages 327–353, London, UK, 2001.
Springer-Verlag.

[16] R. Laddad. AspectJ in Action: Practical
Aspect-Oriented Programming. Manning Publications
Co., Greenwich, CT, USA, 2003.

[17] G. T. Leavens. JML’s rich, inherited specifications for
behavioral subtypes. In Z. Liu and H. Jifeng, editors,
Formal Methods and Software Engineering: 8th
International Conference on Formal Engineering
Methods (ICFEM), volume 4260, pages 2–34, Nov.
2006.

[18] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: a behavioral interface specification
language for Java. SIGSOFT Softw. Eng. Notes,
31(3):1–38, 2006.

[19] G. T. Leavens et al. Jml reference manual.
Department of Computer Science, Iowa State
University. Available from url
http://www.jmlspecs.org, Apr. 2007.

[20] M. Marin et al. A classification of crosscutting
concerns. In ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance,
pages 673–676, Washington, DC, USA, 2005. IEEE
Computer Society.

[21] B. Meyer. Applying “design by contract”. Computer,
25(10):40–51, 1992.

[22] B. Meyer. Eiffel: the language. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1992.

[23] V. Piroumian. Wireless J2me Platform Programming.
Prentice Hall Professional Technical Reference, 2002.
Foreword By-Mike Clary and Foreword By-Bill Joy.

[24] H. Rebêlo et al. Implementing Java Modeling
Language Contracts with AspectJ. In SAC ’08:
Proceedings of the 2008 ACM symposium on Applied
computing, pages 228–233, New York, NY, USA, 2008.
ACM.

[25] F. Rioux and P. Chalin. Effective and Efficient
Runtime Assertion Checking for JML Through Strong
Validity. In Proceedings of the 9th Workshop on
Formal Techniques for Java-like Programs
(FTfJP’07), 2007.

[26] J. Zhao and M. C. Rinard. Pipa: A behavioral
interface specification language for aspectj. In Proc.
Fundamental Approaches to Software Engineering
(FASE’2003) of ETAPS’2003, Lecture Notes in
Computer Science, Apr. 2003.

18

Total Correctness of Recursive Functions using JML4
FSPV

George Karabotsos, Patrice Chalin, Perry R. James, Leveda Giannas
Dependable Software Research Group,

Dept. of Computer Science and Software Engineering,
Concordia University, Montréal, Canada

{g_karab,chalin,perry,leveda}@dsrg.org

ABSTRACT
JML4 is a next generation tooling and research platform for JML.
JML4, currently in development, aims to support the integrated
capabilities of Runtime Assertion Checking (RAC), Extended
Static Checking (ESC), and Full Static Program Verification
(FSPV). In this paper, we present the JML4 FSPV Theory
Generator (TG) that aims to study the adequacy of Isabelle/Simpl
as the underlying verification condition language. In particular we
study Isabelle/Simpl with respect to proving total correctness of
recursive programs. Simpl is a Hoare-based logic for a sequential
imperative programming language along with a verification
system. It is written in Isabelle/HOL and has been proven sound
and relative complete.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Programming by contract, Correctness proofs; F.3.1 [Logics
and Meaning of Programs]: Specifying and Verifying
and Reasoning about Programs—Mechanical verification.

General Terms
Reliability, Languages, Theory, Verification.

Keywords
Java, Java Modeling Language, Full Static Program Verification.

1. INTRODUCTION
The Java Modeling Language (JML) is a Behavioral Interface

Specification Language (BISL) for Java [14]. A number of tools
exist that recognize JML annotated Java programs and can help in
demonstrating their correctness [4]. These tools perform
verification using one or more of three main verification methods:
Runtime Assertion Checking (RAC) [7], Extended Static
Checking (ESC) [8], and Full Static Program Verification (FSPV)
[12].

While RAC and ESC are fully automated and generally easy to
use, these verification techniques are either unsound and/or
incomplete by nature of the technique. Unfortunately, this is
unacceptable for safety and security critical applications (e.g.
SmartCard applications such as electronic purses used in
commercial transactions and medicare cards used to hold vital
patient information) for which soundness and completeness are
vital. FSPV, on the other hand, has the potential to be both sound
and complete. In this paper, we present the FSPV Theory
Generator (TG), the FSPV component of JML4—a next
generation tooling and research platform for JML. In particular,
we present initial results with respect to proving the total
correctness of recursive functions. To our knowledge, the JML4
FSPV TG is the first:

• JML tool to enable the total correctness of recursive functions
to be proven, such as the one shown for Factorial in Figure 1,
and

• FSPV tool to be based on an underlying theory that has been
proven sound and complete, and this within a mechanical
theorem prover.

Creation of the FSPV TG is also timely, since neither of the two
“first generation” FSPV tools (JACK, LOOP) is still being
actively maintained.

We present:
• The translation process used to generate Isabelle/Simpl [20]

theories from Java programs.
• Our experience in generating and proving Simpl theory

Verification Condition (VC) lemmas for JML annotated Java
programs.
Isabelle/Simpl is a theory built atop Isabelle/HOL for an IMP-

like [22] sequential imperative programming language with loops
and procedures supported by specification constructs (e.g., via
pre- and post-conditions).

The rest of the paper is structured as follows. In the next
section, we describe Isabelle, Simpl, and JML4. Section 3
presents the FSPV TG followed by an account of its use and
subsequent verification of its generated theories in Section 4. In
Section 5 we present related work. Finally conclusions and future
work are given in Section 6.

2. BACKGROUND

2.1 Isabelle
Isabelle [18] is a theorem proving framework. It provides the

necessary proving apparatus to define new logics. This machinery
includes Isabelle’s meta-logic (Isabelle/Pure), the classical
reasoner, and the simplifier. Additionally, existing logics can be
extended, thus defining new ones. Newly constructed object
logics can be further enhanced with new syntax by making use of
Isabelle’s syntax transformations. These transformations can be
specified using relatively simple rules defined within the theory or

public class Factorial {
 //@ requires n >= 0;
 //@ ensures \result ==
 //@ (\product int j; 1 <= j && j <= n ; j);
 a b ; //@ me sured_ y n
 public static int fac(final int n) {
 if 0) (n ==
 urn 1; ret
 else
 return n * fac(n-1);
 }
}

Figure 1: Recursive factorial method

19

https://www.dsrg.org/
mailto:g_karab@dsrg.org,chalin@dsrg.org

with more complex but more powerful translation functions coded
in ML.

Isabelle/HOL, a realization of High Order Logic for Isabelle, is
just one of these logics defined atop of Isabelle/Pure. It is the
most complete of all of the object logics written for Isabelle so
far. This reason, among others, is why Isabelle/HOL has served
as the basis for a number of additional logics. Some of these
include the Logic for Computable Functions (Isabelle/HOLCF),
and logics for sequential imperative programs with Hoare
semantics defined such as Bali [17] and Simpl.

2.2 Simpl
Simpl [7] is a theory written and proven sound and complete in

Isabelle/HOL for a generic sequential imperative programming
language. The Simpl theory includes definitions of syntax, big-
and small-step operational semantics, a set of Hoare rules both for
partial and total correctness, and weakest-precondition semantics
(via the vcg and vcg-step proof methods) [9]. It is expressive
enough for many language constructs that exist in modern
programming languages. These include: global and local
variables, exceptions, abnormal termination, breaks out of loops,
procedures, as well as expressions with side-effects. Simpl also
has theories for reasoning about the heap and references, thus
allowing for the expression of linked data structures.

Essential elements of a typical Simpl theory include states,
procedure declarations, and Hoare triples. The state takes the
form of a hoarestate statement, which contains the list of
variables used in the Hoare triple—examples will be given further
below. Procedures are declared using Simpl’s procedures
declaration and have the following form:

procedures
 N (x::τ1, y::τ2, …| z::τ3)
 where v::τ4 … in B

where N is the procedure’s name, x and y the formal parameters,
τn a type, z the return value, v a local variable, and B the body. A
procedures declaration is syntactic sugar for a number of
deductive elements that are dynamically generated by Simpl and
include a locale1 and a hoarestate. All such locales are

1 A locale is Isabelle’s construct for parameterized theories

named using the name of the procedure and the prefix _impl.
Hoare triples have the usual form and in Simpl are written as:
Γ, Θ ├ {|P|} B {|Q|}, {|R|}
Γ, Θ ├t {|P|} B {|Q|}, {|R|}

for partial and total correctness, respectively. Γ is the procedure
environment, Θ is a set of Hoare rules used as assumptions, P is
the precondition, B is the body, and Q and R are the postconditions
for normal and abrupt termination, respectively.

2.3 JML4
JML4 [5] is a next generation research platform for JML. It is

an Eclipse-based Integrated Development and Verification
Environment (IVE)—see Figure 2. Users can write their Java
programs, annotate them with JML specifications, and prove them
correct within the same environment using RAC, ESC, or FSPV.

Currently, JML4 supports JML’s non-null type system (both
statically and at runtime), the ability to read and make use of the
extensive JML API library specifications, and basic RAC. Our
research group, in addition to contributing to the basic
infrastructure of JML4, is focusing on a new static verification
component called the JML Static Verifier (SV). The JML SV
offers support for ESC and FSPV. We examine the FSPV
component in more detail in the sections that follow.

3. JML4 FSPV THEORY GENERATOR
In this section we present FSPV TG. Central to FSPV TG is a

translator that takes Java programs along with their associated
JML specifications and generates one or more Simpl theory files.

The choice of Simpl as a target VC language for our FSPV tool
is motivated by two main reasons. Firstly, the generation of the
VC is fully captured within Simpl, which as mentioned above, has
been proven sound and complete. The alternative (and the norm)
is to programmatically define VC generation and in some cases
prove soundness, most of the time this is done by hand. Secondly,
Simpl’s syntax is such that rather than expressing lemmas as
“low-level” VCs, we express them directly as Hoare triples.

At its current level, the FSPV TG supports a handful of JML
and Java language elements, including method calls. Type-wise,
only Integers and Booleans are supported while initial support for
class related elements such as fields and methods are in place. A
functional set of Java statements and expressions are supported.
These include local-variable declarations with initialization and
conditional and while-loop statements. Most arithmetic,
relational, and logical operators are supported, including those
with side-effects. Lightweight JML contracts and loop
annotations are supported. All these elements are translated into
Isabelle/Simpl using FSPV TG’s translator.

FSPV TG’s current translation phases, along with their
individual inputs and outputs, can be seen in Figure 3. The first
phase is named TheoryTranslation. The input to the first phase is
the JML+Java Abstract Syntax Tree (AST) for a compilation unit.
A compilation unit contains AST nodes for type declarations,
which in turn contain type member nodes such as method
declarations, fields, etc. The result of this phase is a (generic)
Theory AST (Figure 4). This resulting theory AST consists of
both a list of variables containing field-related information and
one or more lemma AST nodes. Each lemma node is a translation
of a single Java method declaration and represents the proof
obligation for that method. Proof of the lemma establishes the
correctness of the method with respect to its specification. A
lemma node is a pair of:

Figure 2: JML4 component diagram

20

Variables

• a variable list containing all parameters and local variables
declared in the method

• a Hoare triple containing the translations of the JML pre- and
post-conditions, as well as the translation of the method body.
In the next phase, PrestateDecoration, the Theory AST is

decorated with pre-state information. This entails storing the pre-
state of the method parameters (since they can be modified within
the method body) as well as the handling \old JML expressions.
The result of this phase is an enriched Theory AST with
additional variables, assignment nodes, and simplified \old JML
expressions.

Additionally, in this stage we perform data analysis of the code
in the presence of while loops. Translating while loops requires
some care. Simpl adopts the classic Hoare rule for while loops
whereas in JML, the assumption is that only a while body’s
assignment targets are “havocked”2—all other variables are
assumed to remain unchanged. As such, the loop invariant is
augmented to maintain additional state information—i.e.,
constraints that the non-havocked variables remain unchanged.
Examples of this are presented in Section 4.

The third phase is called the SideEffectHandling. This phase
translates expressions with side effects into a more palatable form,
based on examples from the Simpl distribution of simplifying
such expressions. To allow for this translation we introduce
additional variables and assignment statements that hold
intermediary results. To illustrate this, consider the following
Java statement containing an expression with side-effects:

a *= b - i++; (1)
It is translated into the following sequence of Java statements:

a0 = a;
i0 = i;
i = i + 1;
a = a0 * (b - i0);

This will translate into Isabelle using Simpl’s notion of a binder
variable: the expression E’ >> v . E(v) evaluates to E(v) in

2 Nothing can be assumed about the value of havocked variables.

which v, if it occurs free, will have the value E’, i.e. E(E’). The
Simpl translation of (1) is:

a >> a0.
 i >> i0.
 i :== i + 1 ;;
 a :== a0 * (b - i0)

The last phase, called SimplTranslation, is responsible for
generating the Simpl theory. For each theory AST, an Isabelle
theory is created containing a hoarestate block for static and
instance fields. For each lemma Theory AST node, a Simpl
procedure and an Isabelle lemma block statement is created. The
procedure contains the translation of the Java method into Simpl,
while the lemma is there to prove the method correct with respect
to its specification.
Examples will be given in Section 4.

4. FSPV BY EXAMPLE
In this section, we present examples of recursive functions

specified in JML and proven using Isabelle/Simpl. Each example
allows us to highlight a particular capability of the JML4 FSPV
TG or limitations in JML with respect to its linguistic ability to
support the specification of recursive functions, especially for the
purpose of proving total correctness. Note that for these examples,
the resulting Simpl theories have a close resemblance to their
associated Java classes. We found this quite pleasing since source
code parts are easily identifiable in the corresponding theory.

4.1 Factorial
In Figure 1, presented earlier, we define the Factorial class

with a single recursive method name fac, which returns the
factorial of its integer argument. Our aim is to prove the method
correct and that it terminates. The JML measured_by clause
allows us to provide a measure that we can use to prove
termination. A measure is a well-founded relation from a function
to the natural numbers. Termination is achieved when the
arguments of each recursive method call decrease with respect to
the measure. While the definition of the fac method is simple,
we note that it is already beyond the capabilities of ESC/Java2
due to the use of a generalized numeric quantifier in the method
contract. Hence, factorial allows us to demonstrate the use,
translation, and verification of JML’s generalized numeric
quantifiers such as \product. Moreover, ESC/Java2 does not
support the JML statementmeasured_by . The corresponding

Figure 3: FSPV TG Phases

y : V
n : Z Integers
b : {T,F} Boolean
op ::== + | - | * | / | \/ | /\ | = | != | ++ | -- Operators
 | += | -= | *= | /= | :=
e ::== y | n | b | e op e | op e | e op Expressions

Statements s ::== y := e
 | WHILE e INV e VAR e s
 | IF e THEN s ELSE s
 | s ; s

Types τ : Γ
Lemma l ::== (y :: τ)*

 {e} s {e}
Theory t ::== (y :: τ)*

 l*

Figure 4: Theory language abstract syntax

21

public class McCarthy {
 //@ requires n >= 0;
 //@ ensures \result == (100 < n ? n-10 : 91);
 //@ measured_by 101 - n;
 public static int f91(int n) {
 if n) (100 <
 urn n - 10; ret
 else
 return f91(f91(n + 11));
 }

Simpl theory is generated as part of the compilation process when
the user selects the appropriate JML4 compiler options. The
theory generated for Factorial is given in Figure 5.

The theory has two main parts: a Simpl procedures and an
Isabelle lemma declaration. If more methods had been present in
the Java class declaration then additional pairs of procedures
and lemma declarations would have been given, one for each
method. The procedures declaration contains the translation of
the Java method in Simpl as well as all variables referenced by the
program including `result’, a special variable added by the
FSPV TG to hold the return value. The name of the class, the
name of the method, and the method’s signature are used to name
the corresponding Simpl procedure. Encountering this procedure
declaration, Simpl dynamically generates the Factorial_–
fac_int_impl locale that contains all the deductive machinery
required for reasoning about the procedure. This locale is
subsequently used in the lemma block to prove the procedure
correct with respect to its specification.

We can identify the lemma definition enclosed within quotes.
This definition follows the general format of a Simpl lemma
definition proving total correctness (see Section 2.2)3. The
lemma definition contains the Hoare triple to be proven, followed
by its proof. We can clearly identify the pre- and post-condition
at the top and bottom of the lemma enclosed within {| and |}
character sequences which are used to denote assertions.
Additionally, we bind the value of the input parameter to the
logical variable n which is used in the postcondition in order to
preserve the pre-state value of ′n. The logical variable σ represents
the pre-state; σ is always generated though it is not used in the
examples presented here. In between, is a call to the
Factorial_fac_int procedure. It is worth noting how JML
\product quantified expressions are translated to Isabelle/HOL’s
product definition Π using an Isabelle set comprehension to
specify the range. Isabelle/HOL’s set theory is typed and
extensive. It allows for set comprehensions and ranges which are
ideal when translating JML numeric quantifiers.

To prove this procedure correct and that it terminates we need
to provide a well-founded relation and to prove that subsequent
recursive calls are decreasing with respect to its arguments—for
our factorial example this means that subsequent recursive calls

3 The \<^sub>t is how ProofGeneral subscript characters.

Unfortunately not all of Proof General’s X-symbols are
supported in the Eclipse plug-in.

are made using smaller non-negative integer values.
Isabelle/HOL provides us with such a mechanism via the
measure clause. The measure clause for this particular example
is just the input parameter and it has the following form: measure
λ(s,p). nat ns . To introduce this measure to our proof we
make use of the HoareTotal.ProcRec1 rule and we instantiate
the ?r schematic [18] variable with the measure using the where
theorem modifier.

To complete this proof we need to provide additional
properties pertinent to the set comprehensions used in the post-
condition. These are included as simplification rules in the
SetHelper theory (imported by the theory statement) which is
provided in Appendix A. Finally, we complete the proof using
two applications of the vcg and auto methods.

To work with the theory we use Eclipse’s ProofGeneral plug-
in [1] which is a generic front-end for interactive theorem provers
supporting Isabelle. It is through Proof General that we prove this
theory correct following the proof steps described in the previous
paragraphs.

4.2 McCarthy’s 91 Function
Our next example contains an implementation of McCarthy’s

91 function [15]. The f91 method, seen in Figure 6, is defined
over positive integers and returns 91 for all n <= 100 otherwise
it returns n - 10. The measure for the function is remarkably
simple: 101 – n. McCarthy’s 91 function is interesting because
of its use of nested recursion.

The FSPV generated theory is shown in Figure 7. Like in the
previous example, a Simpl procedure and its associated Simpl
specification lemma are generated. We prove correctness and
termination within Eclipse using the associated Proof General
plug-in. Despite the nested recursion we are able to verify the
procedure correct and that it terminates with relative ease: i.e., by
merely asking Simpl to generate the verification condition (vcg),

Figure 5: Simpl Theory for Factorial

}
Figure 6: Recursive McCarthy's 91 Method

Figure 7: Simpl Theory for McCarthy's 91 Function

22

class Fibonacci {
 //@ public static native int fib_spec(int n);

 //@ requires n>=0;
 //@ ensures \result == fib_spec(n);
 a by n; //@ me sured_
 public static /*@ pure */ int fib(int n) {
 if 0) (n ==
 t n 0; re ur
 el (n == 1) se if
 turn 1; re
 else
 return fib(n-1) + fib(n-2);
 }

which Isabelle’s auto method is then able to discharge without
further user intervention. Surprisingly, our proof in Simpl is
simpler than the corresponding proof for a native Isabelle/HOL
function definition of the 91 function presented in [13].

4.3 Fibonacci Numbers
Our next example is a recursive method that calculates

Fibonacci numbers (see Figure 8). The difference with respect to
the previous cases is that in this example we make use of the
native JML feature, recently proposed by Julien Charles [6]. In
essence, this feature declares pure JML methods without an
explicit definition. The definition is instead provided using the
underlying target logic that JML annotated Java code is translated
to. This provides for a more natural way of proving recursive
methods that have in their specification recursive method calls.
Moreover, it allows us to illustrate the definition of Isabelle/HOL
functions and their use within Simpl assertions.

Figure 9 presents the generated theory suitably edited to
include a definition of fib_spec() and our modifications that
prove the method correct and that it terminates with respect to its
specification and its measure, respectively.

The Simpl procedure declaration of Fibonacci_fib_int
contains the translation of the Java statements and expressions
into Isabelle/Simpl. Notice how binder variables are used to store
the intermediate results of the recursive calls.

The fib_spec() function is the definition of the
corresponding native pure methods. We make use of the Isabelle
special polymorphic value arbitrary which is used to denote an
arbitrary value. This is required because Isabelle/HOL functions
are total by definition—i.e. we underspecify the function for
negative integers. For every Isabelle/HOL function two proof
obligations are required to be satisfied: one for completeness and
compatibility of patterns and another for termination [13]. Their
respective proofs follow the definition. It is worth mentioning
that Isabelle/HOL provides a simpler form of defining functions
where both of these proofs are satisfied automatically, however,
the default termination proof (based on lexicographic order) is not
sufficient for the fib_spec function—hence, the use of the
“long” form.

The final part of this theory is the specification lemma. The
proof proceeds as in the previous cases where the
HoareTotal.ProcRec1 rule is used, instantiated by a well-
founded relation (via measure) and followed by an application of
the vcg and auto methods.

 Supporting reasoning about pure model methods having
contracts that fully capture their behavior is possible (see

). This can be accomplished by using inductive sets to encode

the method contract and then proving that the inductive definition
is functional.

Figure
10

4.4 Ackermann’s Function
In the previous examples we have dealt with functions having

trivial measures. In this section we illustrate a total termination
proof for a recursive implementation of the Ackermann function
[15] (see Figure 11) which has a non-trivial measure. This
measure is a well-founded relation on pairs of non-negative
integers. In the process we also recognize the inadequacy of the
measured_by clause in specifying this measure. Once more we
make use of a native pure JML method to specify the post-
condition. As we shall see, its definition in Isabelle also helps in
making the case of preferring natural numbers instead of integers
when working with non-negative values.

The complete theory that includes our modifications is
presented in Figure 12. In addition to the procedures and
lemma declarations we have defined two Isabelle/HOL functions

}
Figure 8: Fibonacci Method (using native fib_spec())

Figure 9: Simpl Theory for Fibonacci

class Fibonacci {
 //@ requires n>=0;
 //@ ensures \result == (n==0)? 0 : (n==1) ? 1
 //@ : fib_spec(n-1)+fib_spec(n-2);
 //@ measured_by n;
 //@ public static pure model
 //@ int fib_spec(int n);

 //@ requires n>=0;
 //@ ensures \result == fib_spec(n);
 a by n//@ me sured_
 public static /*@ pure */ int fib(int n) {

;

 ...
 }
}

Figure 10: Fibonacci Method with fib_spec() as a model
method

23

public class Ackermann {
 //@ public static native int ack_spec(int n);

(ack’ and ack_spec) and a lemma declaration
(distrib_minus_int) that proves that Isabelle’s nat operator
distributes over subtraction of integers, where the right hand side
of the subtraction is the integer 1.

The ack_spec function is implemented over integer values
that return the Isabelle arbitrary value when either one of its
arguments is a non-negative number—in all other cases it makes
use of the value returned by the ack’ function. The ack’
function is an implementation of the Ackermann function over
natural numbers. It is possible to avoid writing the ack’ function
altogether and incorporated the remaining cases in the ack_spec
definition—in fact our first attempts in a definition of the native
method followed this approach. We were successful in
completing an integer only definition of ack_spec. However,
when this is used within the Ackerman_ack_int_int_spec
lemma the Isabelle simplifier enters what it seems an infinite loop.
In general, natural number based definitions are easier to work
with in Isabelle/HOL. Hence, by using a natural number
implementation of the Ackermann function as a first step we are
able to prove the corresponding Simpl procedure correct. We are
confident that even with our original approach a proof of
correctness is achievable given additional investment on our part.

In the Ackermann_ack_int_int_spec lemma we have
manually inserted the measure using the HoareTotal.ProcRec1
rule as to demonstrate that Isabelle/Simpl is capable of proving
termination of the Ackermann function. The measure we provide
is in fact a list of two measures. As such they do not correspond
to the current syntax and semantics of the measured_by clause.
In Isabelle/Simpl such measure lists are specified using the
measures combinator. This measures combinator is a

generalization of the measure clause and it constructs a well-
founded relation from a list of measures—it is explained in detail
in [3]. We continue the proof with a set or repeated applications
of the auto and vcg methods. These methods generate subgoals
that each is resolved by cases on the nat type followed by an
extra application of the auto method.

5. RELATED WORK
In this section we examine three existing FSPV tools.

LOOP. The LOOP tool [12,21] was developed at the
University of Nijmegen in Netherlands. LOOP covers a
functional subset of sequential Java. In particular, LOOP can
handle all of Java Card. Thus, LOOP is able to reason about
expressions with side effects, exceptions, inheritance, and
overloading. To our knowledge only multi-threading, inner
classes and termination of recursive programs are left out.

The LOOP tool is a compiler. Its input is JML-annotated Java
source code and its output is theories for the PVS theorem prover.
These theories, along with a set of theories named “the prelude,”
are used as input to the PVS theorem prover when a developer
wishes to conduct a verification session. The prelude contains the
semantics of both JML and Java. Through user interaction,
properties of these JML/Java sources can then be verified. A user
working with LOOP-generated theories has a choice between a
Hoare logic and two weakest-precondition calculi.

As compared to Isabelle/Simpl, LOOP’s Hoare logic has been
proven sound using PVS, but not proven complete. To our
knowledge, the LOOP tool does not support termination of
recursive programs. LOOP incorporates the semantics of JML
and Java in its compiler generating primitive formulas which are
then used as input to the PVS prover. FSPV-TG, on the other
hand, generates Simpl theories which incorporate the semantics of
sequential programming languages in terms of Hoare logic and
weakest precondition semantics—i.e. the transformation from a
Hoare triplet to a primitive formula is done within the prover.

 //@ requires n >= 0 && m >= 0 ;
 s r lt == k_sp n,m); //@ en ures \ esu ac ec(
 public static int ack(int n, int m) {
 if 0) (n ==
 urn m + 1; ret
 el se
 if 0) (m ==
 urn ack(n-1, m); ret
 else
 return ack(n-1, ack(n, m-1));
 }
}

Figure 11: Ackermann Method

Figure 12: Ackermann Theory

Table 1: A Comparison on Java's FSPV Tools

 LOOP JACK Krakatoa
Why

FSPV
TG

Simpl
Maintained

Open Source
Proven Sound 1

Proven
Complete 1

Above two
proofs done

in
PVS N/A by hand in

Isabelle
VC generation
done in prover

Termination of
recursive
functions

 2

1 Simpl is proven sound and complete. The translation to Simpl is not.
2 See main text for a qualification of this mark.

24

JACK. The Java Applet Correctness Kit (JACK) tool [2] is an
Eclipse plug-in. Like LOOP, JACK also translates Java programs
into one or more theory files. However, JACK generates theories
in a Java-like language called Java Proof Obligation (JPO)
language. These obligations are generated using weakest
precondition semantics which, to our knowledge, has yet to be
proven sound. JACK provides support for a number of theorem
provers, namely Coq, PVS, B, and Simplify—with Coq and
Simplify being the most fully supported. Prover-specific theories
are translated using the JPO theories as input. Additionally,
JACK supports specification and verification at the bytecode
level. Bytecode verification also makes use of a weakest-
precondition semantics. In this case, this semantics is proven
sound using the pen and paper approach [19].

The differences between the underlying logics of JACK and
FSPV TG are similar to those of LOOP. JACK generates
primitive formulas in Java, while we make use of Simpl’s Hoare
rules and weakest precondition semantics to generate the primitive
formulas. Additionally, JACK does not support termination
proofs for recursive functions.

Krakatoa. Krakatoa is an FSPV tool for JML annotated Java
classes. Originally designed to generate theories for the Coq
theorem proven it has recently been modified to output programs
for the Why tool as well [11].

Why is a multi-tool Verification Condition (VC) generator.
The input of Why is a Why program. A Why program may
contain assignment, loop, and conditional statements, as well as
function declarations. Additionally, it supports throwing and
catching exceptions and has limited support for expressions with
side-effects. It supports annotations for function declarations and
loop statements.

The Why tool transforms input programs into VCs using a
weakest-precondition semantics proven sound using the pen and
paper approach [10]. The output is one or more theories for a
number of provers. These include the automated Yices, CVC3,
and the Interactive Coq, Isabelle, and PVS. It is worth noting that
Why is general enough that it is used by Caduceus—a front-end
for verifying C programs.

Krakatoa is similar to FSPV TG in the sense that it translates
Java programs into an intermediate program. However, Why
programs are translated into a prover-specific theory using the
Why compiler written in Objective CAML. Consequently, it
suffers from the same issues as LOOP and JACK with respect to
having VCs generated programmatically. Krakatoa does not
support reasoning about the termination of recursive methods as
indicated by [16]. Nonetheless its underlying intermediate
language, Why, does have support for specifying recursive
functions (via the rec keyword) with measures (via the variant
keyword).

Table 1 presents a comparison in terms of the soundness and
completeness of the underlying logical foundations of these FSPV
tools along with our own FSPV TG. Additionally, we report
(second to last row) on which tools programmatically generate
VCs and which generate them through a theorem prover. Finally,
in the last row, we report on tool support for proving termination
of recursive programs.

6. CONCLUSION AND FUTURE WORK
We have presented initial work we have done in implementing

an FSPV tool in JML4. This FSPV tool makes use of Simpl—a
logic for expressing and verifying sequential imperative programs
developed within Isabelle/HOL. Simpl’s Hoare logic has been

proven sound and complete with respect to the programming
language semantics. We have illustrated the current level of
support that the FSPV TG provides and presented a sample of our
experimental test cases. We have focused our attention on
proving recursive programs correct and that they terminate.

We have shown programs implementing Factorial and
McCarthy’s 91 function and how the FSPV TG, at its current
state, can correctly prove total correctness. We examined more
complicated cases such as Fibonacci and the Ackermann function.
In there we employed the recently introduced native feature that
allows separating declaration and definition of JML pure methods.
This separation allowed for an “easier”, a more natural, and a
flexible definition of the pure method in the underlying logic.
Moreover, we have exposed inadequacies of JML in specifying
complex measures such as the one for the Ackermann function.

Through our experiments we believe that we have
demonstrated the feasibility of Isabelle/Simpl as a backend
proving apparatus for our FSPV TG tool proving recursive
programs correct and that they terminate. To our knowledge
FSPV TG is unique with respect to applying Hoare logic rules and
weakest precondition semantics within an interactive theorem
prover.

We reviewed a number of related FSPV tools and we have
seen that Simpl is the only logic proven both sound and complete
within an interactive theorem prover. Additionally none of our
reviewed tools supports total correctness of recursive programs.

We have plans for a number of future additions to this tool. A
short-term goal is to make progress towards using pure model
methods rather than native methods to specify recursive functions
like the one given in our Fibonacci example. We will also be
exploring extensions to the measured_by syntax of JML so that
measures for Ackermann’s function can be defined within JML
directly.
REFERENCES
[1] Aspinall, D. et al. 2006. Proof general in Eclipse: system

and architecture overview. ACM, 45-49.
[2] Barthe, G. et al. 2007. JACK - A Tool for Validation of

Security and Behaviour of Java Applications. In 5th
International Symposium on Formal Methods for
Components and Objects (FMCO), , 152-174.

[3] Bulwahn, L. et al. 2007. Finding Lexicographic Orders for
Termination Proofs in Isabelle/HOL. In Theorem Proving
in Higher Order Logics. 38-53.

[4] Burdy, L. et al. 2005. An overview of JML tools and
applications. Int. J. Softw. Tools Technol. Transf. 7, 3, 212-
232.

[5] Chalin, P. et al. 2008. JML4: Towards an Industrial Grade
IVE for Java and Next Generation Research Platform for
JML. In Verified Software: Theories, Tools, Experiments.
70-83.

[6] Charles, J. Adding native specifications to JML. Formal
Techniques for Java-like Programs, , 2006.

[7] Cheon, Y. and Leavens, G.T. 2002. A runtime assertion
checker for the Java Modeling Language (JML). In
International Conference on Software Engineering
Research and Practice (SERP '02). CSREA Press, Las
Vegas, Nevada, 322--328.

[8] Cok, D.R. and Kiniry, J.R. 2004. ESC/Java2: Uniting
ESC/Java and JML: Progress and issues in building and
using ESC/Java2 and a report on a case study involving the
use of ESC/Java2 to verify portions of an Internet voting
tally system. In Construction and Analysis of Safe, Secure

25

and Interoperable Smart Devices: International Workshop,
CASSIS 2004 3362, , 108--128.

[9] Dijkstra, E.W. 1975. Guarded commands, nondeterminacy
and formal derivation of programs. Commun. ACM 18, 8,
453-457.

[10] Filliâtre, J. 2003. Verification of non-functional programs
using interpretations in type theory. J. Funct. Program. 13,
4, 709-745.

[11] Filliâtre, J. and Marché, C. 2007. The
Why/Krakatoa/Caduceus Platform for Deductive Program
Verification. In Computer Aided Verification. 173-177.

[12] Jacobs, B. and Poll, E. 2004. Java Program Verification at
Nijmegen: Developments and Perspective. In Software
Security - Theories and Systems. 134-153.

[13] Krauss, A. 2008. Defining Recursive Functions in
Isabelle/HOL.
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle
/doc/functions.pdf.

[14] Leavens, G.T. 2008. The Java Modeling Language (JML).
http://www.eecs.ucf.edu/~leavens/JML/.

[15] Manna, Z. 1974. Mathematical Theory of Computation.
Mcgraw-Hill College.

[16] March, C. et al. The Krakatoa Tool for Certication of
Java/JavaCard Programs annotated in JML. .

[17] Nipkow, T. 2008. Project Bali.
http://isabelle.in.tum.de/bali/.

[18] Nipkow, T. et al. 2002. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Springer.

[19] Pavlova, M. 2007. Java bytecode verification and its
applications. Ecole Superieure en Sciences Informatiques
de Sophia Antipolis.

[20] Schirmer, N. 2005. A Verification Environment for
Sequential Imperative Programs in Isabelle/HOL. In Logic
for Programming, Artificial Intelligence, and Reasoning.
398-414.

[21] Van Den Berg, J. and Jacobs, B. 2001. The LOOP
compiler for Java and JML. Tools and Algorithms for the
Construction and Analysis of Systems, number 2031 in
Lect. Notes Comp. Sci, , 299--312.

[22] Winskel, G. 1993. The formal semantics of programming
languages: an introduction. MIT Press.

APPENDIX A

26

Adapting JML to generic types and Java 1.6

David R. Cok
Eastman Kodak Company Research Laboratory

1999 Lake Avenue
Rochester, NY 14650 USA
david.cok@kodak.com

ABSTRACT
Despite the current effort to implement the Java Modeling Lan-
guage for Java 1.5, and in particular for generic types, there has
been no analysis of the effect of such a transition on JML itself,
nor of what language changes should be implemented to take best
advantage of the features of current Java. This paper analyzes the
interactions between JML and the new features of Java 1.5 and 1.6,
and it proposes appropriate changes to JML. Many implementation
details for JML tools can be handled by choosing an existing Java
1.5+ compiler as a base; however, there are adjustments to the typ-
ing of JML expressions that would be appropriate, and there are
issues needing careful attention arising from refinements, autobox-
ing, lock ordering operations, specification of enhanced for loops,
type erasure, and the runtime execution of specifications involving
type parameters. The features are implemented experimentally in
OpenJML, an OpenJDK-based implementation of JML.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications; D.2.4
[Software Engineering]: Software/Program Verification; F.3.1 [Logics
and Meaning of Programs]: Specifying and Verifying and Rea-
soning about Programs

Keywords
specification, JML, Java, generics

1. INTRODUCTION
The Java Modeling Language (JML) [7, 8] has been a success-

ful, widely used specification language for Java programs. Many
tools [2] have been generated and many research groups1 have used
it as a basis for research and experimentation. The JML2 tool suite
was written and maintained for Java 1.4. Java 1.5, introduced in
2004, brought significant changes to Java, but the work to evolve
JML tools to work with Java 1.5 stalled for lack of resources. That

1Publications from a variety of groups using JML are given at
http://www.jmlspecs.org.

Copyright 2008 Eastman Kodak Company

omission is only now being addressed by the building of new ver-
sions of JML on top of Eclipse [4] and OpenJDK [12], although
those projects are not yet ready with released tools.

Not explicitly addressed in those tool-building activities, how-
ever, are the changes to JML itself that are needed to keep it aligned
with the generic type and other capabilities of Java 1.5 and 1.6. This
paper addresses that deficiency.

Versions of Java beginning with Java 1.5 introduced many new
features into the language; we will consider the following here:

• generic types and methods
• enhanced for statement
• autoboxing and unboxing
• annotations
• varargs
• static import
• enum types
• java.lang.SuppressWarnings
• the Java compiler, AST and annotation processing APIs

This paper presents an assessment of JML with respect to these
features of Java, recommending alterations and extensions to JML
where that would be beneficial for the language. We also note areas
where similar activities are underway in other groups and highlight
aspects that would benefit from cooperation. The issues discussed
are relevant to interface specification languages for other program-
ming languages with generic types, but we consider them only in
the concrete context of Java and JML.

2. ENHANCEMENTS TO JML
In the following subsections we discuss the impact on and pro-

pose alterations to JML to accommodate the evolution of Java. A
JML tool that is built upon a Java compiler will be able to accom-
modate most language changes without difficulty. The implemen-
tation effort is reduced further if the Java compiler infrastructure is
used for parsing and type-checking JML expressions as well. Nev-
ertheless, there are several issues that must be attended to.

2.1 Generic methods and types
The most significant language addition in Java 1.5 was generic

types and methods. Type names in a JML specification may now
be parameterized with concrete types or type variables, and model
methods may now have type parameters. This affects the JML
grammar in ways corresponding to the changes in the Java gram-
mar: alterations are needed in the definitions of reference-type,
class-definition, interface-definition, class-extends-clause, name-
weakly-list, method-decl, and primary-expr (for method calls).

For tools built on existing compilers (and maintained by others)
the infrastructure needed to support generic types in JML comes

27

with the Java compiler. Parameterized model methods and param-
eterized model types by themselves pose no new difficulties.

2.2 Type parameters
However, the body of a class or method now has some additional

type names in scope—those of the type parameters. In the case
of methods, the scope of these type parameters extends over the
method specifications. Thus the name lookup procedure for method
and type specifications must include the type parameters. Model
methods also may now be generic, so signature matching and type
resolution for model methods must be enhanced in the same way
as it is for ordinary Java methods.

Type names are not common in method and type specifications
since those are mostly expressions. However, they can occur in
type literals, instanceof and cast expressions, in declarations in
forall and old clauses in method specifications, and in quantified
and set comprehension expressions.

Within type and method specifications, the properties of a partic-
ular type parameter must be ascertained. Java properties such as the
methods defined for the type are determined just as in the program
code. JML also needs to determine which specifications apply to a
method of a type parameter. Those are defined as the union of the
specifications from the types making up the upper bounds of the
type parameter.

2.3 Refinement
The first significant departure from what a Java compiler pro-

vides is in resolving refinement. JML allows the specifications for
a class to be in a separate file from the source itself. In fact, the
source may not even be present, since we may be specifying a bi-
nary file. In addition, there may be more than one refinement file
for a given class. Refinement resolution consists of attaching each
specification to the correct Java construct. So, declarations in spec-
ification files must be matched to Java declarations or entities in
binary files.

The first task is to match class declarations. This is straightfor-
ward since there is at most one class with a given fully qualified
name. There remains to be sure that the type parameters of the
class in the specification file match those defined in Java, both in
number and in any bounds restrictions. In general the parameter
names may not be the same among the various class declarations,
so a mapping of names may be required. It would be prudent to
require that type parameter names be consistent among Java source
and any JML specification files, simply to aid comprehension.

The second task is to match the declarations within a class. Fields
have unique names, so they can be matched by name and their types
checked for equality, taking into account type parameters. Method
names are not unique and must be matched by signature, taking
into account type parameters of the class and any type parameters
declared for the method itself. (Thus refinement resolution must
occur after the type name portion of a compiler’s symbol table is
built; it cannot be a simple textual match.) This sort of generic
signature mapping is not needed in Java and must be implemented
by the JML tool itself. It is made simpler, and does not restrict
JML expressibility, if corresponding type variables have the same
names.

Proposal: The names of type parameters of a parameterized class,
interface or method must be the same in all JML specification files
for that program construct and must match those used in the Java
source file, if that is available. (This not strictly necessary, but is a
convenience for implementation.)

2.4 Type specifications

The type variables of a generic class are in scope in type specifi-
cation clauses such as invariants and constraints. It is conceivable
that, like generic methods, one may want to parameterize axioms,
invariants, constraints or initially clauses as well. The syntax would
be straightforward and would take this form:

axiom <T> (predicate);
Of the possibilities, parameterized axioms would appear to be the
most useful. Here is an example:

axiom <T> (JMLObjectSet.<T>EMPTY().size() == 0);
Experimentation may uncover good use cases that cannot be natu-
rally expressed without parameterization. The implications for the
encoding of specifications into the logic of target theorem provers
are unknown, however, so it is best to leave this potential feature as
experimental.

Proposal: Reserve the following syntax for parameterized axioms,
on an experimental basis, pending good use cases and practical
experience:
axiom-clause := axiom (predicate |

< TypeParameter [, TypeParameter]... > (predicate)) ;
where TypeParameter is a nonterminal defined in the Java Lan-
guage Specification.

2.5 Method specifications
Method specifications are in the scope of any class or method

type parameters, so type resolution needs to be applied just as it
would be for the formal parameters or in body of the method. Al-
though there are declarations in forall and old clauses, no addi-
tional parameterization of the specification appears to be useful.

There is one syntactic location where the JML grammar needs
embellishment: the callable clause. This clause tells what meth-
ods may be called by the method at hand. Methods are denoted by
their signatures, if necessary. Some disambiguation by type param-
eter may also be necessary. The current grammar for a callable
clause contains a list of method names that has the following gram-
mar, in part:
method-name-list := method-name [, method-name]...
method-name := method-ref [(param-disambig-list)]

| method-ref-start . *
We allow a method-name to be prefixed by an optional list of type
arguments, as in
method-name-list := method-name-gen [, method-name-gen]...
method-name-gen :=

[< ActualTypeArgument [, ActualTypeArgument]... >] method-name
method-name := method-ref [(param-disambig-list)]

| method-ref-start . *
where ActualTypeArgument is defined in the grammar for Java.

Proposal: Enhance JML to allow the syntax above for lists of meth-
ods in callable clauses.

2.6 Specification expressions

2.6.1 \TYPE

The \TYPE type is JML’s analog of the java.lang.Class type.
Originally \TYPE was distinct from java.lang.Class in order to
represent primitive types as well. However, Java evolved to rep-
resent primitive types as Class objects, so currently JML defines
\TYPE as fully equivalent to Class. With the introduction of generic
types, \TYPE could now be defined to be equivalent to Class<?>.

However, the Java runtime representation of class information
erases any type parameter information: both List<Integer> and
List<String> are simply represented as List<?>, for example.
Thus, in order to retain the full information available statically, it
would be better to define \TYPE as a fully reified combination of

28

the raw type information in Class<?> and the type arguments of a
specific instantiation of the raw type; the behavior of \TYPE can be
defined with appropriate axioms. Retaining this information would
allow static checkers to warn about type-unsafe usage in Java that
results in runtime exceptions.

In order to have the runtime JML behavior match the static anal-
ysis behavior, we need to define an executable representation of
this combined information. One possibility is to have \TYPE encap-
sulate the com.sun.mirror.type classes. A restriction with this
API is that it is meant to model the entities (e.g., types) in a spe-
cific declared program, rather than providing a facility to model
types in general. Consequently it appears easier to model Java types
straightforwardly as a separately declared executable class with ap-
propriate specifications for static reasoning and implemented using
Java APIs where they exist.

An expanded type system in JML may require some additional
explicit type operators, such as the ability to extract a type param-
eter from a type object or to construct a parameterized type. How-
ever, there is insufficient experience with the specification needs
with such a type system or with the proof rules that would be
needed to propose a design at this time. We leave that for future
work.

In the following sections we use Class<?> to mean Java’s cur-
rent runtime representation of class information (with erasure) and
\TYPE to mean a representation in JML that reifies all statically
declarable types.

Proposal: Represent \TYPE as an entity distinct from Class<?>,
reifying Java’s raw type information and the type parameter infor-
mation.

2.6.2 \type

The specification expression \type(t) is currently defined by
JML to be equivalent to t.class for a type name t. Java does
not allow applying .class to a type name with parameters, as in
List<Integer>.class. The runtime type literals do not retain the
type parameter information, although it is used for parsing and
typechecking. The expression \type(List<Integer>), however,
can be allowed. Thus it is consistent with the discussion of the pre-
vious section to define the type of \type(t) as \TYPE, allowing it
to hold all of the type parameter information in an expression such
as \type(List<Integer>).

Proposal: The type of \type is \TYPE. The value of \type(t) is
equivalent to t.class for any unparameterized type name t. We al-
low \type(t) for parameterized type names, even though the types
so represented cannot be expressed as Java class literals without
erasure occurring.

2.6.3 \typeof

The \typeof predicate returns the dynamic type (a value of type
\TYPE) of its argument. The argument may be of primitive type. Its
analog in Java is Object.getClass(). The value of \typeof(x) is

• undefined if x is null,
• equal to x.getClass() if x has nongeneric reference type,

and
• equal to t.class if x has primitive type t.

We maintain the definition of \typeof as returning a value of type
\TYPE. Then \typeof applied to an argument of parameterized type
can include the additional type information that getClass erases.

Proposal: The result type of \typeof is \TYPE; the expression is
undefined if the argument is null.

2.6.4 subtype operation (<:)
JML defines a binary operation <: between two \TYPE values

meaning “is a subtype of”. With the equivalence of \TYPE and
Class, JML defined t1 <: t2 as t2.isAssignableFrom(t1). With
the introduction of generics, isAssignableFrom no longer correctly
models subtype relationships as seen by the compiler. We can de-
fine <: to act on two \TYPE values, but the runtime implementation
of that operation must be separately implemented. Arguments that
represent primitive types can be treated uniformly; a primitive type
is not a subtype of anything but itself.

Proposal: The arguments of <: still have type \TYPE and can in-
clude the \TYPE representations of primitive types. The operation
is undefined if either argument is null.

2.6.5 \elemtype

The \elemtype function takes an argument of type \TYPE and
returns a value of type \TYPE. If the argument is an array type, the
result is the component type of that array. This is equivalent to
the method Class.getComponentType (for erased types). Conse-
quently it is convenient to also define \elemtype to return null if
the argument is not an array type, but undefined if the argument is
null. Note that the argument is expected to be an array type, not an
object of an array type. That is, the common use is, inconveniently,
\elemtype(\typeof(o)) for an object o, and not \elemtype(o).

Proposal: The argument and return types of \elemtype are
\TYPE; \elemtype is undefined if the argument is null; the value of
the expression is null if x.isArray() is false for an argument x.

2.6.6 \nonnullelements

The \nonnullelements predicate returns true if its argument is
both non-null and an array object all of whose elements are non-
null. It has been undefined if the argument is null or not an array
object. The semantics can be improved with better typing, such
as with the signature \nonnullelements(Object[] t) and corre-
sponding signatures for each primitive type. No specifically generic
method typing is needed. Multidimensional arrays are handled be-
cause any array is an instance of Object. The test for undefinedness
(because the argument is not an array) is now changed: it was a se-
mantic check on the argument’s dynamic type, but now is simply a
type check on the argument’s static type.

Proposal: Change the signature of the \nonnullelements function
to be a set of overloaded functions with argument types of Object[]
and t[] for each primitive type t.

2.6.7 set comprehension and JMLObjectSet

JML has a construct that allows the definition of new sets as
expressions. For example, we can write

new JMLObjectSet {Integer i; o.contains(i); i > 0},

where o is a Collection<Integer>. The value of this expression
is a JMLObjectSet that contains exactly the positive elements of o.

In current JML, the type of the result of a set comprehension is
org.jmlspecs.models.JMLObjectSet, which is a set of Objects.
However, the result type is in the process of being changed to
org.jmlspecs.lang.JMLSetType, an interface defined in the core
language package org.jmlspecs.lang. Any type that implements
JMLSetType may be named in the constructor portion of the set
comprehension expression. However, the type of the elements of
the set is known from the declaration inside the set comprehension
expression. The result should be a parameterized collection; in the
example, this would be

29

JMLObjectSet<Integer> s =
new JMLObjectSet {Integer i; o.contains(i); i > 0)}.

So, if C is the generic (without type arguments) type named after
the new token and T is the element type named in the declaration,
then the type of the result is C<T>, which then must implement
JMLSetType<T>.

Proposal: The JML model interface JMLSetType<E> is parameter-
ized by the type of its elements. The set comprehension expression
of the form

new C { T e; ...; ...}
has type C<E>, where E is T if T is a reference type and is
T ’s boxed equivalent if T is a primitive type, and where C<E>
must implement JMLSetType<E>. The model types JMLObjectSet,
JMLValueSet, and JMLEqualsSet would implement JMLSetType.

2.6.8 \lockset

The value of the \lockset keyword is the set of all objects whose
associated monitor is owned by the thread in which the \lockset
expression is evaluated. It currently has type JMLObjectSet, but
should now be JMLSetType<Object>.

Proposal: The type of \lockset is JMLSetType<Object>.

2.6.9 \max

The \max function takes a JMLObjectSet as an argument and re-
turns an Object. Typically the argument is \lockset. The value
of the expression is the object in its argument that is the largest
(measured by the lock ordering operation) of all the elements in the
argument set that are locked by the current thread. Corresponding
to previous changes, the signature of the \max function is best ex-
pressed as

<T> T \max(JMLSetType<T> o) .

Proposal: The signature of \max is
<T> T \max(JMLSetType<T> o).

The expression is undefined if the argument is null; the result is null
if the argument contains no objects locked by the current thread.

2.6.10 Autoboxing and the lock ordering operations
< and <=

JML overrides the less-than (<) and less-than-or-equal (<=) bi-
nary operations to apply to two Objects, returning a result accord-
ing to a user-defined ordering. This feature interacts with Java’s
auto-boxing. Specifically, the operations are now ambiguous when
the arguments are a primitive numeric type and its autoboxed equiv-
alent: for int i and Integer j, (i < j) could be either the nu-
meric comparison between i and the unboxed j or it could be the
lock-order operation between the boxed i and j. The operations are
also ambiguous between two numeric reference types: for Integer
i and Integer j, (i < j) could be either the numeric comparison
between the unboxed i and the unboxed j (as it would be in Java)
or it could be the lock-order operation between the i and j (as it
would be currently in JML without auto-unboxing).

Proposal: This issue is currently under discussion2, but the favored
resolution is to deprecate < and <= as the lock-ordering operators,
replacing them with the nonoverloaded new tokens <# and <#=.

2.6.11 autoboxing and class literals for \bigint and
\real

JML introduced two new types, \bigint and \real: \bigint
is the set of infinite-precision integers; \real models the real num-
bers. Both are intended to provide infinite-precision quantities from
2on the mailing list jmlspecs-interest@lists.sourceforge.net

mathematics to be used in specifications, rather than only the finite-
precision types from programming languages. Although the rele-
vant semantics has been a point of discussion, the definition of JML
is simplest if both are interpreted as primitive types. Then we also
need to define the boxed equivalents: java.lang.BigInteger and
a new model type org.jmlspecs.lang.JMLReal, respectively.

JMLReal would have a specification that is appropriate for real
numbers. Its runtime implementation necessarily needs to approxi-
mate the behavior of reals. Also, since there is no infinite-precision
primitive integer, the difference between primitive and reference
types for \bigint must be handled by the type checker, with the
executable implementation using BigInteger for both.

For each primitive type there is a corresponding class literal. It
is different but of the same type as the literal for its boxed type.
Thus int.class and Integer.class are unequal but both have
type Class<Integer>. The corresponding Class values are needed
for \bigint and \real. Class objects are typically obtained using
native methods from the underlying virtual machine, so one cannot
create Class objects for new kinds of primitive types. However, we
can model these new primitive types as \TYPE values.

Proposal: Define \bigint and \real as primitive types. Define
java.lang.BigInteger and org.jmlspecs.lang.JMLReal as the
corresponding boxed object types, with auto boxing and unboxing
conversions corresponding to the other primitive types. Model the
literals for these primitive types as \TYPE values. Chalin et al. [3]
has explored the implications of various semantics of numeric op-
erations in more detail.

2.6.12 \only_called

The arguments of the \only_called predicate are method sig-
natures. These must now be allowed to be parameterized method
signatures, with either specific types or wildcard types. The same
syntax is used for the method signatures as in the callable method
specification clause.

Proposal: The arguments of \only_called are now instances of
method-name-gen as defined in section 2.5.

2.7 Annotations
The annotation feature was a second major change in Java 1.5. In

this case existing usage was not changed, but a new capability was
created for describing properties of program constructs, and many
groups began experimenting with annotations expressing type con-
straints. In conjunction with annotations, the Java framework pro-
vides an API to process annotations as part of compilation. With
this API, additional syntactic or semantic checks can be performed
that are not part of the compiler (or of pure Java). A number of
annotation-related projects may influence the future of JML:

• JML tools are already experimenting with replacing mod-
ifiers in declarations (e.g., pure, non_null) with equivalent
annotations (@Pure, @NonNull) from a JML-specific annota-
tion package: org.jmlspecs.annotations.

• Taylor [1] experimented with using annotations for all JML
specifications. This requires specification expressions to be
String arguments to annotations. The approach is feasible but
incurs different usability issues than the current JML design.
Just as current JML must process comments containing ex-
tensions to Java expressions, an annotation-based specifica-
tion language would need to parse and type-check the String
arguments of annotations as extensions to Java expressions.
There is currently no compiler or annotation processing sup-
port for this language processing.

30

• The JSR-308 project [9, 11] seeks to allow annotations in
conjunction with any use of a type name in Java. This would
allow annotations to be used as type modifiers. Then sub-
types such as non-null types or readonly types could be eas-
ily defined and used uniformly; checkers for them could be
built using the annotation processing API, as pure extensions
to Java (as has been demonstrated).

• The JSR-305 project [10] seeks to standardize the naming of
annotations. Currently, similarly named annotations are used
by different groups for similar purposes, but with some dif-
ferences in semantics. For example, JSR-305 defines @Non-
Null, @CheckForNull, and @Nullable as three different nul-
lity related annotations, where JSR-308 and JML use just
two: @NonNull and @Nullable, and IntelliJ uses @NotNull
and @Nullable. This project would enable the expression of
many very specific custom specifications; some examples are
that the return value of a method should not be ignored, that
a numeric value is positive, that a numeric value is nonzero,
and that a collection (or string or array) is not empty.

Proposal: JML should migrate to using annotations instead of
modifiers, particularly if JSR-308 is adopted. (If not, current JML
syntax will need to be retained, at least for those syntactic loca-
tions where annotations are not allowed.) JML should continue to
investigate using annotations for a broader range of specifications.

In addition the JML community needs to engage with the broader
static analysis community in the following ways:

• JSR-308 will allow annotations to be used in more places
than they currently are and will allow annotations to replace
JML modifiers. It should be supported by the JML commu-
nity.

• Continue investigation into allowing annotations in other lo-
cations in order to support current JML specifications. JML
currently allows specifications as statements within method
bodies, statement modifiers, and declarations within classes.

• Common fully qualified names for annotations as advocated
by JSR-305 would be a good thing, as long as the seman-
tics are also the same. Using the same (unqualified) anno-
tation names with different semantics for different tools is a
nuisance, or even with the same semantics but in different
packages. There is not yet consensus on the appropriate se-
mantics for each standard annotation name (for example, for
nullity annotations).

• JML provides a general mechanism to express a large family
of specifications, with a goal of a broad view of static analy-
sis extending as far as possible toward software verification.
Annotations in general, particularly if names are standard-
ized by JSR-305, provide a means to define many specific
annotations, with a goal of enabling best-effort checks of
commonly used, quite specific, specification predicates. It
is an open question about how these two approaches should
coexist and what combination provides the best and most us-
able tools for the software developer and specifier.

Proposal: The JML community should engage more vigorously
with both JSR-305 and JSR-308 to enable outcomes that are mu-
tually beneficial and allow a good migration path for JML.

2.8 Other general changes to Java

2.8.1 Static import
The Java static import statement allows a compilation unit to use

static names from another class without qualifying them with a
class name. JML has a model import statement corresponding to
Java’s import. The types imported by a model import statement are
only available in JML statements and not in the Java program itself.
With the introduction of Java’s static import, JML’s model import
should also have a static option.

This is expected to have little effect on JML implementations.
In fact most implementations to date do not distinguish Java from
JML imports—all imported names are available in both parts of a
compilation unit. This is an incompleteness in the JML implemen-
tations, but it rarely causes trouble and problems can be worked
around by using fully qualified names.

A proper implementation of JML’s model import needs to keep
two namespaces of imported names: the Java namespace and the
Java+JML namespace. Neither the OpenJDK nor the Eclipse Java
compilers can be readily extended to do this. However, the problem
is no more difficult with the addition of static imports.

2.8.2 Enum types
The Enum type facility adds true type-safe Enum types to Java.

Presuming a JML implementation can use a Java compiler to parse
and typecheck JML expressions, this feature is available to JML
tools without additional implementation effort.

2.8.3 varargs
The varargs feature allows the declaration of methods that take

an arbitrary number of arguments (of the same type). A Java com-
piler will also provide this capability to JML tools. Keep in mind
that model methods should also have the varargs feature. Typically
these are parsed in the same way that Java methods are.

2.8.4 Enhanced for statement
The enhanced for statement causes no difficulties for JML tools

in itself. However, specifying it is a problem. Traditional while, do,
and for statements have an iteration variable that is available to and
almost always needed by the specifier in writing loop invariants.
For example, a simple for loop might be specified as follows:

int sum = 0;
//@ loop_invariant 0<=i && i<=10;
//@ loop_invariant sum == i * (i+1)/2;
for (int i=0; i<10; i++) {

sum = sum + i;
}

It is important to have the loop variable i available, so that the in-
variant can be written in terms of the iterations already completed.
The loop variant also needs the loop variable to be able to show that
the loop is making progress toward termination.

The enhanced for loop provides no such variable. An example
of such a loop is this:

int[] array = ...
int sum = 0;
for (int element : array) {

sum = sum + element;
}

The loop invariant we would like to write is

sum == (\sum int k; 0<=k && k<i; array[k]),

where i is the index of the next array element to be processed. But
this value is not available. Java provides two types of enhanced for

31

statements: one takes an array, as in the example above, the other
takes an object of type Iterable.

Spec# [6] has solved this problem by introducing a \values key-
word whose value is a sequence of all of the values that have been
iterated over so far. For Java and JML, I propose a corresponding
solution, but with two keywords.

• Associated with each enhanced for loop is a new keyword \index
of type int. The keyword represents the 0-based number of the
current iteration. For enhanced for loops based on arrays this is also
the index in the array of the current array value. The keyword is in
scope within the body of the loop and in the loop specifications just
prior to the loop. The value of \index begins at 0 and increments
until equal to array.length, for array-based loops. The keyword
may not be assigned to. Thus the example above is equivalent to
(were \index a valid Java variable)

int[] array = ...
int sum = 0;
for (int \index = 0; \index < array.length; \index++) {

int element = array[\index];
sum = sum + element;

}

We can specify our example as follows

int[] array = ...
int sum = 0;
/*@ loop_invariant sum ==

(\sum int k; 0<=k && k<\index; array[k]); */
//@ decreasing array.length - \index;
for (int element : array) {

sum = sum + element;
}

• A second new keyword is \values. This keyword would have
type org.jmlspecs.lang.JMLList<T>, where T is the type of the
iteration variable and Iterable<T> is the type of the iteration col-
lection. The value of \values is a sequence of the values returned
so far (prior to the current iteration) by the iterator (autoboxed if the
loop is an array-type loop and the array element type is a primitive
type). Thus

Set<Integer> set = ... // all positive integers
int max = 0;
for (Integer i : set) {

if (max<i) max = i;
}

would be specified as

Set<Integer> set = ... // all positive integers
int max = 0;
/*@ loop_invariant max == \values.size() == 0 ? 0 :

(\max int k; \values.contains(k); k); */
for (Integer i : set) {

if (max<i) max = i;
}

There are two alternatives for when the addition of the loop vari-
able’s value to the \values list occurs: (a) as part of the update
step (after the loop body is executed), or (b) immediately after the
value is extracted from the iterator. These two alternatives are be-
ing evaluated; the discussion below assumes the first design. Loop
invariants are the same in both cases. However, in (a), \index al-
ways equals the size of \values, but in the body of an iteration, the

current value of the loop variable is not yet in the \values list; if
the loop is exited by a break statement, that value will not be in the
list. In (b), extracted values are always in the list, but what is true
in an invariant is not necessarily true in the body, since \index and
\values are updated at different times. In the first design,

//@ loop_invariant ...
for (T element : array) {

... body ...
}

is equivalent to (where T’ is T or its boxed equivalent)

int \index = 0;
JMLList<T’> \values = ... (empty list of T’)...
T element;
for (; \index < array.length ;

\index++, \values.add(element)) {
... check loop invariant
element = array[\index];
... body ...

}
... check loop invariant ...

and

//@ loop_invariant ...
for (T element : iterable) {

... body ...
}

is equivalent to

int \index = 0;
JMLList<T> \values = ... (empty list of T)...
Iterator<T> iterator = iterable.iterator();
T element;
for (; iterator.hasNext() ;

\index++, \values.add(element)) {
... check loop invariant
element = iterator.next();
... body ...

}
... check loop invariant ...

Note that if the Iterable collection is known to have fixed size,
then something like list.size() - \values.size() makes an
appropriate loop variant. However, the size of an Iterable is not
necessarily known or fixed.

It is not strictly necessary to define both \index and \values
since (\index == \values.size()). However, \index is more
natural for loops that iterate over arrays, and it seems more readable
and easier for reasoning engines to use, hence the proposal here
is to define both keywords. If loops are nested, the \index and
\values keywords in the inner loop will hide the corresponding
keywords for an outer loop.

Proposal: Define the keywords \index and \values for enhanced
for loops with the semantics described above. Create a parameter-
ized interface JMLList<E> in org.jmlspecs.lang.

2.8.5 SuppressWarnings and nowarn

Java 1.5 introduced the java.lang.SuppressWarnings annota-
tion as a mechanism for user control over compiler warnings. The
arguments of the annotation name the warnings that then will not be
issued in the context to which the annotation applies. JML has had

32

a lexical construct, nowarn, that offered similar capabilities. Thus
the question: can java.lang.SuppressWarnings replace nowarn?

The short answer is partially. There is a key difference between
the two constructs. The nowarn token is lexical; it may occur any-
where in the source code and applies to the source code line on
which it appears. An annotation is constrained to appear in con-
junction with declarations and packages; the SuppressWarnings
annotation is allowed on type, field, method, constructor, param-
eter, and local variable declarations. It is also relevant that the
SuppressWarnings annotation has only source retention and is un-
available at runtime. The JSR-308 proposal would expand the use
of annotations to also be allowed on types anywhere they appear.

The warnings from JML tools are of two sorts. Some warnings
are compiler-like: misuse of various language constructs. Where
these are nonfatal, they can be suppressed just like compiler warn-
ings might be. The more important warnings from JML are runtime
or statically found assertion violations. These are associated with
nearly every JML construct and implicitly with many Java language
features. To be useful, a warning suppressor for JML needs (a) to
be more fine-grained than at the method declaration level, and (b)
to be able to be applied to any sort of specification construct. Thus
the SuppressWarnings annotation is not currently an adequate re-
placement for nowarn, although it can provide similar functionality
on a coarser scale. A Java annotation that could appear anywhere a
comment could appear would be very useful for JML.

Proposal: JML tools should recognize a common (to be agreed
upon) set of warning names for various kinds of assertion viola-
tions and recognize their use in SuppressWarnings annotations.
The nowarn construct should continue to be used (using the same
set of warning names) and should not be deprecated for now.

2.9 Model classes
JML contains a library of classes (in org.jmlspecs.models) in-

tended to model mathematical constructs and to be useful in speci-
fications. Consequently they are designed as types with immutable
values and pure, functional methods. The classes have specifica-
tions suitable for static analysis and implementations that can be
executed at runtime, although they are not necessarily efficient.

Many of these classes implement collections or related constructs
and they should be rewritten as generic classes or interfaces, similar
to the reimplementation of Java’s collection classes, but retaining
the design of immutable values. Specifically, the following should
be reimplemented (here # stands for one of Object, Equals, and
Value):

• Collection classes that should be parameterized by element
type:

JMLCollection, JML#Bag, JML#Sequence, JMLSetType,
JML##Pair (e.g., JMLEqualsObjectPair), JML#Set,
JML#To#Map, JML#To#Relation, JMLList#Node

• Other types needing generic parameters:
StringOfObject, JMLComparable, JMLIterator,
JMLModelObjectSet, JMLModelValueSet,
JMLValueBagSpecs, JMLObjectSequenceSpecs,
JMLValueSequenceSpecs, JMLValueSetSpecs

• Enumerations that should be converted to Iterators, with type
parameters:

JMLEnumeration, JMLEnumerationToIterator,
JML#BagEnumerator, JML#SequenceEnumerator,
JML#SetEnumerator, JML#To#RelationEnumerator,
JML#To#RelationImageEnumerator

• Comparison operations needing type parameters (similar to
java.lang.Comparable):

org.jmlspecs.models.resolve.*CompareTo

Although not directly a result of the move to generic types, the
model classes are not quite appropriately divided between the pack-
ages org.jmlspecs.lang and org.jmlspecs.models. The design
is that classes in org.jmlspecs.lang are needed by the language
features themselves. Consequently JMLSetType is there since it
is the type of a set comprehension expression and \lockset, and
JMLDataGroup is used for datagroups. In addition, JMLIterator
and JMLIterable are used by JMLSetType and should be in
org.jmlspecs.lang.

Proposal: The model classes should be reimplemented with generic
types. The generic versions should be placed in a new package,
org.jmlspecs.genericmodels. JMLIterator and JMLIterable
should be moved to org.jmlspecs.lang.

2.10 Existing specifications
There are many JDK classes with at least partial JML specifica-

tions (although many more are needed). Many of those classes,
particularly collection classes, became generic classes when the
language moved from 1.4 to 1.5. The JML specifications for those
classes now need to be ported as well. For the most part that work
is straightforward, but there is one interesting aspect.

Most of the specifications for nongeneric collections include a
ghost field \TYPE elementType, intended to hold the dynamic type
of the elements of the collection. This is now superseded by the
type parameter of the generic collection. Static analysis tools op-
erating on source code can readily use the type information of type
parameters. However, current Java erases the generic type infor-
mation in binary classes; expressions such as \type(E) or E.class
for a type parameter E are not legal. Thus runtime checking of JML
will still need the elementType information.

A runtime assertion checker might correct this deficit by pass-
ing the type information into constructors and generic methods as
additional parameters. A constructor expression such as, for exam-
ple, new HashSet<Integer>(), would effectively be rewritten as
new HashSet$(Integer.class); the type parameter information
would be stored in synthetic fields inside the class, equivalent to
the elementType specification fields. A solution such as this is a
matter for future research; it is expected to encounter tricky inter-
actions among proof rules, generic type systems, and Java’s current
type erasure.

Proposal: All of the existing JDK specifications need to be ported
to Java 1.5. The elementType ghost field previously used in col-
lection, enumeration and iteration types can be deprecated once
generic type information is retained in compiled Java. Interim run-
time assertion checking implementations can experiment with the
auxiliary method parameter solution described above for access-
ing type parameter information at runtime.

2.11 The compiler, syntax tree and annotation
processing APIs

The compiler, compiler tree and annotation processing APIs to-
gether offer a promising step toward better future JML tool gener-
ation. The annotation processing API allows user code to process
the parse trees of compilation units as parsing occurs. The tool can
choose to process all files or only those that are marked with rec-
ognized annotations. New compilation units can be generated and
entered into the parsing process. The compiler tree API allows the
ASTs to be traversed and inspected, and the compiler invocation
API allows programmatic control of the compilation process.

33

However, the current capabilities of these APIs are not yet suffi-
cient for easy construction of JML tools.

• JML needs to parse Java-like expressions, obtaining ASTs
representing expressions. Most of JML’s expression syntax
is the same as Java’s, but there are some JML-specific exten-
sions. There is as yet no facility either for extending the com-
piler or even for invoking the compiler on code fragments.
The fact that the public API ignores Java comments, which
is where JML specifications currently reside, is an additional
complication.

• JML needs to be able to use and extend the name resolution
and type checking capabilities of the Java compiler. Those
compiler phases happen after annotation processing is per-
formed, so there is currently no way (through the public API)
to apply type checking to the JML specification expressions
or to extend it for JML extensions.

• For runtime checking, a JML tool needs to modify the syn-
tax tree to represent the source code with assertion checks
included. The public APIs currently do not allow replacing
one compilation unit with a revision nor revising a compila-
tion unit’s AST directly.

However, if the extended parsing and typechecking problems were
resolved, the annotation processing API could enable static check-
ing, so future developments in these APIs are worth following.
Note that the functionality needed to implement static or runtime
checking for JML can be created by direct extension of the pub-
licly available OpenJDK source code, as tools such as the Checker
framework [9] and the OpenJML [12] project have done.

3. IMPLEMENTATION AND FUTURE
WORK

These enhancements to current JML are implemented on an ex-
perimental basis in the OpenJML project. OpenJML is a JML
parser and typechecker built by extending the OpenJDK 1.6 source
code. Porting the specifications of model types and the JDK is in
progress.

Evaluation of JML’s specification capabilities against industrial
code is an ongoing activity that is being carried out in the context
of some issues left unaddressed by this paper: the degree to which
full reification of parameterized types is a needed design choice, the
need for additional specification constructs for type manipulation,
the relationship between the goal of full verification and checks
of specific conditions (as, for example, by the FindBugs [5] tool),
and the appropriate use of the evolving Java APIs for implementing
static analysis tools.

4. CONCLUSIONS
The migration of JML to Java 1.5 and 1.6 has been mostly a task

of accommodating the generic type facility of the recent versions
of Java. The assessment described in this paper identified a number
of areas where typing changes of JML features and a conversion
to using generic types throughout JML would be beneficial. JML
extensions are needed in the enhanced for statement and changes in
the lock ordering operation; generics require some enhancements to
refinement resolution; and some careful design work is needed to
integrate JML’s additional primitive types and to model reified and
erased types statically and at runtime. Other changes to Java, such
as annotations and some new public APIs, may provide benefits as
they evolve, but are not ready to be used for implementing JML

itself or to replace existing JML features. Finally, the usefulness of
annotations and annotation processing has prompted a number of
projects to adopt annotation processing for static analysis; the JML
community should engage more fully with those efforts for mutual
benefit.

5. REFERENCES
[1] K. P. Boysen. A specification language design for the Java

Modeling Language (JML) using Java 5 annotations.
Technical Report 08-03, Department of Computer Science,
Iowa State University, 226 Atanasoff Hall, Ames, Iowa
50011, Apr. 2008.

[2] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. In T. Arts and W. Fokkink,
editors, Eighth International Workshop on Formal Methods
for Industrial Critical Systems (FMICS 03), volume 80 of
Electronic Notes in Theoretical Computer Science (ENTCS),
pages 73–89. Elsevier, June 2003.

[3] P. Chalin. JML support for primitive arbitrary precision
numeric types: Definition and semantics. Journal of Object
Technology, 3(6):57–79, June 2004.

[4] P. Chalin, P. R. James, and G. Karabotsos. An integrated
verification environment for JML: Architecture and early
results. In Sixth International Workshop on Specification and
Verification of Component-Based Systems (SAVCBS 2007),
pages 47–53. ACM, Sept. 2007.

[5] D. Hovemeyer and W. Pugh. Finding more null pointer bugs,
but not too many. In PASTE ’07: Proceedings of the 7th
ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pages 9–14, New York,
NY, USA, 2007. ACM.

[6] B. Jacobs, E. Meijer, F. Piessens, and W. Schulte. Iterators
revisited: Proof rules and implementation. In 7th Workshop
on Formal Techniques for Java-like Programs (FTfJP), July
2005.

[7] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for
Java. ACM SIGSOFT Software Engineering Notes,
31(3):1–38, Mar. 2006.

[8] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok.
How the design of JML accommodates both runtime
assertion checking and formal verification. Science of
Computer Programming, 55(1-3):185–208, Mar. 2005.

[9] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D.
Ernst. Practical pluggable types for Java. In ISSTA 2008,
Proceedings of the 2008 International Symposium on
Software Testing and Analysis, Seattle, WA, USA,
July 22–24, 2008.

[10] http://jcp.org/en/jsr/detail?id=305.
[11] http://jcp.org/en/jsr/detail?id=308.
[12] Unpublished information is available at

http://jmlspecs.svn.sourceforge.net/viewvc/
jmlspecs/OpenJML/trunk/OpenJML/README.

34

Using Analysis Patterns to Uncover Specification Errors

William Heaven Alessandra Russo
Department of Computing, Imperial College London

{william.heaven, ar3}@imperial.ac.uk

ABSTRACT
Developing or maintaining a formal software specification is a task
unfortunately prone to the accidental introduction of logical errors,
particularly inconsistencies. At worst, such errors can be danger-
ously misleading. For example, many software analysis tools that
require a formal specification as input produce false positives when
faced with inconsistency, making it more likely that developers
miss errors in the software. At the same time, most existing analy-
sis tools supporting specification development are not well suited to
the detection of inconsistencies without explicit direction from an
expert user. To address this shortcoming, this paper presents novel
analysis “patterns” that can automatically guide specifiers through
logical pitfalls of this kind by not only checking a given specifi-
cation formula, but recursively checking the subformulae of that
formula. By doing so, rather than present a specifier with poten-
tially misleading feedback, use of these patterns can automatically
ensure—without expert direction—that accidentally introduced in-
consistencies are uncovered.

1. INTRODUCTION
Formal software specification largely remains the exclusive and

sparsely-populated province of experts and enthusiasts due, in part,
to the demands placed on the practitioner. Formal (typically declar-
ative) specifications are prone to the accidental introduction of log-
ical errors, particularly inconsistencies, during their development.
Further, it is rarely the case that developing a specification is a
task done once, checked, and forgotten. In practice, as software
evolves, a specification must be extended with the addition of new
constituent formulae, making the introduction of logical error an
ongoing risk.

The difficulty is compounded by the fact that most specifications
of non-trivial software systems typically contain many logical in-
terdependencies and, therefore, the consistency of one part of a
specification is likely to be affected by changes to other parts. Cur-
rently popular specification languages for component-based soft-
ware (such as JML [15] and Spec� [1]) allow side-effect-free method
calls to be used as terms in specification formula. So, for example,
a side-effect-free method size() that returns an integer result could
be used in a specification formula such as size() < MAX. However,
while this specification-language feature has the great advantage of
affording a succinct and modular specification style, it exponen-
tially increases the number of dependencies between formulae in
a specification. For example, the consistency of any formula con-
taining the term size() will depend on the formulae in the method
specification for size(), which may in turn be expressed using side-
effect-free method calls and thus depend on the method specifica-
tions of those methods, and so on. Interdependencies of this sort,

where the specification for a method like size() may not be immedi-
ately visible from the contexts in which the term size() is used in a
formula, make it even harder to avoid introducing—and to notice—
logical errors.

There are many tools available for specification analysis ranging
from lightweight static- and runtime-checking tools to those that of-
fer the potential for more heavyweight verification [1, 3, 16]. How-
ever, most concentrate on analysis of the relation between spec-
ification and code and not on analysis of the specification itself.
Tools such as the SAT-based Alloy Analyzer [12] permit versa-
tile analyses of specifications but even the Alloy Analyzer provides
misleading feedback when analysing an inconsistent specification
unless expertly directed. This is because the results of a consis-
tency check will be positive (suggesting no inconsistency) when
the set of formulae in question are not only consistent but vacuously
consistent—“valid”—on account of inconsistent subformulae. For
example, a formula φ ⇒ ψ is valid if φ is inconsistent. In this
case, the logical error causing φ’s inconsistency is “hidden” by the
positive result of the consistency check.

What is needed are powerful automated tools to support the de-
velopers and maintainers of a specification. As a step towards this
goal, this paper presents a set of analysis “patterns” that guide spec-
ifiers through the pitfalls of logical analysis by not only checking
the consistency of a given specification formula but recursively
checking the subformulae of that formula. By doing so, rather
than present a specifier with potentially misleading feedback, use of
these patterns can automatically ensure—without expert direction—
that accidentally introduced inconsistencies are uncovered. An im-
plementation of these patterns, using the Alloy Analyzer as a back-
end, has also been developed [10].

The analysis patterns are presented in the context of satisfiability-
based analysis and, following a motivating example in Section 2,
some preliminaries to their presentation are set forth in Sections 3
and 4. Section 5 then presents the patterns themselves. An imple-
mentation is briefly discussed in Section 6 before briefly consider-
ing some related work in Section 7. Finally, Section 8 concludes.

2. MOTIVATING EXAMPLE
One problem in evolving software is that it is often possible to

adversely affect existing code by adding something new. Where
that new thing is a subtype, ensuring that the subtype is a behavioural
subtype [17] is a good way to avoid introducing undesirable be-
haviour. Behavioural subtyping effectively guarantees that the ad-
dition of a subtype does not affect the behaviour of the existing pro-
gram. A behavioural subtype can be substituted for its supertype
without observable difference in program behaviour. In specifica-
tion languages such as JML and Spec�, behavioural subtyping can
be enforced via specification inheritance whereby the specification

35

of a subtype implicitly includes that of its supertype [5].
Consider a Java class Queue with a boolean method insert(). If

entries is the data structure in Queue representing the queued el-
ements, a postcondition for insert() might be specified in JML as
follows (the JML specifications here are expressed using boolean
Java expressions plus the standard propositional operators and the
\old keyword denoting pre-state values; they appear between spe-
cial “/*@. . .@*/” comments):

/*@ ensures (result ==> contains(e))
&& (entries == \old(entries.add(e))); @*/

boolean insert(Entry e) { . . . }

This says two things. Firstly, that the boolean result of inserting
element e implies the boolean result of a call to contains() on the
same Queue object. Secondly, that entries after a call to insert() is
equal to entries before the call in all respects other than e’s addi-
tion. In other words, the only difference between post- and pre-state
entries is that e is added: all other elements in entries remain the
same.

Assume that an evolution of the software containing Queue in-
volves adding a subtype BoundedQueue which adds an extra method
size() and overrides insert(). These additions might be specified as
follows:

/*@ ensures size() == entries.size(); @*/
/*@ pure @*/ int size() { . . . }

/*@ also
ensures size() < \old(entries.size()) && size() <= MAX; @*/

boolean insert(Entry e) { . . . }

The specification for size() says that its integer result will always
equal the result of a call to the size() method of entries. Note also
that size() is specified to be side-effect free with the keyword pure.
This means that size() can be used as a term in the postcondition of
the overriding insert(). The also keyword highlights that this new
postcondition is considered in conjunction with the postcondition
of the overridden insert(). Thus, the postcondition of insert() in
BoundedQueue is the postcondition of the overridden method plus
the above, which says that the size of the queue after a call to in-
sert() is less than the pre-state value of entries.size() and less than
or equal to some given value MAX (it is assumed, without going
into detail, that when the queue is already full the insertion does
not take place and the size of the queue does not change).

For BoundedQueue to be a behavioural subtype of Queue, the
postcondition of insert() in BoundedQueue must imply the post-
condition of insert() in Queue. This should be enforced by the fact
that the overriding insert() includes the postcondition of the over-
ridden insert() and the implication can be checked in a tool such as
the Alloy Analyzer. As might be expected, the result given by the
Alloy Analyzer in this case is that the implication is valid.

However, this positive result is misleading because it hides a log-
ical error in the specification of insert() in BoundedQueue. This
postcondition says that following a call to insert(), the size of the
queue is less than the pre-state value of entries.size(), which is in-
consistent with the specification of size() and the existing insert()
postcondition. Following a call to insert() the size of the queue
cannot be less than the pre-state value of entries.size().

What is needed to uncover hidden specification errors in cases
such as this is a means to analyse not only the top-level formula
but also its subformulae. Specification errors are often not detected
explicitly through a consistency check of top-level formulae alone.

In this case, an automated analysis should detect not only that the
implication is valid (vacuously consistent) but further investigate
the subformulae of the analysed formula—the constituent formulae
not only of the insert() method specification but also of the size()
method specification—to uncover the source of the validity, which
for an implication is possibly an inconsistent antecedent.

3. SATISFIABILITY VALUES
Establishing the consistency of a specification formula can be

considered an instance of the Boolean Satisfiability Problem (SAT)
[18, 8]. A formula φ in a specification language with a well-defined
semantics is said to be satisfiable iff there is a possible assignment
of values in that semantics to the terms of φ (variables, constants,
and side-effect-free method calls) that makes φ true. Conversely, φ
is said to be unsatisfiable iff there is no such assignment, i.e., for
every possible assignment φ is false. Henceforth, s will denote the
value satisfiable and u will denote the value unsatisfiable.

Satisfiability analysis in practice has well known limitations and
automatic decision procedures for deciding satisfiability tend to be
incomplete. While these limitations will be touched on briefly in
Section 6, an ideal satisfiability procedure, or “oracle”, will be as-
sumed for clear and succinct presentation of the analysis patterns.
This oracle is deemed to be sound and complete.

Definition 1 (Satisfiability Oracle). Let Φ denote the set of formu-
lae in a specification language. An ideal satisfiability procedure, or
oracle, is represented by the function SAT : Φ → {s, u} such that,
for a given formula φ ∈ Φ, SAT (φ) = s iff φ is satisfiable and
SAT (φ) = u otherwise.

For a formula φ, s (φ) will denote that SAT (φ) = s and u (φ)
will denote that SAT (φ) = u.

The single query SAT (φ) is sufficient to decide whether s (φ)
or u (φ). Further, if a formula φ is unsatisfiable, i.e., false for all
assignments, then ¬φ must be true for all assignments. A formula
that is true for all assignments is said to be valid. Therefore, to
discover that φ is unsatisfiable is also to discover that ¬φ is valid.
On the other hand, if a formula is only true for some assignments
but not all, i.e., there are some assignments for which its negation
is true, then the formula is said to be contingent. Thus, discovering
that φ and ¬φ are both satisfiable is to discover that both are contin-
gent. Finally, if a formula φ is known to be satisfiable, ¬φ cannot
be valid because this would contradictorily require φ to be unsat-
isfiable. Therefore, a value of not valid can be established, dual to
satisfiable (satisfiable is of course equivalent to not unsatisfiable).
The values valid, contingent, and not valid can be defined in terms
of SAT.

Definition 2 (Valid, Contingent, and Not Valid). Given a formula
φ, φ is valid iff u (¬φ); φ is contingent iff both s (φ) and s (¬φ);
and φ is not valid if s (¬φ).

The values valid, contingent, and not valid will be denoted by v,
c, and v̄, respectively. Further, for a formula φ, v (φ) will denote
that φ is known to be valid, c (φ) will denote that φ is known to be
contingent, and v̄ (φ) will denote that φ is known to be not valid.

If knowing the satisfiability of both φ and ¬φ is to have full
information regarding the satisfiability of φ (and, symmetrically,
regarding the satisfiability of ¬φ) and knowing the satisfiability of
φ but not ¬φ (or, conversely, ¬φ but not φ) is to have partial in-
formation regarding the satisfiability of φ, then it can be said that
knowing neither the satisfiability of φ nor ¬φ is to have no informa-
tion regarding the satisfiability of φ. If nothing is known about the

36

〈v, u〉

���
��

��
��

〈s, s〉

��
���

��
��

���
��

��
��

〈u, v〉

��
���

��
��

〈s, ∼〉

��
��

���
��

〈∼, s〉

��
��

���
��

〈∼, ∼〉

(a) Pairs of formula and negation

v

��������� c

���������

��������� u

���������

s

��������� v̄

���������

∼

(b) Satisfiability values

Figure 1: Orderings for (a) pairs of formula and negation and
(b) satisfiability values

satisfiability of φ or ¬φ the value of both formulae can be given the
value not known. The value not known will be denoted by ∼ and,
for a formula φ, ∼ (φ) will denote that no value for φ or ¬φ is yet
known. Summing up, the set of satisfiability values can be defined.

Definition 3 (Satisfiability Values). The set of satisfiability val-
ues is the set SatVal = {v, c, u, s, v̄, ∼}. The satisfiability variable
ν ranges over SatVal. A satisfiability claim for a formula φ is an
expression ν (φ) in which ν is instantiated with one of the values
in SatVal.

For example, the satisfiability claim v (φ) is true iff φ is known
to be valid and the satisfiability claim ∼ (φ) is true iff no satisfia-
bility value for φ is known.

The three possibilities with respect to knowing the satisfiability
of a formula and its negation, viz., full information, partial infor-
mation, and no information, provide the basis for a partial ordering
of satisfiability values according to what might be called informa-
tion content. The partial ordering of satisfiability value pairs for
a formula φ and its negation is shown in Figure 1 (a). The more
information contained in a pair of values, the higher the pair is in
the ordering. For instance, the pair 〈∼,∼〉 represents having no in-
formation about the satisfiability of either φ or ¬φ, the pair 〈∼, s〉
represents the information that ¬φ is satisfiable, and the pair 〈s, s〉
represents the information that both φ or ¬φ are satisfiable.

Certain possible pairings are obviously omitted, some because
they are redundant. The four pairs 〈∼, v〉, 〈∼, u〉, 〈u,∼〉 and 〈v,∼〉
are omitted because in each case the value ∼ can trivially be re-
placed by v or u according to the value of the other element in the
pair. For example, the ∼ in 〈∼, v〉 can immediately be replaced by
u since if ¬φ is true for all assignments then φ is true for none.
Similarly, the two pairs 〈u, s〉 and 〈s, u〉 are omitted because in
each case the value s can be replaced by v. Finally, the four pairs
〈v, v〉, 〈u, u〉, 〈s, v〉 and 〈v, s〉 represent impossible situations. For
example, a formula cannot be valid if its negation is satisfiable.

The ordering of Figure 1 (a) can also be represented with respect
to the values of SatVal, as in Figure 1 (b). A partial ordering is thus
defined for SatVal .

Definition 4 (Ordering of Satisfiability Values). The set SatVal is
partially ordered according to information content as follows:

v > s, c > s, c > v̄, u > v̄, s > ∼, v̄ > ∼

For all values ν1, ν2 ∈ SatVal, ν1 is said to be more precise (resp.
less precise) if and only if ν1 > ν2 (resp. ν2 > ν1).

The ordering is assumed to have the usual concept of least up-
per bound, i.e., for two values ν1, ν2 ∈ SatVal, the least upper
bound of ν1 and ν2, written ν1 � ν2, if defined, is the unique value
ν3 ∈ SatVal such that ν3 ≥ ν1 and ν3 ≥ ν2 and for all other values
ν4 ∈ SatVal, if ν4 ≥ ν1 and ν4 ≥ ν2, then ν4 ≥ ν3. For example,
s � ∼ = s, s � v̄ = c and v � v = v, but v � c, v � u, and
c � u do not exist.

4. OBTAINING SATISFIABILITY VALUES
It was noted that the single query SAT (φ) decides only whether

s (φ) or u (φ). However, in certain cases satisfiability values other
than s and u can be obtained through inference. For example, if
the result s (φ) has been previously established, then a new result
s (¬φ) would allow both c (φ) and c (¬φ) to be inferred. Or, if
the new result is u (¬φ), then v (φ) can be inferred. A full al-
gebra defining the possible inferences for the values in SatVal is
documented in [10]. The patterns of analysis described in the next
section make use of a lookup table that records satisfiability values
for formulae as they are discovered during analysis. The lookup ta-
ble is a map from formulae to satisfiability values, obtained either
by satisfiability queries or inferred from previous results. Initially,
all formulae are mapped to the value ∼.

Definition 5 (Satisfiability Lookup Table). A satisfiability lookup
table is a map SATTable : Φ → SatVal from formulae to satisfiability
values.

The value of a formula φ can now be obtained by querying either
the satisfiability oracle or the lookup table. Either way, it is desir-
able to obtain the more precise value. For example, when querying
the satisfiability value of φ, if SAT (φ) = s but SATTable (φ) = v
(which would be the case when the more precise value v had been
previously inferred for φ), then the value v should be taken, since
v > s. Given two satisfiability values, ν1 and ν2, the most precise
value obtainable is the least upper bound of the two, i.e., ν1 � ν2.
Note that the most precise value need not in fact be either ν1 or ν2.
For example, if ν1 = s and ν2 = v̄, then the least upper bound,
and therefore most precise value obtainable, is c. A lookup table
is sound in the sense that the least upper bound always exists for a
given update. The following function gives the value of a formula.

Definition 6(Obtaining the Satisfiability Value of a Formula). Given
an oracle SAT and satisfiability lookup table SATTable, the function

GetVal : Φ → SatVal

gives a satisfiability value for a formula, such that, for all φ ∈ Φ

GetVal (φ) = SAT (φ) � SATTable (φ).

However, as new values are learnt for a formula φ, a lookup table
may need to be updated so that the value obtained through GetVal
is always the most precise value yet discovered in a given analysis.
Occasionally, a value may be inferred for a formula during analysis
that is less precise than that already recorded in the lookup table.
For example, if a conjunction φ1∧φ2 is found to be satisfiable, it is
implied that the conjuncts φ1 and φ2 are also satisfiable. However,

37

if lookup table already maps φ1 to v, then this entry should not be
updated with the value s. The lookup table mapping should never
be updated with a value for φ that is less precise than its existing
value. An appropriate update function is defined below.

Definition 7(Lookup Table Update). For a formula φ, satisfiabil-
ity value ν ∈ SatVal, and lookup table SATTable, an updated lookup
table SAT′

Table is given by the function Upd (SATTable, φ, ν) such that

Upd (SATTable, φ, ν) = SATTable ⊕ φ �→ ν

iff ν > SATTable (φ). Otherwise Upd (SATTable, φ, ν) = SATTable.

5. PATTERNS
Application of the analysis patterns starts with the analysis pat-

tern for the top-level formula being queried. As analysis moves
to the subformulae of the formula in question the patterns are ap-
plied recursively according to the top-level connective of whatever
subformula is currently being analysed. Each satisfiability query
for a formula φ is represented by ? (φ). Each satisfiability query
? (φ) is resolved by a corresponding call to GetVal (φ), the result
of which determines the next formula to be analysed as dictated
by the patterns. The progression of satisfiability queries from for-
mula to formula is not necessarily a linear sequence. It is often the
case that analysis of a formula branches into parallel analyses of its
subformulae.

There is an analysis pattern for each of the propositional connec-
tives common to most popular specification languages (e.g. JML,
Spec�, Alloy): Negation Pattern, Conjunction Pattern, Disjunction
Pattern, and Implication Pattern. While it may be possible to con-
sider only a basic set of patterns in which implication and either
conjunction or disjunction are reducible to the remaining connec-
tives, the full set is presented here for clarity. Analysis of an impli-
cation in particular is less straightforwardly presented without its
corresponding pattern.

Analysis of a given formula is guided step by step by repeated
application of the patterns, beginning with the pattern that matches
the root connective of that formula. For example, the pattern match-
ing formulae of the form φ1 ⇒ φ2 dictates that φ1 and ¬φ2 should
be checked for satisfiability if φ1 ⇒ φ2 is valid. Where applica-
tion of a pattern identifies that a formula is valid or unsatisfiable
due to a valid or unsatisfiable subformula, analysis terminates with
a warning accompanied by a reference to the subformulae in which
a potential error may reside. There is also a pattern for atomic
(connective-free) formulae known as the Base Pattern. Application
of the Base Pattern to a contingent atomic formula results in de-
fault (i.e., warning-free) termination of a decompositional analysis
process.

The patterns are represented as the decision diagrams shown in
Figures 3–7. In these diagrams, a non-terminal node represents a
satisfiability query, e.g., ? (φ), and, for two nodes A and B, a tran-
sition from A to B represents an application of GetVal (φ), where
φ is the formula contained in the satisfiability query of A. Transi-
tions are labelled with a satisfiability value in SatVal. A transition
labelled with satisfiability value ν is taken from a node represent-
ing the satisfiability query ? (φ) iff GetVal (φ) = ν. For example,
a transition labelled v is taken from a node representing the satis-
fiability query ? (φ) iff GetVal (φ) = v. Where there are multiple
transitions from node A to node B, a single transition is shown but
with multiple labels.

The notation used in the diagrams of Figures 4–7 is summarised
in Figure 2. Non-terminal nodes are depicted as shown in Fig-
ure 2 (a). The start node of each pattern is known as the pattern
root and depicted as shown in Figure 2 (b). A pattern root repre-

(a) ? (φ)
Node representing the satisfiabil-
ity query ? (φ).

(b) ? (φ)
Start Root node for the pattern matching

φ.

(c) !
ν (φ)

Terminating node signalling a
warning with diagnostic informa-
tion ν (φ).

(d) ? (φ)

Node representing application of
the pattern matching φ with no dis-
covered value, i.e., current lookup
table is not updated.

(e) ν (φ)

Node representing application of
the pattern matching φ with the dis-
covered satisfiability value ν, i.e.,
current lookup table is updated with
the mapping φ �→ ν.

(f) Default terminating node.

Figure 2: Summary of Pattern Notation

sents a satisfiability claim for a formula whose top-level connective
is matched by the pattern. For instance, the root of the Implication
Pattern (Figure 7) contains the satisfiability claim ? (φ1 ⇒ φ2).
A pattern is said to be applied to the formula in its root and the
formula in the root is known as the root formula of the pattern.

A terminal node in a pattern is known as a pattern leaf. There
are three kinds of pattern leaf:

• Leaf signalling a warning
• Leaf representing an application of a further pattern
• End leaf

A leaf that signals a warning is depicted as shown in Figure 2 (c).
If application of a pattern terminates with a warning, it signals a
potential specification error. A warning is issued in the following
cases:

• An atomic formula is valid
• An atomic formula is unsatisfiable
• An implication is valid due to an unsatisfiable antecedent
• An implication is valid due to a valid consequent

For example, if an atomic formula contains a pure method term it
will be unsatisfiable if the pure method term is undefined for all
program assignments. Further, an atomic formula can be valid if it
contains a pure method term whose precondition and postcondition
are valid. A warning node also contains diagnostic information in
the form of a satisfiability claim. For example, in the application
of an Implication Pattern to a formula φ1 ⇒ φ2, a warning may be
issued with the satisfiability claim u (φ1) indicating that the root
formula is possibly valid due to an error in the specification of φ.

A leaf that represents an application of a further pattern is de-
picted as shown in Figure 2 (d)-(e). Such a termination of a pattern
means that the pattern for the formula φ should be applied to in-
vestigate further. The node may contain a satisfiability query, as in
Figure 2 (d), indicating that the satisfiability value of φ may not be
known. However, in some cases, application of the pattern leading

38

!
v (φ)

? (¬φ)

? (φ)

!
u (φ)

Start

s

c

s, c

u

v

u

Figure 3: Base Pattern

to this leaf node may have provided a value for φ. In this case,
the leaf node may contain a satisfiability claim, e.g., v (φ), as in
Figure 2 (e). This indicates that the given satisfiability value, e.g.,
v, is entered into the satisfiability lookup table for φ, i.e., a new
mapping SATTable

′ = SATTable ⊕ φ �→ v is constructed. In this
way, information about the satisfiability of formula is accumulated
through recursive application of the patterns. Finally, an end leaf is
depicted as shown in Figure 2 (f). An end leaf appears only once,
in the representation of the Base Pattern, and represents default ter-
mination of an application of the patterns.

Base Pattern. The Base Pattern (Figure 3) is applied to atomic
formulae. If an atomic formula φ is unsatisfiable (i.e., GetVal (φ) =
u), the transition labelled u is taken from the pattern root and a
warning is issued signalling the unsatisfiability of φ. Similarly, if φ
is known to be valid (i.e., GetVal (φ) = v), the transition labelled
v is taken and a warning is issued signalling the validity of φ. If φ
is known to be contingent (i.e., GetVal (t) = c), the transition la-
belled c is taken and application of the pattern ends normally since
a term being true in some states and false in others is as expected.
Otherwise, φ is only known to be satisfiable (i.e., GetVal (t) = s),
and the transition labelled s is taken. In this case, the negation of
φ is then checked for satisfiability to determine whether or not φ
is valid. If ¬φ is satisfiable (or known to be contingent, as indi-
cated by the label s, c), then φ is contingent and no warning need
be issued: application of the pattern terminates normally. But if ¬φ
is unsatisfiable, then φ is valid and, as above, a warning signalling
the validity of φ is again issued. Note that the check for the sat-
isfiability of ¬φ is included in the Base Pattern and not treated as
an application of the Negation Pattern. This is to avoid cycling be-
tween the Base Pattern, which given φ checks ¬φ, and the Negation
Pattern, which given ¬φ checks φ.

Negation Pattern. The Negation Pattern (Figure 4) is applied
to formulae of the form ¬φ. Application of this pattern permits the
exploration of whether or not ¬φ is valid or unsatisfiable and hence,
conversely, whether or not φ is unsatisfiable or valid. If a formula
¬φ is unsatisfiable (i.e., GetVal (¬φ) = u), the transition labelled
u is taken from the pattern root. Since φ has been discovered to be
valid, the pattern matching the formula φ is applied to investigate
further. If ¬φ is known to be valid (i.e., GetVal (¬φ) = v), the
transition labelled v is taken and since φ is discovered to be unsat-
isfiable, the pattern matching the formula φ is applied to investigate
further. If ¬φ is known to be contingent (i.e., GetVal (¬φ) = c),
then φ must be contingent. Though a formula φ is expected to
be contingent, valid and unsatisfiable subformulae can still hide

u (φ) v̄ (φ)

? (¬φ) c (φ)

v (φ)

Start

v

c

s

u

Figure 4: Negation Pattern

v (φi)
1 ≤ i ≤ n

v̄ (¬(φ1 ∧ . . . ∧ φn))»
s (φi)

1 ≤ i ≤ n

–

? (φ1 ∧ . . . ∧ φn)
s (φi)

1 ≤ i ≤ n

? (φi ∧ . . . ∧ φj)
for all

{φi, . . . , φj}
⊂ {φ1, . . . , φn}

Start

s

c

u

v

Figure 5: Conjunction Pattern

beneath a contingent formula, so φ may be investigated further
through application of its pattern. Otherwise, ¬φ is known only
to be satisfiable (i.e., GetVal (¬φ) = s), implying that φ cannot
be valid (though possibly unsatisfiable), i.e., v̄ (φ). φ can again be
further investigated through application of its pattern. Note that the
Negation Pattern does not check the negation of its root formula
since analysing ¬¬φ is of course equivalent to analysing φ, which
would be redundant given that φ is always next analysed through
application of its pattern.

Conjunction Pattern. The Conjunction Pattern (Figure 5) is
applied to formulae of the form φ1 ∧ . . . ∧ φn. Application of
this pattern decomposes a conjunction into its conjuncts to identify
whether the conjunction is valid or, if it is unsatisfiable, which con-

39

? (φi ∨ . . . ∨ φj)
for all

{φi, . . . , φj}
⊂ {φ1, . . . , φn}

v̄(¬(φ1 ∨ . . . ∨ φn))

? (φ1 ∨ . . . ∨ φn)
v̄ (φi)

1 ≤ i ≤ n

u(φi)
1 ≤ i ≤ n

Start

s

c

u

v

Figure 6: Disjunction Pattern

juncts or combination of conjuncts are unsatisfiable. If φ1∧. . .∧φn

is unsatisfiable (i.e., GetVal (φ1 ∧ . . .∧ φn) = u), the transition la-
belled u is taken from the pattern root. However, it is not necessar-
ily the case that any single conjunct is unsatisfiable. Investigating
further by simply applying the pattern for each conjunct is insuf-
ficient since a conjunction can be unsatisfiable even though each
conjunct is satisfiable in isolation. This is because two conjuncts φi

and φj, say, may be inconsistent. In other words, φi may imply ¬φj

and vice versa. To investigate an unsatisfiable conjunction further,
the patterns for all arbitrary subsets of conjunct are applied. In this
case, no value for each combination is yet implied.

On the other hand, if φ1 ∧ . . . ∧ φn is known to be valid (i.e.,
GetVal (φ1 ∧ . . . ∧ φn) = v), the transition labelled v is taken.
This transition implies that each conjunct φi is valid and the va-
lidity of φi, for 1 ≤ i ≤ n is investigated through application
of its pattern. If φ1 ∧ . . . ∧ φn is known to be contingent (i.e.,
GetVal (φ1 ∧ . . . ∧ φn) = c), the transition labelled c is taken. For
the conjunction to be contingent, no conjunct can be unsatisfiable,
i.e., either v (φ) or c (φ) for each φi. Moreover, since it is known
that the conjunction is not valid, at least one conjunct (and possibly
all) must be contingent. However, which conjuncts are contingent
and which valid, if any, cannot be determined without further ap-
plication of the patterns for each φi. The most that can be stated at
this point about each φi is that it is not unsatisfiable, i.e., s (φi).

Finally, if φ1 ∧ . . . ∧ φn is known only to be satisfiable (i.e.,
GetVal (φ1 ∧ . . . ∧ φn) = s), the pattern for its negation is applied
to determine whether or not φ1∧ . . .∧φn is valid. The lookup table
can here be augmented in two ways. First, with the value v̄ (not
valid) for ¬(φ1 ∧ . . . ∧ φn) since the root formula is known to be
satisfiable, and second, with the value s for each φi since, if the
conjunction is satisfiable so are each of its conjuncts. In Figure 5,
this second update is shown in parenthesis.

Disjunction Pattern. The Disjunction Pattern (Figure 6) is ap-
plied to formulae of the form φ1∨ . . .∨φn. Application of this pat-
tern decomposes a disjunction into its disjuncts to identify whether
the disjunction is valid or unsatisfiable, and if valid, which disjuncts
or combination of disjuncts are valid. The Disjunction Pattern is
the dual of the Conjunction Pattern in that the valid (resp. unsatisfi-
able) case of the Disjunction Pattern is the dual of the unsatisfiable
(resp. valid) case of the Conjunction Pattern. Considering each case
in turn, if φ1∨. . .∨φn is unsatisfiable (i.e., GetVal (φ1∨. . .∨φn) =
u) the transition labelled u is taken from the pattern root. For the
disjunction to be unsatisfiable all disjuncts must be unsatisfiable
and the pattern for each φi, 1 ≤ i ≤ n is applied to investigate
further. The lookup table is updated to map each φi to the value u.

If φ1∨. . .∨φn is known to be valid (i.e., GetVal (φ1∨. . .∨φn) =
v) the transition labelled v is taken. Note that φ1 ∨ . . . ∨ φn may
be valid not only on account of a valid disjunct, but because two
disjuncts φi and φj, say, may be inconsistent such that φi implies
¬φj and vice versa. Therefore, to investigate a valid disjunction
further, the patterns for all arbitrary subsets of disjunct are applied.
No value for each combination is implied so the lookup table is not
updated for any φi ∨ . . . ∨ φj.

If φ1∨. . .∨φn is known to be contingent (i.e., GetVal (φ1∨. . .∨
φn) = c), the transition labelled c is taken. Since the disjunction
is not valid, no disjunct can be valid (i.e., v̄ (φi), for 1 ≤ i ≤
j ≤ n) and the lookup table is updated with the value v̄ for each
φi before applying the pattern for each φi to investigate further.
Finally, if it is known only that φ1 ∨ . . . ∨ φn is satisfiable (i.e.,
GetVal (φ1 ∨ . . . ∨ φn) = s) and the transition labelled s is taken.
To determine whether or not the root formula is valid the pattern
for ¬(φ1 ∨ . . . ∨ φn) is applied. Again, in this case, it is known
that no disjunct can be valid and the lookup table is updated to map
each φi to v̄. Note that this case is the dual of the unsatisfiable case
in the Conjunction Pattern.

Implication Pattern. The Implication Pattern (Figure 7) is ap-
plied to formulae of the form φ1 ⇒ φ2. Application of this pattern
investigates whether its root formula is valid because of an unsat-
isfiable antecedent or valid consequent or, if the root formula is
unsatisfiable, why the antecedent is valid and consequent unsatisfi-
able. If φ1 ⇒ φ2 is unsatisfiable (i.e., GetVal (φ1 ⇒ φ2) = u),
both transitions labelled u are taken from the pattern root. For the
implication to be unsatisfiable, φ1 must be valid and φ2 must be un-
satisfiable. The validity of φ1 and the unsatisfiability of φ2 can be
investigated further through application of the respective patterns
for each.

If φ1 ⇒ φ2 is known to be valid (i.e., GetVal (φ1 ⇒ φ2) = v),
both transitions labelled v are taken. The validity of the root for-
mula must be due either to the validity of φ1 or the unsatisfia-
bility of φ2 (or both). On one branch, the satisfiability of φ1 is
checked. If φ1 is unsatisfiable, a warning is issued indicating that
φ1 ⇒ φ2 is valid on account of an unsatisfiable antecedent. Other-
wise, if φ1 is found to be any of valid, contingent or satisfiable (i.e.,
GetVal (φ1) ∈ {s, v, c}), the formula can be investigated further
through application of its pattern. If new values for φ2 and ¬φ are
known, the lookup table is updated. On the second branch labelled
v, the satisfiability of ¬φ2 is checked. If ¬φ2 is unsatisfiable, a
warning is issued indicating that φ1 ⇒ φ2 is valid on account of a
valid consequent. Otherwise, if ¬φ2 is found to be any of any of
valid, contingent or satisfiable, i.e., GetVal (φ1) ∈ {s, val, c}, the
formula φ2 is not valid and it can be investigated further through
application of its pattern. Again, if new values for φ2 and ¬φ are
known, the lookup table is updated.

On the other hand, if φ1 ⇒ φ2 is known to be contingent, i.e.,
GetVal (φ1 ⇒ φ2) = c, the transition labelled c is taken from

40

!
u (φ1)

s (φ1) c (φ1)

v (φ1) ? (φ1)

? (φ1 ⇒ φ2) ? (¬(φ1 ⇒ φ2))

v (φ1) u (φ2)
∼ (φi)

i ∈ {1, 2}

u (φ2) ? (¬φ2)

!
v (φ2)

v̄ (φ2) c (φ2)

Start s

s, c
u

u

v

v

c

u

u

s
c

v

u

v

c
su

Figure 7: Implication Pattern

the pattern root. In this case, nothing is known about the values
of φ1 and φ2, further investigation may be carried out through ap-
plication of the patterns for these formulae. Finally, if φ1 ⇒ φ2

is known only to be satisfiable, i.e., GetVal (φ1 ⇒ φ2) = s, the
transition labelled s is taken and the satisfiability of the negation of
the root formula is checked. If the negation is satisfiable, the root
formula and its negation are contingent and the patterns for φ1 and
φ2 may be applied. If the negation is unsatisfiable, then φ1 ⇒ φ2

is discovered to be valid and the steps described above are taken.

6. IMPLEMENTATION AND EVALUATION
A prototype tool has been developed to evaluate the effectiveness

of the patterns in practice. The tool automatically analyses formu-
lae of a specification language called Loy, which is essentially a
subset of JML. Details of Loy and the tool are given in [10]. The
tool harnesses the SAT-solving capabilities of the Alloy Analyzer
by encoding Loy specifications into the Alloy input language and
then running satisfiability queries on this encoding. The results of
this analysis are then fed back to the user in terms of the original
Loy specification.

Returning to the example of Section 2, it is now possible to il-
lustrate how an automated pattern-driven analysis can uncover the
hidden inconsistency introduced during the evolution of the method
specification. For clarity, some of JML’s ascii syntax is ignored in
the following (e.g. ⇒ is written for ==> and ∧ for &&). The
top-level formula to be analysed is the implication to test that the
postcondition of insert in BoundedQueue implies that of insert in
Queue. The Implication Pattern is applied to this formula and the
first satisfiability query finds it to be satisfiable. The branch la-
belled s is taken from the start node and so the satisfiability of the
formula’s negation is queried next. The negation is found to be un-
satisfiable. At this point, the Implication Patten splits and analysis
of the antecedent and consequent continue in parallel. Satisfiability
of the antecedent is queried and it is found to be unsatisfiable:

u ((result ⇒ contains(e)) ∧ entries = \old(entries.add(e)
∧ size() < \old(entries.size()) ∧ size() ≤ MAX))

Here, the tool issues a warning to the user, with the information that
the original formula is valid, or vacuously satisfiable, on account of
its inconsistent antecedent. Along the other branch, satisfiability
of the negation of the consequent is queried, which is found to be
satisfiable:

s ((result ⇒ contains(e)) ∧ entries = \old(entries.add(e)

At this point, the Conjunction Pattern can be applied to both the
antecedent and the consequent to investigate the inconsistency of
the former and to check whether the latter is vacuously satisfiable
or contingent. In the prototype tool, automated analysis pauses
here and the user prompted for continuation. It is likely that a user
would be more interested in pursuing analysis of the inconsistent
antecedent. Automated application of the Conjunction Pattern finds
the inconsistent formulae to be size()< \old(entries.size()) and en-
tries = \old(entries.add(e)) (part of this step is the application of
the Base Pattern to ascertain that these formulae are not internally
inconsistent, i.e., that the method specifications of size() or add()
are not individually inconsistent). Further automated applications
of the Conjunction Pattern to the formulae in the specifications of
size() and add() identifies the inconsistency to be the following:

entries.size() > \old(entries.size()) ∧ size() < \old(entries.size())
∧ size() == entries.size())

The user should hopefully now see that the inconsistency is due
to a typo in the evolved specification of insert(): the new postcon-
dition from Section 2 should read

size() > \old(entries.size()) && size() <= MAX

with a > instead of < in the first conjunct.
The soundness and completeness of pattern-driven analysis in

practice of course depends on the soundness and completeness of
the SAT-solver used in a given implementation. The Alloy Anal-
yser is sound but not complete (the tool can run out of memory
while undertaking certain queries). Practical considerations aside,
pattern-driven analysis can be considered complete insofar as it ter-
minates and finds the satisfiability values for any propositional for-
mula and its subformulae. It will also issue a warning for any valid
or unsatisfiable formula. Further, pattern-driven analysis can be
considered sound insofar as the satisfiability values found for any
propositional formula and its subformulae are correct, since these
will come either from SAT or a sound inference from previous re-

41

sults [10].
Finally, the complexity of a pattern-driven analysis can be ex-

ponential. The worst case is the Conjunction Pattern, which may
direct analysis through an exhaustive querying of each combination
of conjunct in the root formula to determine a source of inconsis-
tency. However, application of the Conjunction Pattern does not
always take this branch and only does so when an inconsistency is
present.

7. RELATED WORK
The concept of patterns to support an activity is of course not

new. Design patterns [7] now provide handy templates for pro-
grammers across the world. Even in the area of formal specifica-
tion, the idea of providing patterns to support specifiers has been
considered before [6]. However, the patterns presented here are not
patterns to be used by programmers or specifiers but the founda-
tion of an automated analysis framework. They are templates for
sound decision procedures whose implementation can be hidden
from users.

Recent work on helping users of specification analysis tools avoid
being misled by feedback includes [4] and [13], both dealing with
JML. [4] presents an extension of an existing JML static checking
tool which warns a user whenever a term in a precondition formula
is undefined, thus avoiding cases where a method is spuriously re-
ported to meet its specification simply because its precondition is
unsatisfiable. The analysis patterns presented in this paper address
similar concerns but are far more general in their application, since
they check the satisfiability of arbitrary (propositional) formulae
rather than focus on a particular cause of unsatisfiability such as
undefinedness. [13] suggests including unsoundness and incom-
pleteness disclaimers in feedback from automated analysis tools so
that users are less likely to have misplaced confidence in feedback
from unsound or incomplete analyses. Similar in spirit to the use
of analysis patterns, this approach would be complementary to a
patterns-based analysis toolset.

The notion of checking for vacuity is not new. For example, [2]
addresses a form of vacuity checking in work on hardware verifica-
tion. In the broader software verification setting, work also exists
on catching vacuity in temporal model checking [14, 9].

Finally, the work in this paper is a greatly extended version of
that published in [11]. This earlier work introduced the idea of
analysis patterns but considered only cases of satisfiability and un-
satisfiability. A contribution of the present paper is the definition of
a lattice of six satisfiability values, which are used during pattern
application. The feedback available from an application of the new
analysis patterns therefore exceeds that provided by the previous
versions.

8. CONCLUSION
This paper presented a set of automatable analysis patterns that

constitute a framework for automated analysis of software specifi-
cations. The difficulties faced by developers and maintainers of a
specification could be greatly reduced by an automated specifica-
tion management environment. The analysis patterns and their pro-
totype implementation are a step towards the provision of such an
environment. In particular, the analysis patterns allow many hidden
logical errors to be uncovered automatically, without need for ex-
pert direction and without offering misleading feedback. Due to a
lack of space, two patterns for first order formulae (the Universal-
and the Existential Quantification Pattern [10]), which primarily
catch errors due to empty domains, have not been discussed here.

Further work will involve evaluating the approach with a full

specification language such as JML, perhaps by extending an ex-
isting toolset. This would allow the scalability of the approach to
be explored. Work in [10] on inference of satisfiability values from
previous results could also be extended to provide further support
for pattern-driven analysis. The more values that can be inferred,
the fewer calls to a SAT-solver and the quicker an analysis. In addi-
tion, a non-trivial case study must be undertaken to investigate the
limitations of the approach in application to industrial-scale speci-
fications in practice.

Acknowledgements The authors wish to thank Michael Huth for
his many comments on the work in this paper.

REFERENCES
[1] M Barnett, R Leino, and W Schulte. The Spec�

Programming System: An Overview. CASSIS, 2004.
[2] Derek L. Beatty and Randal E. Bryant. Formally Verifying a

Microprocessor Using a Simulation Methodology. DAC,
1994.

[3] L Burdy, Y Cheon, D Cok, M Ernst, J Kiniry, G Leavens,
K Leino, and E Poll. An Overview of JML Tools and
Applications. STTT, 2005.

[4] P Chalin. Early Detection of JML Specification Errors Using
ESC/Java2. SAVCBS, 2006.

[5] K Dhara and G Leavens. Forcing Behavioral Subtyping
Through Specifcation Inheritance. ICSE, 1996.

[6] M Dwyer, G Avrunin, and J Corbett. Property Specification
Patterns for Finite-State Verification. FMSP, 1998.

[7] E Gamma, R Helm, R Johnson, and J Vlissides. Design
Patterns: Abstraction and Reuse of Object-Oriented Design.
Lecture Notes in Computer Science, 707, 1993.

[8] J Gu, P Purdom, J Franco, and B Wah. Algorithms for the
Satisfiability (SAT) Problem: a Survey. Satisfiability
Problem: Theory and Applications, 1997.

[9] Arie Gurfinkel and Marsha Chechik. Extending Extended
Vacuity. FMCAD, 2004.

[10] W Heaven. Object-Oriented Specification: Analysable
Patterns and Change Management. PhD Thesis, Dept. of
Computing, Imperial College London, 2007.

[11] W Heaven and A Russo. Enhancing the Alloy Analyzer with
Patterns of Analysis. WLPE, 2005.

[12] D Jackson. Software Abstractions. The MIT Press, 2006.
[13] J Kiniry, A Morkan, and B Denby. Soundness and

Completeness Warnings in ESC/Java. SAVCBS, 2006.
[14] Orna Kupferman and Moshe Y. Vardi. Vacuity Detection in

Temporal Model Checking. STTT, 1999.
[15] G Leavens, A Baker, and C Ruby. Preliminary Design of

JML: A Behavioral Interface Specification Language for
Java. Software Engineering Notes, 31(3), 2006.

[16] LIFC. JML-Testing-Tools. http://lifc.univ-fcomte.fr/jmltt/.
[17] B Liskov and J Wing. A Behavioral Notion of Subtyping.

TOPLAS, 1994.
[18] M Prasad, A Biere, and A Gupta. A Survey of Recent

Advances in SAT-Based Formal Verification. STTT, 7(2),
2005.

42

Extensions of the theory of observational purity
and a practical design for JML

David R. Cok
Eastman Kodak Company

Research Laboratories
1999 Lake Avenue

Rochester, NY 14650 USA
david.cok@kodak.com

Gary T. Leavens
School of Electrical Engineering and Computer

Science
University of Central Florida
4000 Central Florida Blvd.

Orlando, FL 32816-2362 USA
leavens@eecs.ucf.edu

ABSTRACT
To prevent erratic behavior during runtime checking, JML only al-
lows assertions to call pure, i.e., side-effect free, methods. How-
ever, JML’s notion of purity checking is too conservative. For ex-
ample, Object’s equals method needs to be used in assertions, but
some classes use side effects in their equals method to maintain
hidden caches or to trigger lazy evaluation, and so these methods
cannot be pure in JML’s sense. To handle such cases JML and
similar interface specification languages need a less conservative
notion of pure methods. In this paper we apply and slightly ex-
tend the existing theory of “observationally pure” methods to JML,
and explain our language design. This design is practical and ac-
commodates common uses. Our extension of current theory pro-
vides appropriate encapsulation combined with inheritance, invari-
ants, method specifications, frame conditions, secret helper meth-
ods, and multiple sets of secret state locations. We also introduce
a semantics for static analysis that preserves correctness without
imposing non-interference.

Keywords: specification languages, runtime assertion check-
ing, documentation, tools, observational purity, query method, pure
method, formal methods, program verification, programming by
contract, Java language, JML language, OpenJML, OpenJDK.

1. INTRODUCTION

1.1 Motivation
Subroutines, or methods, are a useful and important abstraction

mechanism in both programming and in specification. Using the
methods of an object-oriented programming language in design-
by-contract style specification languages (such as Eiffel [13], JML
[10, 8], and Spec# [3]) avoids duplication between program code
and specification and improves understanding. For example, spec-
ifications often use methods that extract values from objects (e.g.,
getX) and that compare the values of objects (e.g., equals in Java).

However, using program methods in specifications causes sev-
eral potential problems. Operationally, it is important to prevent

Copyright (c) 2008 by David R. Cok and Gary T. Leavens

runtime assertion checking from observably changing the results
of a program, as side effects from assertion checking would greatly
complicate debugging [13, 8]. Mathematically, formal verification
is easiest when specifications are simple and direct, and thus do
not involve feedback between the meaning of the specification and
the program being specified. Thus, for both dynamic and static
checking, methods that have no effect on a program’s state are most
suitable for use in specification, as they map neatly to simple math-
ematical abstractions. For these reasons JML only allows “pure”
Java methods to be used in assertions.

However, our specification experience is that JML’s current re-
strictions cause serious problems. One problem is Object’s equals
method in Java. This method is key to the specification of Java’s
Collection subtypes, since programs use it to decide when ele-
ments are equivalent. Thus specifications need to call this method,
and hence in JML it must be pure. But, due to JML’s specification
inheritance [7], specifying Object’s equals method as pure means
that in all subtypes of Object, i.e., in all types, it must be pure.
However, there are several examples of equals methods in Java
libraries and applications that are not pure [10].

Thus what is needed is a weaker notion of purity that allows such
examples but still guarantees safe runtime checking and allows for
simple mathematical modeling.

1.2 Observational Purity
Several researchers [2, 4, 14] have noted this problem and in-

vestigated the theory of observationally pure methods, which have
limited and well-encapsulated effects on a program’s state. The
state changes made by such methods are hidden from the bulk of
the program, and thus such methods can be used safely in speci-
fications. However, verifying that such changes do not cause in-
terference with other computations in the program is difficult. To
date there is no interface specification language with a practical
and implemented design allowing observationally pure methods to
be called in specifications.1 This lack is a serious impediment to
writing specifications on a large scale (e.g., for the JDK libraries)
and to progress in using static verification on real-world software.

Observational purity is one of a number of levels of purity that
have been identified in past discussions [1]: strong purity – no side
effects (besides consumption of time, acquiring and release of stack
space); weak purity – allocation and modification of new objects al-
lowed; and observational purity – confined changes to the program
state allowed. JML’s pure annotation corresponds to weak purity.
Observational purity is the focus of this paper, hence for brevity we

1There have been some beginnings of implementation in Spec# [3]
and by Cok in JML.

43

class Super {
//@ protected normal_behavior
//@ ensures \result >= 0;
protected /*@ spec_public pure @*/ int computeValue() {

int i = 0; /* ... expensive code ... */
return i;

}

//@ public normal_behavior
//@ ensures \result == computeValue();
public /*@ query @*/ int getValue() {

return computeValue();
} }

class Cache extends Super {
/*@ secret*/ private int cachedValue; //@ in getValue;
/*@ secret*/ private boolean isCached = false;

//@ in getValue;

/*@ secret private invariant isCached ==>
(cachedValue == computeValue()); */

public /*@ query */ int getValue() {
if (!isCached) {

cachedValue = computeValue();
isCached = true;

}
return cachedValue;

}

@Secret("getValue")
public /*@ pure @*/ boolean isCached() {

return isCached;
} }

Figure 1: Caching a value that is expensive to compute.

will often shorten “observationally pure” and “observational pu-
rity” to “opure” and “opurity.”

The classic example (discussed by others also, e.g., [2, 9]) of an
opure method uses a cache, as shown in Fig. 1 (ignore the JML an-
notations, contained in comments, for now). In the figure, method
getValue() computes some value; the computation, performed by
computeValue(), is expensive and may be needed more than once.
In the superclass, computeValue() is called each time. In the sub-
class, when the method is first called the computation is performed
and the result stored in a private location; on subsequent calls, the
stored value is returned. If not for the assignment to the private field
cachedValue, the subclass’s getValue() method would be weakly
pure and thus readily used in a specification. To complicate mat-
ters, the superclass’s getValue() method is weakly pure, but a call
to getValue() may invoke the subclass’s method, which has side
effects.

Despite these complications, getValue() is opure, and so could
be used in a specification, since the locations it modifies are neatly
encapsulated within class Cache, and it seems that they have no in-
fluence on the execution of a calling program. But we need mech-
anisms to guarantee that the alteration of program state does not
change the result of any future computations, such as through the
use of isCached().

A more complex example is a shared database. For example,
one could cache the results of several methods in a shared database
that maps tuples of arguments to computed results. In this case,
we need to guarantee both that storing one result does not affect

others and that knowledge of whether a result is stored does not in-
appropriately affect the program’s execution. Here, the information
intended to be secret is not so neatly encapsulated.

1.3 Goals and Problem
Our main goal is to allow some use of opure methods in specifi-

cations. This usage must allow safe runtime assertion checking and
have a simple and consistent semantics for static verification. That
is, runtime assertion checking must guarantee that the side effects
of executing a specification do not observably affect the execution
of the program. Furthermore, the semantics of static verification
must be usable and consistent with program executions that per-
form assertion checks during runtime.

We would like to preserve other goals of JML [8] as well. To
the extent possible we want to continue to use JML to specify Java
programs as they are written, without constraining valid programs
to some Java subset. In particular, we prefer not to require a specific
use of Java visibility modifiers in order to accommodate opurity.

1.4 Contributions
In brief, our solution follows previous work [2, 4, 14] by allow-

ing opure methods to be used in specifications; the keyword query
declares such methods. The portion of the program state that a
query method may modify is declared using secret and is called
secret state, since we wish it to be unobserved by the remainder of
the program [4]. The remainder of the program state is open.

This paper makes the following contributions toward solving the
practical problems of observational purity:

• we propose a specific application of current theory to a lan-
guage design in JML;

• in the process we identify two issues with the current theory;
• we extend the current theory to accommodate multiple pieces

of secret state, inheritance, invariants and method specifica-
tions, frame conditions, and secret helper methods;

• we introduce a semantics for static analysis that preserves
correctness while not imposing non-interference;

• and we identify areas of concern needing additional work.

2. PREVIOUS WORK
Although the limitations of JML’s requirement that methods used

in specifications be weakly pure are well known [9], only recently
has significant effort been applied to the theoretical foundations of
opurity. The theoretical work to date consists of a family of papers
[2, 4, 14] with two threads of work, drawing on background work in
simulation, information security, encapsulation, and representation
independence. We will summarize that work here and draw on it
heavily. For formal details and proofs, the reader is encouraged to
consult the cited papers.

The theory concentrates on determining when side-effects of run-
time assertion checking do not affect the execution and correctness
of a program. To do so, we define a relationship � (read as cou-
pled) among program states (Naumann’s D-simulation, Barnett et
al.’s C-simulation), such that states for which we expect the same
behavior are related. For example, since weakly pure operations
allocate new objects and change locations within such newly allo-
cated objects, a coupling relation for weak purity would be such
that if h � k, then for all locations reachable from the domain of
h, corresponding locations are in k with the same values, allowing
only newly allocated objects in k and their fields to differ.

To define a suitable coupling relation �S that ignores the side-
effects of opure methods on secret state S, one could imagine re-
lating any two states h and k that differ only in their values for the
fields S (and are thus equivalent in their open state). But this turns

44

out to be too loose a condition. The secret portions of program
state cannot be allowed to be arbitrarily different in general (unless
that secret state is not used at all). Usually the secret state needs
to be consistent in some manner with the open state. Technically,
this condition is imposed by requiring that �S is an observational
congruence that is preserved by all statements and methods. Be-
ing an observational congruence for statements means that when-
ever h �S h′, each well-formed statement C preserves �S (in the
sense that executing C in h produces state k, then executing C in
h′ produces state k′ and k �S k′). This preservation is enforced
differently, depending on access to S:

• Each well-formed statement that does not directly access S
must preserve �S . This condition prohibits �S from ex-
posing information about the structure of the secret part of
the heap, S, and requires it to be an equivalence relation on
open parts of the heap. This condition implies that, whenever
h �S k, each expression that does not itself mention S re-
turns the same value when run in both h and k, and that each
method that does not access S also preserves �S .

• Each method that directly accesses S must be shown to pre-
serve �S , and hence these methods cannot expose informa-
tion about S to their callers. Since invariants can be formu-
lated as boolean-valued methods, all invariants that relate the
secret state to the open state must also be preserved by �S .

The prior work generally describes the �S relation as parame-
terized by a class; however we define �S with respect to a set of
fields, S, that constitute the secret state.

Methods are related by ≈S if executing them on related (�S)
states produces related states. Note that a method is not neces-
sarily ≈S to itself, if it makes use of the differences in the secret
state. Naumann shows that for weakly pure assertions, and given
that there are no language constructs that expose the structure of
the heap, replacing assert Q by skip in any context does indeed
preserve equivalence of states, and thus weak purity is acceptable
in specifications.

The theory continues with a definition of opure expressions. An
expression E is observationally pure with respect to S if there is a
coupling relation �S such that execution of E preserves �S . That
is, E only causes changes within S and those changes are consis-
tent with the invariants that are part of the definition of �S .

To summarize this discussion of the prior work so far, a method
m with side-effects on a portion S of the program state may be
used in an assertion without jeopardizing correctness under the fol-
lowing circumstances:

(a) for each pre-state h (which includes m’s arguments), the ex-
ecution of m on h produces a post-state k such that h �S k,
and

(b) every method of the program (including m) preserves �S .

The two threads of theoretical work diverge at the point of check-
ing condition (a).

Equivalence to weak purity.
In Naumann’s work [14], opurity is demonstrated by the follow-

ing result:
Suppose expressions (or procedures) M and N , acting re-
spectively on states h and h′, where h �S h′, produce states
k and k′, where k �S k′. Then if N terminates when M
does and N is weakly pure, then M is observationally pure.

Thus to demonstrate opurity of a method, it is sufficient to find
another method that is weakly pure and preserves coupling rela-
tionships as defined above.

Information flow.
In Barnett et al.’s work [2], opurity is demonstrated by an infor-

mation flow analysis. In this case, one demonstrates that the result
of executing a method is independent of any secret information to
which the method may have access. An information flow analysis
on the body of the method tracks which fields hold secret informa-
tion, how that secret information is propagated, and how it affects
control flow, in order to assure that the result of the method is not
influenced by secret information.

That alone is too strict. In our cache example of Fig. 1, we def-
initely do want to be able to return the content of the secret cache
when appropriate, as getValue() does. Hence Barnett et al. allow
a method to return secret information if it can be demonstrated that
the secret information is equivalent to information that is open.

3. OBSERVATIONS ON THE THEORY

3.1 Adjustments
In our view, the details of the theory described in the previous

section could be profitably adjusted in two areas.
A minor issue is that the definitions given for observational pu-

rity in the related work do not explicitly require the returned result
to be independent of secret state. This is an omission in Naumann’s
paper [14](Defs. 4.2, 5.3). In Barnett et al.’s work [2], opurity re-
quires an accompanying simulation; it is not possible to define such
a simulation if the purportedly opure method returned a result that
varied with secret state. However, listing the requirement explicitly
in the definition makes for easier static checking than if it is simply
implicit in the required simulation.

Second, both papers do not consider executions in which some
assertions are false, as they rely on a semantics of assert in which
the assert statement does not terminate if the assertion expression
is false. Barnett et al. [2] explicitly state that they only consider
terminating computations; thus, only computations in which all
assertions are true are considered. This vacuously precludes the
possibility that an assertion might become false because of side ef-
fects of runtime checking. However, that is an important possibil-
ity that should be ruled out. Furthermore, in JML’s runtime asser-
tion checker, a false assertion does not terminate the program, but
throws an exception. While technically JML’s semantics also does
not specify anything after such an exception (because the exception
is a subtype of java.lang.Error), in practice one might continue
to execute after catching the exception, and thus the program might
check further assertions after it occurred.

3.2 Static Checking
The theoretical work described above focused on runtime check-

ing. It derived conditions under which any side effects of execut-
ing assertions would have no effect on the open program state (up
to an equivalence relation). However, this is a stronger condition
than is needed for static checking. In static checking we need only
know that using an opure method call in a specification does not
make the meaning of what it specifies vary, depending on secret
state. It is possible that executing an assertion would change the
program state significantly and observably and yet the meanings of
all specifications would remain unaffected and the program would
always run correctly. That is, the stronger condition established by
the simulation arguments in the prior work is sufficient to prove
that correctness is maintained, but may not be necessary for correct
static verification.

There has already been work on the semantics of using strongly
and weakly pure methods in specifications [1, 6]. It is straightfor-
ward to replace the invocation of a program method m with a call

45

to an uninterpreted logical function f (whose arguments may in-
clude the program heap and the receiver object). The properties of
f are given precisely by the specifications of m: f is well-defined
when m’s preconditions are satisfied and m terminates normally;
the result of f is constrained only by m’s normal postcondition.
Thus an axiom for f can be created and used in verification against
a specification that calls m. In the following, we call this semantics
the weakly pure semantics.

What semantics should be used for calls to an opure method m′?
A simple, intuitive semantics is to ignore the side effects of m′ and
produce the corresponding uninterpreted function f ′ and axioms
exactly as in the weakly pure semantics. This is equivalent to re-
placing a call to m′ by a call to a weakly pure method that has the
same specifications as m′.

However, the weakly pure semantics does not necessarily match
the behavior of runtime checking. To precisely model the complete
execution of runtime checks, all specifications become assumptions
and assertions, and methods in specifications are treated precisely
as methods in program code are treated: locations that might have
been modified by a method call are havocked - treated as undeter-
mined except for the constraints of invariants or postconditions.

Recall that open methods may not reference secret state except
through opure methods, and the results of these methods may not
depend on secret state. Furthermore no presumptions are made
about the secret portion of the pre-state other than that invariants
are satisfied. Thus nothing in the execution of an open method can
depend on the status of the secret state. It follows that prohibiting
opure methods from directly referring to secret state in their pre-
and postconditions guarantees that the weakly pure semantics can
be soundly used for opure method calls in open methods.

The prior theory prohibits opure methods from being used in
specifications in contexts that manipulate secret state, since such
methods may themselves modify secret state, so non-interference
cannot be assured. We argue below that soundness of static ver-
ification is preserved, even though non-interference is not, when
query methods are used in invariants and method specifications of
opure methods, so long as the method specifications do not also re-
fer to secret state. In that case the same arguments as above hold,
namely that a weakly pure semantics for opure methods is equiva-
lent to a runtime semantics, for opure and secret methods.

Thus we conclude that, provided some restrictions are followed,
in static verification one can safely model opure methods using the
weakly pure semantics. The restrictions are that secret information
cannot be accessed in opure method specifications and opure meth-
ods may not be used in assertions in the bodies of opure and secret
methods that refer to the same secret state.

3.3 Theoretical extensions
The previous work has laid an excellent theoretical foundation.

However there are some practical issues that require adapting and
extending the results summarized above. Some additional points,
unaddressed in this paper, are discussed in Sec. 6.
• Both of the main related works [2, 14] primarily use the class as
the encapsulation unit. That is too coarse for practical use. The
secret information is often restricted to one or just a few methods
in a class and is not directly used by other methods. Hence, as both
papers anticipate, we will define a smaller encapsulation unit.
• All of the previous work discusses the situation with secret state
declared in just one class. In practice, a program will declare many
pieces of secret state, associated with many different objects, and
direct access to these pieces of secret state may occur in over-
lapping regions of the program. Note particularly that we define
pieces of secret state as potentially associated with individual ob-

jects, rather than with a static declaration of a class or set of fields;
in this way, operations on an object do not necessarily affect the
secret state of other objects. We must ensure that the theory (and
our language design) still applies in such situations.

• Naumann’s work [14] prohibits all methods from exposing the
values of secret state in a class, as this is required for proofs of
observational purity via simulation outside that class. This is an
overly strong restriction that we relax. For example, a class may
define some helper methods that expose and manipulate secret state
and that are intended to be used only within the implementation of
opure methods.

4. APPLICATION TO JML
We apply the theoretical results above by making a number of

modifications and translations within the context of JML.

4.1 Syntax
JML retains the pure modifier to mean weakly pure, as before.

We add to the grammar of JML as follows.

• There are two new modifiers, secret and query, so the non-
terminal jml-modifier [11] now has the additional options
secret and query.

• In the package org.jmlspecs.annotations there are new
annotation types: Secret and Query. Each may take a sin-
gle argument, named value (so the key may be omitted) that
is a String naming a secret datagroup; the default value of
the parameter is an empty String. The name may be fully
qualified or it may be unqualified. An unqualified name is,
as usual, made into a fully qualified name by prepending the
fully qualified name of the class containing the annotation.

As an example, the code in Figure 1 is annotated according to
the proposed design.

4.2 Design and Semantics
This subsection describes the basic components of our design for

JML and basic semantic checks.
The intent of our design is to partition the set of fields into two

groups, open and secret, and to partition the set of methods into
three groups: an open group that does not directly manipulate secret
state, a secret group that can abstract manipulation of and access to
secret state, and a query group that can also access and manipu-
late secret state, but in a way hidden from calling methods. Secret
fields and methods constitute, use, or expose secret state. Query
methods are intended to be opure. All methods and fields that are
not annotated with query or secret are open.

4.2.1 Modifiers Themselves
The secret modifier is equivalent to a Secret annotation with

no argument; these may be applied only to declarations of the fol-
lowing:

• a field, including datagroups, ghost and model fields, and
• a method (but not a constructor).

The Secret annotation with an argument can only be applied to
method declarations.

The query modifier is equivalent to a Query annotation with no
argument. The query modifier or annotation may be applied only
to declarations of a class, interface, or a method; neither may be
applied to a constructor or a field declaration.

46

4.2.2 Secret Fields and Datagroups
Groups of secret fields are used to define encapsulation bound-

aries for opurity. This is a difference from related work on opu-
rity, which uses classes. Since JML already uses subtype-extensible
“datagroups” [12] to group fields for purposes of specifying frame
axioms (i.e., what fields a method may modify), we reuse this con-
cept to group fields for defining encapsulation boundaries. Nontriv-
ial datagroups are typically declared as model (specification only)
fields. JML also has a type JMLDataGroup that can be used to de-
clare such model fields. Note that instance (non-static) datagroups
are associated with individual objects, not with the class as a whole.

A secret datagroup is declared using the Secret annotation or
modifier on the datagroup’s declaration. A field f is a secret field
if it is declared using the Secret annotation or modifier.

A secret datagroup may contain only secret fields or other secret
datagroups. A field must be in a secret datagroup and may not be
in an open datagroup.

For a given query method we require there to be a secret data-
group G that contains the (secret) fields that constitute the secret
state and that the query method might modify. As we will see,
methods must be declared as either secret or query for datagroup G
if they directly access (i.e., read or write) members of G.

Secret fields may not be used in the program or specifications of
open methods; secret fields may not be used in the method specifi-
cations of query methods.

4.2.3 Pure and Query Types
A type, i.e., a class or interface, may be declared using the key-

word pure in JML. Such a type is called a pure type. In a pure type
all methods not declared as query methods are implicitly declared
to be pure [11].

We extend this convention to the Query annotation: in a query
type, all methods not declared as pure are implicitly declared as
query methods with the same query keyword or annotation.

(We do not allow secret types.)

4.2.4 Pure Methods
Weakly pure methods are still declared using pure. However, the

current rules for (weakly) pure methods are changed slightly.
A method is a pure method iff it either: (a) has a pure modifier

or annotation, (b) overrides or implements a pure method, or (c) is
declared in a pure type and neither overrides a query method nor
has a query modifier or annotation.

4.2.5 Secret Methods
A method declared with the secret annotation (or modifier) indi-

cates that the method can directly access and modify some secret
datagroup in a way that need not be opure.

A method m is a secret method for datagroup G if one of the
following holds.

• Method m is declared with the annotation @Secret("G").
• Method m is declared with the secret keyword or with the

annotation @Secret (with no arguments), and all the methods
that m overrides are secret methods for datagroup G.

Note that if a secret method does not override a secret method,
it must use an annotation that names a datagroup. This datagroup
must be visible whenever it is used. Thus, if a method is declared
secret for G in multiple interfaces and classes, the datagroup G
must be visible at all the declaration sites.

A secret method may not override or be overridden by a non-
secret method.

A method may not be both a query method and a secret method
for the same datagroup.

Secret methods may not be used in the program or specifications
of open methods; secret methods may not be used in the method
specifications of query methods.

Finally, it must be shown that any changes by a secret method to
open state must be independent of the secret state. For this we re-
quire that any such changes be specified using open computations.

4.2.6 Query Methods
A method declared with the query modifier or annotation indi-

cates that the method must be observationally pure with respect to
some secret datagroup.

A method m is a query method for datagroup G if one of the
following holds.

• Method m is declared with the annotation @Query("G") (or
is declared in a class with this annotation and is not declared
with the modifier pure nor overrides a pure method).

• m overrides some method, and each method m′ that m over-
rides is a query method for datagroup G. m optionally but
preferably has a query annotation or modifier.

• Neither of the above applies, method m is declared with the
query keyword or with the annotation @Query (with no argu-
ments), and G has the same name as m. If there is no decla-
ration of a datagroup with the same name as the method m
in scope, then m’s name is implicitly declared to be a secret
datagroup in the same class as m, with the same Java visi-
bility as the method, with the static modifier iff m is static,
and with type JMLDataGroup.

If an implicit declaration of a datagroup with the same name as
a query method would be illegal, then the query annotation must
explicitly give the name of the associated datagroup.

A method may not be declared with both query and pure modi-
fiers; furthermore, a query method may not override a pure method.
However, a pure method may override a query method.

A query method must have a specification, and that specification
must contain at least one normal-behavior specification case.

The default assignable clause for a specification case of a query
method for datagroup G is assignable G. If an assignable clause
is given for a query method, it may contain only secret fields or
datagroups. Furthermore, a query method m may only directly
modify (at most) the pre-state fields in the datagroup with which
it is associated (it is effectively an open method for other secret
datagroups and may not directly read or write the secret fields of
those other secret datagroups).

Finally, the return value of a query method for a datagroup G
must be shown to be independent of G. This can be established,
per [2], by proving that the returned result is equal to the result
of an open computation. This will be trivial if the query method’s
postcondition has a form such as ensures \result== In such
cases the condition that establishes that the return value is inde-
pendent of secret state is the same as the postcondition, since we
require that the postcondition does not read any secret state. (There
is no point to a void query method.)

4.3 Rules for Legal Use
In this subsection we describe how other parts of JML interact

with secret and query fields and methods.

4.3.1 Static and Instance Datagroups
The discussion above extended the use of secret state to multiple,

disjoint datagroups of secret state within one program. As long as
the datagroups are disjoint we can treat a method as opure for one
datagroup but open for others.

Most datagroups are sets of instance fields belonging to a given
object. Then the datagroups for two different objects, even of the

47

same type, are disjoint. A method that is opure for one object is
open for the other and can be used without restriction in the second
object’s specifications. The equals method, for example, can be
declared query for the non-static Object.equals datagroup. The
equals method is restricted from being used in the body of query
methods of its own overriding methods for the same object, but
equals can be called on other objects. Thus equals for a Collection
can make use of equals for its elements, as long as the Collection
object is not an element of itself.

In order to enforce this disjointness, static fields may not be el-
ements of secret instance datagroups. Also, pending further ex-
perimentation, secret fields are forbidden to be members of two
different secret datagroups where one is not a subset of the other.

4.3.2 Use in Type-Level Specification Clauses
Invariants and (history) constraints may directly read secret fields

and call pure secret methods, but only those declared in the same
type or a supertype. No other type specifications (including ini-
tially, represents, monitors-for, readable-if, and writable-if clauses
and axioms) may directly read secret fields or call secret methods.

A query method may be called in invariants and constraints of
type specifications of any type. A query method for a datagroup
G declared in a type T may also be called from within other type
specification clauses, but such calls are prohibited from subtypes of
T (including T itself).

By the theory above, a query or secret method m for datagroup
G is not allowed to call a query method p for G (including m it-
self), on the same object, in its own type or method specification.
We relax that rule to allow query methods in type and method spec-
ifications according to the following argument.

In statically verifying a method m, the invariants and method
specifications are assumed at the beginning of the body and as-
serted at its end(s). The final assertion cannot affect the course
of the execution within m, and the theory has established that it
is immaterial to open methods calling m. Query methods called
prior to the body of m may alter secret state, but must maintain
the invariants that apply to the secret state. As long as there are
no direct references to secret fields in the type or method speci-
fications, there can be no interference in any runtime checking of
those specifications. Thus, at the beginning of the method’s body,
the invariants will still hold and coupling will be preserved. Static
verification will only assume that the invariants hold and will not
assume any more specific information about the secret state. By as-
suming a weakly pure semantics for query methods combined with
no knowledge of secret state, we verify a conservative approxima-
tion to any runtime execution that agrees with the specifications.

In runtime checking, the invariant is asserted as part of checking
the preconditions. This may well alter the secret state in a way
that is visible within the body of m; for example, only a part of
the control flow may ever be executed. However, presuming that
the static verification shows that the method is correct, executing
the invariant at runtime will not affect the truth of any assertions
executed in the body of the method.

Thus we conclude that using query methods in type and method
specifications is permissible. A particular invariant may not both
call query methods and also call secret methods or use secret fields;
query method specifications may not refer to secret methods or
fields at all; secret method specifications may not mix query meth-
ods and secret fields or methods.

An alternate reasoning for this conclusion provides a different
perspective. Consider two sorts of statement sequences: (A) state-
ments that call opure methods but do not access secret state, and (B)
statements that access secret state but do not call opure methods.

The prior theory demonstrated that open methods, which consist
of type (A) sequences, preserve correctness; it also demonstrated
that opure methods, which consist of type (B) sequences, preserve
correctness as well (presuming in each case that the methods main-
tain instance invariants). Now an opure method with specifications
consists, during runtime checking, of invariant checks, precondi-
tion checks, the method body, postcondition checks and invariant
checks. This is equivalent to a sequence of method calls; it will
preserve correctness if each step is either type (A) or (B), as noted
in the conclusion above.

4.3.3 Use in Method Specifications
Secret fields and methods for a datagroup G may be accessed

or called in method specifications only by secret methods for data-
group G. Method specifications of non-secret methods must not
read secret fields or call secret methods.

As concluded in the previous section, query methods for a data-
group G may be used in any method specification that does not also
access secret methods or fields for G.

However, assignable clauses in any method specification may
mention secret datagroups, if the method being specified calls query
methods in its program or specifications (but see the discussion in
section 5.2).

In the context in which a query method is used within a specifi-
cation (e.g., taking into account any short-circuit guards), the pre-
condition of at least one normal-behavior specification case must
be satisfied. This establishes that the execution of the method is
well-defined, just as well-definedness requires that the receiver of
a field selection operation is non-null [5]. A query method’s se-
mantics are generated only from its normal-behavior specification
cases. (Pure methods should obey a corresponding rule.)

4.3.4 Use in Method Bodies
Secret methods and fields may not be used in the Java programs

or JML assertions in the bodies of open methods. Query methods
may not be used in assertions in the bodies of query or secret meth-
ods for the same datagroup, but may be used in secret and query
methods for other datagroups. Query methods may be used in the
Java code of method bodies. This is a major benefit of basing en-
capsulation on datagroups, since one can use one query method in
the body specifications of another, as long as they are associated
with (different instances of) different datagroups.

4.3.5 Use in Constructors and their Specifications
Constructors are open and may not be declared to be query or se-

cret. Specifications of constructors may not directly refer to secret
fields or call secret methods. However, constructor specifications
do implicitly include any invariants that mention secret fields.

A constructor’s body may read, write, or call any open field or
method, any secret field declared in its class, and any query or se-
cret method for a datagroup that is declared within its class. Any
secret fields hold default values when a constructor begins execut-
ing, so there is no secret state information to leak.

A constructor may not call secret methods or access secret fields
of its superclasses, as that secret state is already initialized.

To avoid interference, query methods may not be used in asser-
tions within the body of a constructor.

Specifications of constructors may not directly refer to secret
fields or call secret methods. However, constructor specifications
do implicitly include any invariants that mention secret fields.

48

5. DISCUSSION
We expect our design to provide a means of using simple opurity

patterns while providing a platform for further experimentation. A
key test of this proposed design is usability: assessments of its prac-
ticality on larger code bases than test examples are underway. In
particular, it serves well for specifying library classes such as the
JDK whose implementation is unknown but whose user-supplied
overriding methods may be opure.

A key aspect of this design is that it accommodates disjoint sets
of secret state and that those sets may be associated with individ-
ual objects. Although the previous theory applies in large part un-
changed, it presumed a syntactically defined encapsulation bound-
ary. This allows us to call opure methods on one object in the ex-
ecution of the method on another, at the cost of proving that the
objects are different instances.

Another interesting aspect of the design is that secret fields and
methods may be public. This is intentional, as it allows existing
code to be annotated in a way that preserves observational purity.
If such annotations can be given in a way that follows our design,
then it will be safe. However, we do recommend that secret fields
and methods not be public.

One does need to plan ahead for opurity. If a method is ever
going to be overridden and implemented using some secret state,
it must be declared a query method from the start. It cannot be
pure in a superclass and query in a derived class. This means that
nearly every method that might be used in a specification should be
declared query rather than pure. That is why the implicitly declared
secret datagroup for a method is part of the design—so that the only
specification needed in the simplest case is to declare a method as
a query method.

5.1 Annotations
The secret annotations enable a simple level of encapsulation.

This is sufficient for the more common examples of opurity. Fur-
ther use will show whether this is adequate for large-scale software
systems.

It may be that experience will show the need to be able to use
secret as a type modifier and, for example, be able to declare lo-
cal variables and formal parameters as secret, in support of detailed
information flow analysis. For now we rely on proofs that any as-
signments to non-secret fields consist of open information. Since
this is only needed for the return result of query methods and for
secret methods that might assign to open state, we expect the need
for a full information flow analysis to be rare.

5.2 Frame Conditions
So far, nothing we have established about opurity has changed

the rules regarding frame conditions: each method must declare
those fields that it might modify, either directly or indirectly through
methods it calls. However, consider the following. Since meth-
ods that override Object.equals may and do modify secret state,
Object.equals must be declared a query method and specified that
it might modify the method’s secret datagroup. A library method
HashSet.contains presumably uses equals, although its imple-
mentation may not be known. If it does, it would need to declare
that it might modify equals’s datagroup. These frame conditions
will propagate everywhere. Requiring them for secret state that
users do not know or care about would be a decided inconvenience.

So may the frame conditions regarding secret state be omitted?
If we do so, then we must assume that any method may indirectly
modify any secret state in the program. That is, every non-pure
method in the program implicitly has a frame condition that allows
modification of any secret state. The modifications still preserve

invariants, however. Thus after any method call in a program, we
can assume that any secret state still obeys its invariants, but is oth-
erwise undefined. This is acceptable for open methods that do not
access secret state anyway. However, it would be a complication for
query and secret methods that are manipulating secret state. Query
methods associated with the same secret state were already prohib-
ited in assertions in a method body. But now any method at all,
including for example Object.equals, may affect the secret state
at hand. This analysis is independent of whether the methods are
called in the program or in specifications.

It is sound to consider that any method may modify any secret
state. However, it may complicate writing and verifying methods
that manipulate secret state, since all secret fields are then essen-
tially volatile. Investigation is underway to determine whether this
approach is usable. The complications may be particularly com-
plex if secret state is nested and layered. For example, it may be
desirable to allow a particular piece of secret state to be declared
as either (a) part of the global secret state and thus allowed to be
implicitly part of every non-pure frame condition or (b) not part of
the global secret state and required to be explicitly listed in frame
conditions as needed.

6. FUTURE WORK
There remain a number of open theoretical issues for future work.

Chief among them are the usability of implicit assignable clauses
and how to handle nested or shared secret state. Furthermore, as
always when theoretical work is extended for practical application,
there is the task of formalizing and proving the extensions and es-
tablishing soundness of the design as actually used; this is partic-
ularly the case for our informally argued conclusions about the se-
mantics of opure methods in static analysis and the use of opure
methods in invariants and method specifications.

The discussion so far has treated information as strictly either se-
cret or open. In practice, however, it is the observation made of the
secret information that is of consequence. For example, the hash-
code method produces an int whose value depends on the state of
the heap. Thus hashcodes will change if weakly pure assertions are
executed. However, all that we use of a hashcode is its invariant
property: if two objects are equal then their hashcodes are equal.
Indeed it is this reasoning that is behind allowing location remap-
ping when comparing program states. Absolute location is unim-
portant; all that matters is location equality. We need a semantics of
secret information that allows for equivalence of program state in
terms of predicates over state rather than equivalence of open state.

From an external perspective all that is observed of a program is
its input and output. In many cases both are textual, including any-
thing displayed in a GUI. From this perspective, everything within
a program is unobserved state. Within any program with any de-
gree of abstraction there will be nested layers of hidden informa-
tion. The work described above needs to be extended to situations
in which various groupings of secret information occur in nested
layers. We leave for future work the handling of nested secret state,
but we expect it to have close relationships with other encapsula-
tion disciplines, such as the pack/unpack facility in Spec# or the
universe type system.

7. CONCLUSIONS
We have adapted and applied the previous theoretical work on

observational purity to a proposed practical design within JML. In
the process we have defined the encapsulation boundary to include
precisely the secret state and extended the theory to accommodate
multiple groups of secret state, secret helper methods, invariants,

49

method specifications and implicit frame conditions. We have also
introduced a semantics for static analysis of opure methods that
relaxes non-interference while maintaining correctness.

The design above is implemented in OpenJML, an experimental
version of JML at the level of Java 1.6, built on the OpenJDK code
base.

The lack of observational purity in specification languages has
been one roadblock to widespread use of source-level specifications
on substantial code bases. Providing a design and implementation
in JML will allow experimentation with such code bases.

Acknowledgments
The work of Leavens has been supported in part by grants from the
US National Science Foundation numbered CCF-0428078, CCF-
0429567, and CNS 08-08913. Thanks to David A. Naumann for
private communications clarifying some aspects of his paper on op-
urity [14].

8. REFERENCES
[1] Ádám Darvas and Peter Müller. Reasoning about method

calls in interface specifications. Journal of Object
Technology, 5(5):59–85, June 2006.

[2] Michael Barnett, David A. Naumann, Wolfram Schulte, and
Qi Sun. Allowing state changes in specifications. In Günter
Müller, editor, ETRICS, volume 3995 of Lecture Notes in
Computer Science, pages 321–336. Springer, 2006.

[3] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte.
The Spec# programming system: An overview. In Gilles
Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet,
and Traian Muntean, editors, Construction and Analysis of
Safe, Secure, and Interoperable Smart devices (CASSIS
2004), volume 3362 of Lecture Notes in Computer Science,
pages 49–69. Springer-Verlag, 2005.

[4] Mike Barnett, David A. Naumann, Wolfram Schulte, and
Qi Sun. 99.44% pure: Useful abstractions in specification.
Obtained from the following URL:
http://guinness.cs.stevens-tech.edu/~naumann/
publications/purityJoT.pdf, January 2005.

[5] Patrice Chalin. A sound assertion semantics for the
dependable systems evoluation verifying compiler. In
International Conference on Software Engineering (ICSE),
pages 23–33. IEEE, May 2007.

[6] David R. Cok. Reasoning with specifications containing
method calls and model fields. Journal of Object Technology,
4(8):77–103, 2005.

[7] Gary T. Leavens. JML’s rich, inherited specifications for
behavioral subtypes. In Zhiming Liu and He Jifeng, editors,
Formal Methods and Software Engineering: 8th
International Conference on Formal Engineering Methods
(ICFEM), volume 4260 of Lecture Notes in Computer
Science, pages 2–34, New York, NY, November 2006.
Springer-Verlag.

[8] Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
Preliminary design of JML: A behavioral interface
specification language for Java. ACM SIGSOFT Software
Engineering Notes, 31(3):1–38, March 2006.

[9] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde
Ruby, and David R. Cok. How the design of JML
accommodates both runtime assertion checking and formal
verification. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem-Paul de Roever, editors, Formal

Methods for Components and Objects: First International
Symposium, FMCO 2002, Lieden, The Netherlands,
November 2002, Revised Lectures, volume 2852 of Lecture
Notes in Computer Science, pages 262–284. Springer-Verlag,
Berlin, 2003.

[10] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde
Ruby, and David R. Cok. How the design of JML
accommodates both runtime assertion checking and formal
verification. Science of Computer Programming,
55(1-3):185–208, March 2005.

[11] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon,
Clyde Ruby, David R. Cok, Peter Müller, Joseph Kiniry,
Patrice Chalin, and Daniel M. Zimmerman. JML Reference
Manual. Available from http://www.jmlspecs.org, May
2008.

[12] K. Rustan M. Leino. Data groups: Specifying the
modification of extended state. In OOPSLA ’98 Conference
Proceedings, volume 33(10) of ACM SIGPLAN Notices,
pages 144–153. ACM, October 1998.

[13] Bertrand Meyer. Object-oriented Software Construction.
Prentice Hall, New York, NY, second edition, 1997.

[14] David A. Naumann. Observational purity and encapsulation.
Theoretical Computer Science, 376(3):205–224, 2007.

50

ABSTRACT
Tako is an object-oriented language similar in many respects to
Java, but is designed to support alias avoidance and thereby
simplify both formal and informal reasoning. Aliasing in Java
occurs mainly due to reference assignment, which Tako replaces
with alternative data assignment mechanisms such as copying,
swapping, and initializing transfer. Though the changes are
syntactically minor, their effect on component design and design
patterns is not. This paper examines a non-trivial program
designed and implemented in Tako, and discusses how and where
the design differs from a typical Java program. We look at how
the design impacts specification and reasoning. We found that
while many design decisions were unaffected by the emphasis on
alias avoidance, there were certain design issues that Java
programmers would need to adjust to. A key component in the
example program is a tree data structure that would likely be
implemented using a composite pattern in Java.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features.

Keywords
Alias avoidance, design patterns

1. INTRODUCTION
Tako is an object-oriented language with Java-like syntax that
supports alias avoidance, thereby simplifying both formal and
informal reasoning [1]. Though most alias-avoidance languages,
including Tako, do support limited aliasing, they differ from alias-
control languages in that aliasing is the exception rather than the
rule. Tako’s main use to date has been as an instructional tool to
help teach students how to reason formally about their code. The
students are taught how to read and write specifications, and how
to use those specifications to trace through code based on specific
input. They also learn how to construct symbolic reasoning tables
– generalized, user-friendly, tracing tables that can be used to
generate the verification conditions needed for correctness proofs.
Tako simplifies writing specifications and reasoning about code
because programmers do not need to keep track of the indirection
that pervades traditional object-oriented languages.

Many of the alias-avoidance techniques found in Tako have their
origins in the Resolve language [2, 3]. Resolve is an integrated
programming and specification language intended to support full,
heavyweight program verification. Central to the approach of both
Resolve and Tako to facilitate alias avoidance is the use of
alternative data assignment operators such as swapping. Some
researchers have raised concerns about whether the paradigm

associated with this approach “can mesh well with mainstream
object-oriented programming techniques” [4, 5].

This paper examines a non-trivial program designed and
implemented in Tako, and discusses how and where the design
differs from a typical Java program. We found that while many
design decisions were unaffected by the swapping paradigm and
the emphasis on alias avoidance, there were certain design issues
that Java programmers would need to adjust to.

Section 2 gives a brief overview of the Tako language,
emphasizing how it differs from Java. Section 3 describes the
architecture of the program we designed – a simple text-based
adventure game. Section 4 describes and partially specifies a key
data structure used in the program, an indexed tree, which has the
features of both a tree and a map. Section 5 describes how the
indexed tree is used in the program and demonstrates how to trace
through a portion of code based on the indexed tree specification.
Section 6 raises other design issues that distinguish Tako from
Java. Section 7 provides some concluding thoughts on the subject.

2. OVERVIEW OF TAKO
The main difference between Tako and Java is that Tako includes
alias avoidance features. This allows programmers to view
variables directly as objects rather than as references to objects.
The following subsections give a few important differences.

2.1 No primitive types
In Java, there are two kinds of types: primitive types and reference
types. Primitive types are built-in to the language and their
variables denote values. Some reference types are built-in to the
language, but most are user-defined. Variables of a reference type
denote references to objects. In Tako, all types are value types.
Some are built-in and others are not, but variables in Tako always
represent objects, no matter what type they are from. In addition,
no two variables ever represent the same object.

In Tako, as in Java, some types that are built-in to the language
have special syntax. These include Booleans, Integers, Strings,
and Arrays. In general, if a type has special syntax in Java, its
corresponding type in Tako will probably have it also.

Sometimes we talk about replicable types in Tako. A type is
replicable if it has a replica operation. Some common types like
Booleans, Integers, and Strings, already include a replica
operation. Programmers can make any type replicable by simply
adding a replica operation themselves.

2.2 Initial values
In Java, the compiler will report an error if you try to use a
variable before you have initialized it. In Tako, all variables get

Component-Based Design in Tako: A Case Study
Arun Sudhir
Virginia Tech

Falls Church, VA

aruns@vt.edu

Gregory Kulczycki
Virginia Tech

Falls Church, VA

gregwk@vt.edu

Jyotindra Vasudeo
Virginia Tech

Falls Church, VA

vasudeo@vt.edu

51

initial values when they are declared. Tako uses the default
constructor for this purpose. As in Java, Tako programmers are
encouraged to provide default constructors for all objects. If no
default constructor exists for a type, a newly declared variable of
that type will get a null value. Since null values are not consistent
with viewing variables directly as objects, omitting a default
constructor is discouraged.

2.3 Alternative data assignment
Java’s assignment operator introduces aliasing because it copies
references. Tako is designed to avoid aliasing, so it requires
alternative mechanisms to assign objects to variables. Here is a
brief overview of the alternatives.

2.3.1 Swapping
Swapping is the primary means of data assignment in Tako. When
two variables are swapped, the variables simply exchange objects.
Swapping does not introduce aliasing because if the variables
denote distinct objects before the operation, they still denote
distinct objects after the operation. Swapping is also a constant
time operation, because the compiler implements it by swapping
memory locations. However, swapping is a symmetric operation,
so both variables need to have the same type before they can be
swapped.

2.3.2 Initializing transfer
The initializing transfer operation in Tako “<–” transfers an object
from one variable to another and gives the first variable an initial
value. The transfer operation is fairly efficient, but if the variable
receiving the object already had a different one, its original object
will become garbage and will have to be deallocated eventually.

2.3.3 Function assignment
Another way of getting an object into a variable is by assigning
the result of an function to the variable. The function assignment
operator in Tako “:=” always expects a variable on its left-hand
side and an expression on its right. If the compiler sees anything
other than a variable on the left-hand side, it will complain. If it
sees a variable rather than an expression on the right-hand side, as
in “max := n”, the compiler tries to replicate the variable, as in
“max := n.replica()”. If no replica operation is found, it reports an
error.

2.4 In-out parameter passing
By default, parameter passing in Tako is in-out. In other words,
argument values are transferred to the formal parameters, the
method is executed, and formal parameter values are transferred
back to the arguments.

In-out parameter passing allows Tako programmers to keep
functions and procedures distinct. A function has a return type
(non-void) and a procedure does not. By convention, functions
should not have side-effects. A function has side-effects if it
changes the value of a variable. An example of a side-effecting
function is a pop method in a Java stack, as in the assignment x =
s.pop(). It is a function because it returns a value, and it has a side-
effect because it changes the current stack object. If a Tako
programmer wants an operation to change the state of the
program, they should write it as a procedure rather than a
function, so that it would be called as “s.pop(x)”.

2.5 Result variable
In Tako functions (non-void methods), the result of the function is
returned through a special result variable. This guarantees that the
object returned is unique and is not an alias to any existing object.
The result variable has the same type as the return type of the
function. The compiler treats the result variable as if its
declaration is the first statement of the method. So a getter method
for a private attribute length would be written as “public Integer
getLength() { result := length; }” and interpreted by the compiler
as “public Integer getLength() { Integer result; result := length; }”.
The result variable is initialized when it is declared, so even a
function with no statements would return an initial value.

2.6 Pointer component
Despite the fact that the design of Tako is focused on avoiding
general aliasing, we understand that there are circumstances when
programmers will need pointers and references to efficiently
implement certain classes. For this purpose, Tako has a pointer
component that is specifically designed to aid in the
implementation of linked data structures such as lists and trees.

3. ADVENTURE GAME ARCHITECTURE
To experience first hand the paradigm shifts involved in
programming a non-trivial application in Tako, we undertook the
development of a text-based adventure game. The game was
initially developed in Java, but with the intent that it would
eventually be ported to Tako. Figure 1 shows the general
architecture of the application in the form of a UML class
diagram. It is loosely based on traditional text-based adventure
game development systems such as Inform [6] and TADS [7].

Figure 1. Adventure game architecture

52

The game accepts text inputs from the player, which are usually
simple imperative sentences, such as “take the chess piece” or
“put the red queen on the chess board”. A Parser component
parses the input based on a supplied grammar and dictionary of
game objects. A Resolver component tries to determine what
game object is intended when the player enters ambiguous text.
The GameWorld component tracks the state of the game. It is a
cross between a tree-like data structure and a database that stores
all the game objects. When the player inputs a command, the
application updates the GameWorld accordingly and generates a
text response.

The program contains about 50 classes and consists of over 4,000
lines of code. It required approximately 85 man hours to code the
game in Tako based on the Java version of the game. Table 1
gives process metrics for the conversion from Java to Tako. The
time spent on the conversion is shown during and after the
translation process. During the translation process, most of the
time went into translating statements that used reference copying
into statements that used swapping. Part of this process involved
direct substitution of the reference copy operator with the swap
operator. Part of it also involved swapping objects from
containers. In both cases, there was the possibility that objects had
to be swapped back, as illustrated in section 5. A fair amount of
time was also spent in converting methods with return values to
their equivalent in Tako. If the methods had side-effects, then they
where changed to procedures (methods without return values) in
Tako, and the return value was passed out through a parameter. If
the methods did not have side-effects, then the methods where
changed to appropriate functions (methods with return values) in
Tako. In Tako functions, the distinguished result variable is used
to store the return value. Some time was also spent for converting
Java enumeration types to static integer variables. Enum types are
supported in Java 1.5 but not in Tako. The remaining time was
spent in copying and pasting code from one language to another.
This was possible due to the similarities in Java and Tako syntax.

Table 1. Process metrics for conversion from Java to Tako

Description Hours

Time spent during translation

Conversion of Enum types to static integer variables 2
Converting side-effecting functions 10
Converting non-side-effecting functions 5
Translating code with aliasing to swapping methodology 15
Simple translations (copy and paste) 5

Time spent after translation

Debugging errors due to erroneous translation 30
Debugging errors already present in Java version 18

Debugging code after the translation took up the majority of time.
The debugging process metrics were divided into two parts: time
spent in debugging errors that occurred due to erroneous
translation, and time spent in errors that where present in the
original version of the Java code. Nearly 30 hours were spent in
debugging the translation errors. We had expected this part of the
process would take the most time since this was our first attempt
at such a translation. The other 18 hours spent in debugging could
have been avoided if the original Java version had been tested
thoroughly.

4. INDEXED TREE COMPONENT
The two most sophisticated components in the adventure game are
the Parser and the GameWorld. The Parser takes an imperative
sentence typed by the player and converts it to a four-part
command. The parser as implemented in Tako is not very
different from the parser as implemented in Java. This is probably
due to the fact that the Parser is designed to essentially
encapsulate a single, though complex, method – parse. The Tako
GameWorld component does have significant differences with the
Java GameWorld component. Therefore, we spend this section
and the next discussing it. The GameWorld component is based
on a custom data-structure called an IndexedTree.

Figure 2. Tree methods

The elements of an indexed tree are organized as an ordered
tree [8]. An ordered tree contains a root node, which is the
ancestor of all the other nodes in the tree. Every node except for
the root has a parent. Nodes with the same parent are siblings. In
an ordered tree, the siblings are ordered. There is a first, or eldest,
sibling; and there is a last, or youngest, sibling. The indexed tree
data structure is traversable. That is, a tree has a conceptual
location known as the cursor position. We conceptualize the
cursor position as a distinguished node in the ordered tree. The
tree component provides various cursor movement methods that
can be used to easily change the cursor’s location in the tree.
Insertion and removal of nodes from a tree occurs to the right of
the cursor. The component is called an indexed tree because all
tree nodes are indexed, or labeled, with a unique identifier. This
allows individual nodes to be accessed directly.

Figure 2 gives a graphical representation of various states of an
indexed tree object and shows the method calls that cause the
transitions from one state to another. The first tree in this figure
represents an initialized tree. It is the tree that is created when the
default constructor is called. It has two nodes – a root node and a
cursor. The cursor is the child of the root. The call insert(DEN,
den_obj) inserts a new node to the right of the cursor. The new
node is the cursor’s younger sibling. The new node DEN is
associated with the object den_obj. A second call to insert with

53

label TOM and object tom_object inserts a new node to the right of
the cursor, just before the DEN node. The call advance() advances
the cursor past its next node, TOM, and enter() causes the cursor to
enter the subtree induced by its next node, DEN. A somewhat more
sophisticated method call, moveSubtreeToCursor(TOM), causes the
subtree induced by TOM to be moved just to the right of the cursor.
It requires that the TOM be in the tree and that the cursor is not a
descendent of TOM.

4.1 Mathematical Model for Indexed Tree
Figure 3 gives the mathematical model for the indexed tree
component. It contains four model variables that specify how an
indexed tree object is modeled [9]. The first three variables are
based on the mathematical model for ordered trees given in
Cormen et al. [8], in which graphs are modeled as two sets – a
vertex set and an edge set – and a tree is an acyclic, undirected,
connected graph. The keyword model indicates that a variable is
part of the mathematical model. The variable nodes denotes the
vertex set, and edges denotes the edge set. The vertex pairs in the
edge set are unordered, so edge (3, 1) is the same as edge (1, 3).
The variable order denotes the order for children of the same
parent from eldest to youngest. The order of the eldest child is 1,
the second eldest child is 2, and so on. The final model variable,
contents, maps nodes to objects.

public interface IndexedTree {
 model nodes: set of Enum;
 model edges: set of pair of Enum;
 model order: function from Enum to Integer;
 model contents: function from Enum to Object;
 defines ROOT, CSR: nodes;

constraints /* no cycles */

public IndexedTree();
 ensures nodes = { ROOT, CSR } and

edges = { (ROOT, CSR) } and
order = { (ROOT, 1), (CSR, 1) } and
contents = { (ROOT, null), (CSR, null) };

Figure 3. Model and constructor for indexed tree
The defines clause defines two distinguished variables that belong
to the set nodes. Conceptually, ROOT is the root node, and CSR is
the cursor. A class invariant (given by the constraints clause)
asserts that no cycles exists in the undirected graph represented by
the nodes and the edge set. The assertion is given here informally.

The constructor creates an indexed tree with ROOT and CSR as
nodes, and an edge connecting ROOT to CSR. Both root and cursor
have an order of 1 and map to null objects.

4.2 Cursor Movement Methods
A key feature of the tree data structure is the flexibility of cursor
movement. Figure 3 specifies some selected cursor movement
methods. For the other cursor movement methods, see [10].

The advance method advances the cursor to the next node on the
same level. It requires that the cursor have a younger sibling to
advance past. In the ensures clause, a variable with a hash, such as
#nodes, refers to its original (or old) value, and a variable without
a hash refers to its current (or new) value. The only change in the
state is that the cursor and its immediate younger sibling,
#next(CSR), get their orders swapped.

public void advance();
requires hasYoungerSibling(CSR);
ensures nodes = #nodes and edges = #edges and

order(x) = (#order(x) – 1 if x = #next(CSR);
#order(x) + 1 if x = CSR;
#order(x) otherwise) and

contents = #contents;

public void enter();
requires hasYoungerSibling(CSR);
ensures nodes = #nodes and

 edges = #edges minus { (#parent(CSR), CSR) }
union { (#next(CSR), CSR) } and

order(x) = (1 if x = CSR;
#order(x) – 1 if #isYoungerSibling(x, CSR);

 #order(x) + 1 if #isChild(x, #next(CSR));
#order(x) otherwise) and

 contents = #contents;

public void moveBefore(restores Enum key);
 requires key in nodes;
 ensures nodes = #nodes and

edges = #edges minus { (#parent(CSR), CSR) }
 union { #parent(key), CSR) } and

order(CSR) = (
#order(#key) – 1 if #isYoungerSibling(key, CSR);
#order(#key) otherwise) and

order(key) = (
 #order(#key) if #isYoungerSibling(key, CSR);

#order(#key) + 1 otherwise) and
order(x ≠ CSR, key) = (

#order(x) – 1 if #isYoungerSibling(x, CSR) and
not #isYoungerSibling(#key, x);

#order(x) + 1 if #isYoungerSibling(x, #key) and
not #isYoungerSibling(CSR, x);

#order(x) otherwise) and
 contents = #contents;

Figure 4. Cursor movement methods
The enter method makes the cursor the first child of its next node.
It requires that the cursor have a younger sibling. The nodes and
contents remain unchanged. The original edge involving the
cursor is replaced by an edge from the cursor’s original next
sibling to the cursor. The original younger siblings of the cursor
get their orders decremented. The cursor advances to the next
level and becomes the eldest child of its new parent, so its order
is 1, and the cursor’s new younger siblings get their orders
incremented.

The moveBefore method takes key as an argument. It requires that
key be in the node set. It ensures that the cursor will be moved
directly before key. That is, the cursor will become key’s
immediate older sibling. The node set does not change. The
original edge to the cursor is replaced by an edge from key’s
parent to the cursor. If the cursor is the younger sibling of key, the
cursor’s order becomes one less than the original order of key and
key’s order stays the same. Otherwise, the cursor’s order becomes
the original order of key and key’s order is incremented. For all
other nodes, the order of the cursor’s younger siblings are
decremented, and the order of key’s younger siblings are
incremented. However, if a node is a younger sibling of both the
cursor and key, its order remains unchanged. The contents map
remains unchanged. The restores parameter mode for key
indicates that the value of key remains unchanged, even though
this is not explicitly stated in the ensures clause.

54

4.3 Insert and SwapValue Methods
Inserting elements into and removing elements from data
structures affects how programs are designed in Java and Tako. In
Java, updating an element inside a data structure means getting a
handle to the element and updating the handle. This updates the
element inside the data structure because the handle is an alias to
it. In Tako, such aliasing is avoided. Therefore, the element must
be removed from the data structure, updated, and put back into the
data structure in the same place it was at originally.

public void insert(restores Enum key, clears Object val);
 requires key not_in nodes;

ensures nodes = #nodes union { key } and
edges = #edges union { (#parent(CSR), #key) } and
order(x) = (

#order(CSR) + 1 if x = #key;
#order(x) + 1 if #isYoungerSibling(x, CSR);
#order(x) otherwise) and

contents = #contents union { (#key, #val) };

public void swapValue(updates Object val);
requires hasYoungerSibling(CSR);
ensures nodes = #nodes and

edges = #edges and order = #order and
contents = #contents override { (#next(cursor), #val) } and

 val = #contents(#next(cursor));

Figure 5. Insert and swap methods
The methods shown in Figure 5 modify the tree by inserting nodes
and swapping values from it. We do not discuss how to remove
nodes, but a description can be found in [10].

The insert method inserts a node into the tree as the immediate
younger sibling of the cursor. key becomes the new node, and val
is the contents of that node. The method requires that key is not
already in the indexed tree. key is added to the node set, and an
edge to key is added to the edge set. The order of key is one more
than the order of the cursor, and the order of the nodes following
key are incremented. The clears parameter mode for val indicates
that val has an initial value after the call. Since the val object is
inserted into the tree, the val parameter must hold a different
object after the call. Were it to have a restores parameter mode,
like key, it would force the implementer to perform a deep copy of
val, which could be a potentially expensive operation. The key
object is also inserted into the tree, but key is a small object (an
Enum) so copying it is inexpensive.

The swapValue method swaps the contents of cursor’s next node
with val. It requires that the cursor have a younger sibling. It
ensures that the node set, edge set and order map remain
unchanged. The existing contents of the node gets the original
object in val, and val gets the original contents of the node. The
updates parameter mode indicates that the value of val is updated.

5. USING THE INDEXED TREE
5.1 The GameWorld and its GameObjects
The IndexedTree component is used in the implementation of the
GameWorld component. The game world is an indexed tree
whose nodes are identifiers that are mapped to game objects. A
game object inherits from the GameObject class. The GameObject
class includes two fields: one for a unique identifier, and another
for a set of properties, as shown in Figure 6. Both ObjectID and
Property are enumeration types.

public interface GameObject {
 model id: ObjectID;
 model properties: set of Property;

 public GameObject()
 ensures id = VOID and properties = { };

 public void addProperty(restores Property p)
 ensures properties = #properties union { #p };

/* other operations */
}

Figure 6. GameObject specification
An object identified by DEN of type Room might include the
property LIGHT so that players can see objects in the room. An
object identified by TOM of type Actor might include the property
PERSON so that the player can talk to it, and the property MALE so
that the game’s printer knows what pronoun to use when referring
to the object. An object identified by BOX might include the
property BIN so that players can place other objects inside it. If it
has the property OPEN a player may be able to see its contents.

public class GameWorld {
 model nodes: set of ObjectID;
 model edges: set of pair of ObjectID;
 model order: function from ObjectID to Integer;
 model contents: function from ObjectID to GameObject;
 defines ROOT: nodes;

constraints /* no cycles */

/* gameTree maps ObjectID to GameObject */
 private IndexedTree gameTree;

 correspondence

conc.ROOT = ROOT and
conc.nodes = gameTree.nodes – { CSR } and
conc.edges = gameTree.edges –

{ (parent(CSR), CSR) } and
forall x in conc.nodes,

conc.order(x) = (
 gameTree.order(x) – 1 if isYoungerSibling(x, CSR);

gameTree.order(x) otherwise) and
conc.contents = gameTree.contents –

{ (CSR, gameTree.contents(CSR)) }

 public void setObjectProperty(restores ObjectID obj,

restores Property prop)
 requires obj is_in nodes;
 ensures nodes = #nodes and

edges = #edges and order = #order and
 contents = #contents override

{ (#obj, [#contents(#obj).id,
#contents(#obj).property union {#prop}] }

{
GameObject rec;
gameTree.moveBefore(obj);
gameTree.swapValue(rec);
rec.addProperty(prop);
gameTree.swapValue(rec);

}

/* other operations */
}

Figure 7. GameWorld class

55

The game world component is implemented with an indexed tree.
During game play, each game object is represented by node in the
tree. Commands input by the player can potentially update the
game world, either by updating the configuration of the tree, or
updating the properties of the game objects inside the tree. A
portion of the GameWorld class is shown in Figure 7.

The conceptual model of the game world shares the same model
variables as the indexed tree, but where the indexed tree is
modeled using generic Enums and Objects, the game world uses
ObjectID and GameObject types. Also, the game world model
does not require a cursor node.

GameWorld contains a single field, the game tree, which is an
indexed tree assumed to contain game object identifiers as keys
and game objects as values. The correspondence clause, also
known as the abstraction relation, describes how to derive the
state of the conceptual game world from the state of the internal
game tree. The game world is very similar to the game tree except
that there is no cursor node and no edge involving the cursor. The
order of all younger siblings of the cursor in the game tree are
decremented to get their new orders in the game world. The
contents are the same except that there is no mapping involving
the cursor.

The method setObjectProperty is used in the game to add
properties to game objects. It ensures that the structure of the
game tree – the nodes, edges, and order – remains unchanged. The
new property addition is reflected in the change to the contents
variable. The next subsection traces through a particular call to the
method, showing how the implementation meets its specification
for a particular input.

Figure 8. Pre-state and post-state of setObjectProperty call

5.2 Tracing Through a Method
Figure 8 shows a pre-state and the resulting post-state for the call
to setObjectProperty(BOX, OPEN). Two views are shown: The
implementer view and the client view. The implementer view

shows the game tree, which includes a cursor, and the client view
shows the game world, in which no cursor is present. Properties
for each game object are given next to their corresponding nodes
in the trees.

The tracing table in Table 2 shows the state of the program while
stepping through the statements in the implementation of the
setObjectProperty method. The initial state, state 0, describes the
game tree that corresponds to the implementer view of the pre-
state in Figure 8. The game tree has five nodes: ROOT, CSR, DEN,
TOM, and BOX; and four edges, corresponding to those shown in
Figure 8. The order mapping gives the appropriate sibling ranking
of the nodes. The contents mapping maps nodes to game objects.
In the tracing table, we represent game objects as sets of
properties, omitting the redundant identifiers for brevity. The last
line of each fact contains the values of the formal parameters and
local variables. State 0 begins after the local variable rec is
declared.

Table 2. Trace of setObjectProperty (implementer view)

St Facts

0 nodes = { ROOT, CSR, DEN, TOM, BOX }
edges = { (ROOT, CSR), (ROOT, DEN), (DEN, TOM), (DEN, BOX) }
order = { (ROOT, 1), (CSR, 1), (DEN, 2), (TOM, 1), (BOX, 2) }
contents = { (ROOT, { }), (CSR, { }), (DEN, {LIGHT}),
 (TOM, {PERSON, MALE}), (BOX, {BIN}) }
obj = BOX and prop = OPEN and rec = { }

gameTree.moveBefore(obj);

1 nodes = { ROOT, CSR, DEN, TOM, BOX }
edges = { (ROOT, DEN), (DEN, TOM), (DEN, CSR), (DEN, BOX) }
order = { (ROOT, 1), (DEN, 2), (TOM, 1), (CSR, 2), (BOX, 3) }
contents = { (ROOT, { }), (CSR, { }), (DEN, {LIGHT}),
 (TOM, {PERSON, MALE}), (BOX, {BIN}) }
obj = BOX and prop = OPEN and rec = { }

gameTree.swapValue(rec);

2 nodes = { ROOT, CSR, DEN, TOM, BOX }
edges = { (ROOT, DEN), (DEN, TOM), (DEN, CSR), (DEN, BOX) }
order = { (ROOT, 1), (DEN, 2), (TOM, 1), (CSR, 2), (BOX, 3) }
contents = { (ROOT, { }), (CSR, { }), (DEN, {LIGHT}),
 (TOM, {PERSON, MALE}), (BOX, { }) }
obj = BOX and prop = OPEN and rec = {BIN}

rec.addProperty(prop);

3 nodes = { ROOT, CSR, DEN, TOM, BOX }
edges = { (ROOT, DEN), (DEN, TOM), (DEN, CSR), (DEN, BOX) }
order = { (ROOT, 1), (DEN, 2), (TOM, 1), (CSR, 2), (BOX, 3) }
contents = { (ROOT, { }), (CSR, { }), (DEN, {LIGHT}),
 (TOM, {PERSON, MALE}), (BOX, { }) }
obj = BOX and prop = OPEN and rec = {BIN, OPEN}

gameTree.swapValue(rec);

4 nodes = { ROOT, CSR, DEN, TOM, BOX }
edges = { (ROOT, DEN), (DEN, TOM), (DEN, CSR), (DEN, BOX) }
order = { (ROOT, 1), (DEN, 2), (TOM, 1), (CSR, 2), (BOX, 3) }
contents = { (ROOT, { }), (CSR, { }), (DEN, {LIGHT}),
 (TOM, {PERSON, MALE}), (BOX, {BIN, OPEN}) }
obj = BOX and prop = OPEN and rec = { }

The statement gameTree.moveBefore(obj) moves the cursor to the
position just before BOX. To check if the operation is permissible,
we must look at the requires clause of the indexed trees

56

moveBefore method given in Figure 4. It requires that key (the
formal parameter that corresponds to obj) be in the node set. Here,
key = BOX, which is in the node set in state 0 just before the call is
made, so the precondition is satisfied. To get the facts in state 1,
we apply the ensures clause of moveBefore to the facts in state 0.

From the ensures clause for moveBefore we know that the only
variables in the program state that change are edges and order.
The edge from ROOT to CSR is replaced by an edge from DEN to
CSR. BOX is not a younger sibling of CSR, so the order of CSR
becomes 2 (the old order of BOX), and BOX’s order is incremented.
DEN is originally a younger sibling of CSR, so its order is
decremented. The order of all other nodes is unchanged. The
effects of the other statements are reasoned about similarly.

To verify that the implementation is correct with respect to the
specification for this particular start state, we need to translate the
first and last states from the implementer view to the client view
using the correspondence clause, and then see if they conform to
the specification of setObjectProperty. Table 3 is a tracing table
for setObjectProperty after this translation. State 0 in Table 3 is
derived from state 0 in Table 2 and state 1 is derived from state 4.
Applying the ensures clause of setObjectProperty to the facts in
state 0 results in the facts in state 1, so the implementation is
correct in this instance.

Table 3. Trace of setObjectProperty (client view)

St Facts

0 conc.nodes = { ROOT, DEN, TOM, BOX }
conc.edges = { (ROOT, DEN), (DEN, TOM), (DEN, BOX) }
conc.order = { (ROOT, 1), (DEN, 2), (TOM, 1), (BOX, 2) }
conc.contents = { (ROOT, { }), (DEN, {LIGHT}),
 (TOM, {PERSON, MALE}), (BOX, {BIN}) }

setObjectProperty(BOX, OPEN);

1 conc.nodes = { ROOT, DEN, TOM, BOX }
conc.edges = { (ROOT, DEN), (DEN, TOM), (DEN, BOX) }
conc.order = { (ROOT, 1), (DEN, 2), (TOM, 1), (BOX, 2) }
conc.contents = { (ROOT, { }), (DEN, {LIGHT}),
 (TOM, {PERSON, MALE}), (BOX, {BIN, OPEN}) }

6. OTHER DESIGN ISSUES
6.1 Singleton Design Pattern
A design pattern that was used extensively in the Java version of
the game, but could not be reproduced in the Tako version was the
singleton pattern, whose intent, according to the patterns book of
Gamma et al. [11], is to “Ensure that a class only has one instance,
and provide a global point of access to it” (p. 127). Note that the
statement says nothing about references and nothing about
aliasing. However, a typical implementation of the singleton
permits aliasing everywhere, as shown in Figure 9.

In this implementation, every singleton variable is a reference to
the same object. In practice, however, there is never more than
one singleton variable in a class, and there is no benefit from
sharing the same object through references over using the object
itself. One way to use the same object without aliases is through a
global variable. Gamma et. al. note that global variables provide
access but criticize global variables for two reasons: They do not
prevent multiple instances, and they pollute the global namespace.
The first criticism can easily be addressed in Java using the

singleton class in Figure 10 in which the constructor is only
usable from inside the class itself. The second criticism seems to
imply that it is more difficult to reason about the singleton client
in Figure 10 than the singleton client in Figure 9 because global
variables make reasoning difficult. But this criticism seems odd to
us since aliased variables require reasoning about the global heap,
a structure as complicated as any variable in a typical program.

The current Tako compiler does not implement static import
variables, so a class whose sole purpose was to hold global
variables was constructed, and we were disciplined about not
declaring instances of, for example, GameWorld, anywhere but
inside that class. Clearly this is not a satisfactory solution, so the
next version of the Tako compiler will have the ability to
implement the singleton as illustrated in Figure 10.

class GameWorld {
 GameWorld world = new GameWorld();
 private GameWorld() { /* constructor body */ }
 public static GameWorld getInstance () { return world; }
 /* remainder of class */
}

import GameWorld;
class Resolver {
 GameWorld world = GameWorld.getInstance();
 /* class body uses ʻworldʼ variable */
}

Figure 9. Typical singleton implementation

class GameWorld {
 public static GameWorld world = new GameWorld();
 private GameWorld() { /* constructor body */ }
 /* attributes and methods */
}

import static GameWorld.world;
class Resolver {
 /* class body uses global ʻworldʼ variable */
}

Figure 10. Singleton implemented with single instance global

6.2 Tako-Java Integration
Tako is syntactically similar to Java, and the current Tako
compiler translates to Java, so the current version of Tako is
closely tied to the Java language. Given this, we want to ensure
that Tako and Java are as compatible as possible. The Tako
implementation of the adventure game uses Java Swing
components for its graphical user interface. Our initial experience
in integrating Java and Tako components helped us come up with
a few basic rules, some of which have been applied in the current
adventure game, and some of which will have to wait for the next
version of the Tako compiler.

A Tako class can use a Java class. Currently, a Tako class simply
imports the Java class, but future versions of the compiler should
require a special import statement such as “import java”. The
Tako compiler should translate the Java method call as is. A Java
method should not take non-Java arguments. If a Tako variable x
is found, the compiler will view it as the function call
x.toJava_TypeName() where TypeName is the name of the Java
type expected. Obviously, such a function will return a value of
type TypeName.

57

If a programmer wants to write a Java class that uses Tako code,
they should write a Java interface and implement that interface
with a Tako class. Java methods should have Java parameters and
return Java values. Tako classes will need to access Tako types
that can convert to and from the Java types needed in the interface
methods. For example, if there is a Java method whose signature
is String processText(String x), then the Tako Text class should
have a method String toJava_String() and a constructor
Text(String x).

7. DISCUSSION AND CONCLUSION
A typical Java version of the adventure game might use the
composite design pattern to implement the game world. While the
composite pattern can be implemented in Tako, the recursive type
structures involved raise the possibility that null references will be
assigned to variables, which, in general, is something we prefer to
avoid. The design of the Tako program uses the game world as a
point of centralized access and control for the tree structure and
all of its contents. Many object-oriented programmers prefer
designs using distributed control rather than centralized
control [12]. The Tako language does not preclude designs with
distributed control, but formally reasoning about designs can be a
challenge. We plan to more explore this topic more thoroughly in
future research.

Since all the game objects are stored in a tree like data structure,
accessing these objects in Tako meant swapping them out of the
structure, examining them, and then swapping them back in. In
the Java version, programmers modify a game object through a
handle or reference to the object. The swapping in Tako initially
lead to errors while inserting them back in the tree as the
conceptual cursor position in the tree was unexpectedly modified.
The error was easily fixed, but it represents one example of an
error that would not occur in Java as the object is never removed
in the first place.

In the Java version of the game, the container classes like stacks,
hash maps, queues, and lists were already provided by the
java.util package. But in the Tako version, these util classes where
implemented from scratch using the pointer component. The
pointer component was only used in these low level classes; while
the higher design level classes did not require the use of the
pointer component. This supported our conjecture that the
programmer, at higher level of design, can make do without using
references.

In this particular program the distinction between object identity
and name identity did not play a major role. We used hash maps
to store the game objects and each game object had a unique key
associated with it. In both the Java and Tako version, it was these
unique keys rather than the language dependent object identity
that was used for uniquely identifying the objects.

Overall, we found that the paradigm shifts involved were not very
difficult to adjust to though they required some alertness in terms
of the swapping paradigm. This experience is consistent with that
of Hollingsworth et al., who discuss a sizeable commercial
application developed in C++ using the Resolve discipline [13]. In

their report, they concluded that swapping worked well with most
object-oriented techniques.

We would like to implement the adventure game in Java (or
perhaps Tako) using the composite design pattern to further
explore the benefits and drawbacks of using a tree data structure
rather than a composite pattern. Ultimately, we would like to
bootstrap the Tako compiler using a design based on formally
specified data types. The source code for the current Tako
compiler and for the adventure game can be found in the
takocompiler project on Sourceforge [14].

8. REFERENCES
[1] Kulczycki, G. and Vasudeo, J. Simplifying Reasoning about

Objects with Tako. In Proceedings of the Specification and
Verification of Component-Based Systems 2006 (2006).

[2] Sitaraman, M. and Weide, B. W. Component-Based Software
using Resolve. ACM Software Engineering Notes, 19, 4
1994), 21-76.

[3] Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B. W.,
Long, T. J., Bucci, P., Heym, W., Pike, S. and
Hollingsworth, J. E. Reasoning about Software Component
Behavior. In Proceedings of the International Conference on
Software Reuse (2000). Springer-Verlag.

[4] Hogg, J., Lea, D., Wills, A., deChampeaux, D. and Holt, R.
The Geneva Convention on the Treatment of Object
Aliasing. OOPS Messenger, 3, 2 1992), 11-16.

[5] Clarke, D. Object Ownership and Containment. University of
New South Wales, 2001.

[6] Nelson, G. and Rees, G. The Inform Designer's Manual: 4th
Edition. Dan Sanderson (pub.), 2001.

[7] Roberts, M. J. TADS - The Text Adventure Development
System. City, 2006.

[8] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C.
Introduction to Algorithms: 2nd Edition. MIT Press, 2003.

[9] Cheon, Y., Leavens, G., Sitaraman, M. and Edwards, S.
Model Variables: Cleanly Supporting Abstraction in Design
by Contract. Software - Practice and Experience, 35, 6
2005), 583-599.

[10] Kulczycki, G. The Tako Component Library. City, 2008.

[11] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[12] Fowler, M. UML Distilled: A Brief Guide to the Standard
Object Modeling Language. Adison-Wesley, 2003.

[13] Hollingsworth, J. E., Blankenship, L. and Weide, B. W.
Experience Report: Using Resolve/C++ for Commercial
Software. In Proceedings of the International Symposium on
Foundations of Software Engineering (2000).

[14] Kulczycki, G. and Vasudeo, J. The Tako Compiler Project.
City, 2006.

58

Integrating Math Units and Proof Checking for
Specification and Verification

Hampton Smith
Kim Roche

Murali Sitaraman
Clemson University

School of Computing
Clemson, SC 29634

1(864)6563444

{hamptos | kroche | murali}
@clemson.edu

Joan Krone
Denison University

Mathematics and Computer Science
Granville, OH 43023

1(740)5876484

krone@denison.edu

William F. Ogden
Ohio State University

Computer and Information Science
Columbus, OH 43210

1(614)2921517

ogden@cse.ohiostate.edu

ABSTRACT
A formal system for specification and verification of component-
based software must allow extension of the mathematical units
available for specification with new mathematical theories just as
modern programming languages allow software developers to
extend a core collection of data types with new ones by
developing reusable software components. These extensions
enrich the specification language and lead to simpler
specifications. New theory development must also include
suitable theorems so that it can be used to support automated
proofs of verification conditions (VCs) for correctness arising
from annotated implementations. We distinguish between
straightforward proofs of VCs and the more nuanced proofs for
the theorems in the mathematical units themselves, which often
cannot be automated. We explain the need to separate the
interface of a mathematical unit (précis) that will be used by
software developers and automated provers, from the proof units
that contain proofs of theorems. In addition, we describe a
mathematician-friendly language for presenting proofs and a
proof checker that we have developed to check these proofs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
class invariants, correctness proofs, formal methods, and F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—invariants, mechanical
verification, pre- and post- conditions

General Terms
Design, Human Factors, Standardization, Languages, Theory,
Verification.

Keywords
Specification, Verification, Proof Checking, Formal Methods

1. INTRODUCTION
The goal of automatically verifying software components with
respect to a specification presents a fundamental dilemma.
Requiring programmers to engage in a fine level of proof activity
is unlikely to lead to wide-spread verification. On the other
hand, the limitations of automated theorem proving often require
substantial human intervention. Addressing this dilemma is the
focus of this paper. We partition the problem of verification to
distinguish the roles of software developers from mathematicians
and automated provers from proof checkers.

Formal verification ultimately involves the insights of
programmers (e.g., specifying invariants), the insights of
mathematicians (e.g., discovering non-trivial theorems and
furnishing proofs to support them), and the more straightforward
task of proving verification conditions of implementation
correctness based on these insights. Some verification conditions
(VCs) correspond to checking the insights of programmers to
eliminate unsoundness that may arise from poor programmer
insights. In the scenario we envision, programmers would not be
involved in any proving activity beyond documenting their
insights. The proving activity would instead be partitioned into
two sub-tasks:

1. Proofs of verification conditions to establish the
correctness of code.

2. Proofs of supporting theorems from mathematics.

The former would be straightforward and only involve various
simplifications so that an automated prover could discharge them
without requiring human intervention. The latter would
generally require proof steps from mathematicians.

Unlike the proof of VCs arising from code, where the goal is
complete automation, the focus of extending the mathematical
library is on enabling mathematicians to improve the
expressiveness of the theories available to the specification and
verification subsystems. It is therefore not necessary that these
theorems be automatically verifiable. While a class of theorems
can be discharged automatically by automated provers [5, 7, 11,
13], in general proofs of theorems require mathematical insights
that cannot be discovered automatically. Obviously, limiting
allowable theorems to those that can be automatically proved
would in turn limit the class of programs that can be proved. To

59

address this problem, some current systems (e.g., Isabelle) allow
some theorems to be taken for granted without proofs, but clearly
this can only be a temporary solution.

To address the sub-problem of proving non-trivial theorems, we
have a developed a mathematician-friendly language for writing
proofs and a proof checker for checking these proofs. We intend
that these proofs will be written by mathematicians, not
programmers.

The rest of this paper is organized as follows: In Section 2, we
illustrate the need for a verification system to strike a balance
between automated theorem proving and mechanically-checked
(but user-provided) proofs. In Section 3, we discuss practical
consequences of this balance and suggest ways in which the
problem may be managed by applying traditional software design
tactics such as modularity to the proof subsystem. We support
these ideas with examples from the design of our own
verification system, RESOLVE. In Section 4, we detail the
workings of the proof language and its associated proof checker.
In Section 5, we discuss related work and summarize our
conclusions.

2. PROOFS OF VCS VS. THEOREMS
To illustrate the distinct issues in proving VCs arising from code
and proving theorems in mathematics, we consider a component
verification example. In particular, we consider an operation to
reverse a given Stack object. A specification and an
implementation of the operation are given below in RESOLVE,
an integrated specification and programming language [12]. The
issues discussed in this paper, however, are language
independent.

Specification:

Enhancement Flipping_Capability for Stack_Template;
Operation Flip(updates S: Stack);

 ensures S = Rev(#S);
end Flipping_Capability

Code:

Realization Obvious_F_C_Realiz for Flipping_Capability
of Stack_Template;

 Procedure Flip(updates S: Stack);
Var Next_Entry: Entry;
Var S_Flipped: Stack;

While (Depth(S) /= 0)
changing S, Next_Entry, S_Flipped;
maintaining #S = Rev(S_Flipped) o S;
decreasing |S|;

do
Pop(Next_Entry, S);
Push(Next_Entry, S_Flipped);

end;

S := : S_Flipped;
 end Flip;

end Obvious_F_C_Realiz;

The specification of Stack_Template on which the Flip
enhancement (called an extension operation in other systems) is
based imports the mathematical unit String_Theory and
conceptualizes a Stack object as a mathematical string. The
ensures clause, which defines the behavior of this operation, is
used for verification and thus the variables in the clause stand for
their mathematical values. In this case, #S refers to the
mathematical string that represents the value of the stack S when
this operation is called, while S refers to the mathematical string
that represents the value of the stack S when this operation exits.
Rev is a mathematical function that takes a string and returns it
in reverse order.

The While statement in the code for Flip is annotated with three
clauses that make the insights of the programmer regarding the
correctness of the code explicit. For our purposes, it doesn’t
matter whether a programmer uses tools to identify and
document such assertions (e.g., the work of [3] in identifying
loop invariants automatically) or does so herself. The changing
clause indicates those variables whose values are permitted to
change inside the loop. Implicit is that any variable not
mentioned will not change. The maintaining clause provides a
loop invariant. The “o” in this line is intended to be read as ,∘
the concatenation operator on mathematical strings. The
decreasing clause documents the progress metric, i.e., the
programmer’s rationale for why the loop would terminate.

At the end of the loop, we use the :=: operator, which swaps the
values of S and S_Flipped, thus transferring the stack
containing the reversed contents to the parameter stack S. The
motivation for using swapping and avoiding unnecessary aliasing
is the topic of [4].

When the code for Flip is analyzed, the usual syntax-checking
and type-checking is performed and, assuming it passes these
checks, the code continues to a verifier, which generates VCs
that must be proved in order for the code to be considered
correct. The VCs generated using the RESOLVE VC generator
[9] are shown in an appendix.

The verifier includes a flag to generate Isabelle-friendly
assertions (not shown in this paper). Our experience in proving
VCs automatically using Isabelle is the topic of [6]. Other
example verification benchmarks are given in [15]. All the VCs
for the present example can be discharged automatically by the
Isabelle prover. Specifically, beyond documenting loop
invariants and progress metrics, programmers are not involved at
all in verification.

The VCs correspond to checking correctness of programmer-
supplied invariants and progress metrics, checking the
preconditions of called operations (e.g., Pop), and the
postcondition of the operation that is being verified. We discuss
the automated verification of one of the VCs to distinguish
simplification from theorem proving activities. It is the third VC
from the Appendix and it corresponds to the inductive step of
establishing the correctness of the invariant. This VC (after
removing assumptions that are not necessary) is shown below:

60

((|S| <= Max_Depth) and (S = (Rev(?S_Flipped) o ??S) and
(|??S| /= 0 and ??S = (<?Next_Entry> o ?S))))

======================>

(Rev(?S_Flipped) o ??S) =
(Rev(<?Next_Entry> o ?S_Flipped) o ?S)

The VC is an implication. All variables in a VC are
mathematical. For example, S is a String of Entries, not a Stack.
In this VC, |S| indicates the length of the string S, <X> indicates
the string with X as its sole element, and “o” is the concatenation
operator on strings.

Variables in the VC prepended with a question mark are verifier-
generated and simply represent the values of the variables at
different points in the code. So, for instance, S represents the
initial value of the stack S, ?S represents its value at the
beginning of each loop, and ??S represents its value at the end
of each loop.

Automated provers, such as Isabelle, would begin with a
substitution in proving this VC:

 (?S_FlippedRev ??S) = ∘
 ((<?Next_Entry> ?S_Flipped)∘ Rev ?S)∘

given
 (?S_FlippedRev ∘ (<?Next_Entry> ?S)∘) =
 ((<?Next_Entry> ?S_Flipped)∘ Rev ?S)∘

by substitution

From here, the provers will rely on two important theorems from
String_Theory to complete the proof:

 Theorem 1:
 α:String of E, x:E, (α <x>)∀ ∀ ∘ Rev = (<x> α∘ Rev).

 Theorem 2:
 Is_Associative()∘

Theorem 2 uses the higher order predicate Is_Associative that is
defined in a separate math unit named
Basic_Function_Properties. This unit defines several other
related predicates and is reused by several mathematical units.

Clearly, proving the VC given these theorems is a qualitatively
different activity from proving the theorems themselves. Given
these theorems, proving the VC is a simple process of repeated
substitution. The proofs for the theorems themselves are
significantly more involved.

There are certainly automated theorem provers, particularly of
the inductive variety, that could provide proofs of Theorems 1
and 2 on their own. ACL2 [1] is one such prover, though it is
limited to first order assertions. However, there are many other
theorems where automated provers would be unable to make the
required logical leap. Indeed, we could imagine writing code
that relies on Fermat's Last Theorem for its correctness.

Providing proofs for such theorems, in general, is a process for
mathematicians. Programmers cannot be and should not be
involved in proving theorems. The simpler task of applying
these theorems as part of proving a VC is left for an automated
prover. It is our hypothesis that String_Theory can, through
careful experimentation and expansion, be fitted with sufficient
theorems to make verifying the vast majority of programming
concepts based on strings, such as Stacks, Queues, Lists, and
others, a task of repeated substitution and thus within the
capabilities of a modest automated prover.

Reusing mathematical notions such as strings to specify a wide
variety of concepts makes it possible to eliminate the need for
Larch-style theories [17] where the theory of Queues is separate
from the theory of Stacks, with each different from the theory of
Lists.

3. PRÉCIS AND PROOF UNITS
Any code verification system that is complete must provide a
mechanism by which arbitrary new theorems can be added; any
system that is to be sound must provide a mechanism for
providing and checking proofs in support of those theorems.
These results in mathematics are reusable in verifying a variety
of software artifacts and need to be proved only once. Clearly,
developing these proofs is beyond the expertise of typical
programmers and should be left to trained mathematicians. This
observation suggests a clear division of labor in which
programmers are concerned only with immediate details and
insights about proving their programs to be correct, whereas
mathematicians are involved in proving more general theorems.
Like programmers, mechanical provers of VCs need not be
concerned with proofs of these theorems.

By linking all programming objects to the mathematical world,
mathematical results become applicable in programming
contexts. This means, however, that the automated prover is no
longer the only entity that needs access to mathematical
definitions and results. Software developers also need to be
aware of them for use in specifying and verifying software
components. However, in both cases they just need to know
what the results are, but not how they were derived. Therefore,
clean, modular, and component-based techniques derived from
the world of programming must be applied to the mathematical
world of proofs. This is the motivation for separating interfaces
of math units (précis) from their corresponding proof units.

Since most readers are familiar with the preliminaries necessary
to do proofs with number theory, we use the associativity result
on the plus operator on natural numbers as our illustrative
example (instead of the string operator). Many automated∘
provers could, of course, dispatch such a theorem easily. We use
it here as an accessible example for when automated proving is
not possible.

It is easy to imagine the need for a theorem on the associativity of
plus by conceiving of a simple piece of code such as
I := (K + L) + M after which, for whatever reason, we need to
confirm that I = K + (L + M). Clearly, the validity of this code
relies on the associativity of plus on the natural numbers (in the

61

same way the validity of the Flip code in the previous section
relies on the associativity of on strings.) The pr∘ écis for
Natural_Number_Theory contains the definition of the set N,
symbols, such as 0 and suc, and several theorems. We list
below one definition and a theorem from this précis:

Précis Natural_Number_Theory;
uses Basic_Function_Properties,
Monogenerator_Theory...

...

Inductive Definition on i : N of (a : N) + (b) : N is
(i) a + 0 = a;
(ii) a + suc(b) = suc(a + b);

Theorem N1: Is_Associative(+);

...
end Natural_Number_Theory;

A précis is an interface for theory users (both humans and
mechanical provers). It provides a summary of the theorems in
the theory—everything required to use the theorems without any
of the details that support the theorems.

This arrangement has obvious analogues to both the header files
of C and forms of documentation such as Javadocs. However,
unlike C headers, which are primarily intended for use by the
compilation system, or Javadocs, which are intended for human
consumption, these précis are intended to aid both the
verification system and human users. The verification system
makes use of proven theorems to verify VCs, mathematicians use
them to support new theorems with established ones, and
programmers use them to to better tailor their specifications to
the available body of mathematical truth. None of these entities
need be concerned with the details of supporting proofs. The
strict separation of précis from proof unit, enforced by the
system, ensures that both documents are always available and
synchronized.

The proof for N1 is found in the proof unit
Natural_Number_Theory_Proofs. It relies on the definition of
a natural number above and reads as follows:

Proof unit Natural_Number_Theory_Proofs for
Natural_Number_Theory;
Uses ...

Proof of Theorem N1:

Goal for all k, m, n: N, k + (m + n) = (k + m) + n;
Def S1: Powerset(N) =

{ n: N, for all k, m: N, k + (m + n) = (k + m) + n };
Goal S1 = N;
Goal 0 is_in S1;
Goal for all n: S1, suc(n) is_in S1;
Goal for all n: S1, if n is_in S1 then suc(n) is_in S1;
(Base_case) Goal 0 is_in S1;
Goal for all k, m: N, k + (m + 0) = (k + m) + 0;
Goal for all k, m: N, if k is_in N and m is_in N then

k + (m + 0) = (k + m) + 0;
Supposition k, m: N;

Goal k + (m + 0) = (k + m) + 0;

k + (m + 0) = k + m
by (i) of Definition +;

k + m = (k + m) + 0
by (i) of Definition +;

Deduction if k is_in N and m is_in N then
k + (m + 0) = (k + m) + 0;

[ZeroAssociativity] For all k: N, for all m: N,
k + (m + 0) = (k + m) + 0

by universal generalization;
[ZeroInS1] 0 is_in S1

by ZeroAssociativity;
(Inductive_case) Goal for all n: N, suc(n) is_in S1;
Goal for all n: N, if n is_in S1 then suc(n) is_in S1;
Supposition n: S1;

[InductiveSupposition] For all k, m: N,
k + (m + n) = (k + m) + n

by Definition S1;
Goal suc(n) is_in S1;
Goal for all k, m: N,

k + (m + suc(n)) = (k + m) + suc(n);
Goal for all k, m: N,

if k is_in N and m is_in N then
k + (m + suc(n)) = (k + m) + suc(n);

Supposition k, m: N;
Goal k + (m + suc(n)) = (k + m) + suc(n);
k + (m + suc(n)) = k + suc(m + n)

by (ii) of Definition +;
(k + suc(m + n)) = suc(k + (m + n))

 by (ii) of Definition +;
suc(k + (m + n)) = suc((k + m) + n)

by InductiveSupposition;
suc((k + m) + n) = (k + m) + suc(n)

by (ii) of Definition +;
Deduction if k is_in N and m is_in N then

k + (m + suc(n)) = (k + m) + suc(n);
[SucNAssociativity] For all k, m: N,

k + (m + suc(n)) = (k + m) + suc(n)
by universal generalization;

suc(n) is_in S1
by SucNAssociativity;

Deduction if n is_in S1 then suc(n) is_in S1;
for all n: N, suc(n) is_in S1

by universal generalization;
0 is_in S1 and (for all n: N, suc(n) is_in S1)

by ZeroInS1 & and rule;
N = S1

by Definition Monogeneric_Pty_3 &
modus ponens;

For all k, m, n: N, k + (m + n) = (k + m) + n
by Definition S1 & universal generalization;

Is_Associative(+)
by Definition Is_Associative(+);

QED

end Natural_Number_Theory_Proofs;

The proof language uses a syntax that mimics the traditional
style of a mathematical proof. Provers such as Isabelle use a
programming language-like syntax for expressing mathematics to
enable ease of automation. Unfortunately, this very reason may
make it less intuitive for traditional mathematicians. Because we
have drawn a clear separation between automated verification of
VCs and proof checking for theorems, we can use a language for
writing proofs that is more intuitive for mathematical users. To
this end, “Goals” are comments to state what the proof will try to
do next; “Supposition/Deduction” pairs provide a mechanism for
establishing implications; “definitions” can be introduced on the
fly; and the “by” keyword introduces the rationale for the next
step. A line of the proof can be given a label in square brackets
for future reference.

62

This proof begins by stating a number of Goals. The proof
establishes a set, S1, which is defined to be the power set of N,
for which the property of associativity already holds. The proof
then proceeds with an induction over the natural numbers to
prove that the set S1 is the same set as N. The base case of this
induction is to prove that the natural number 0 is in S1, which is
accomplished by using the identity property inherent in the
definition of + to show that when adding zero, at least, + is
associative, and thus 0 is also in S1

To see how straight forward the task of mechanization by the
proof checker is, consider the italicized line that makes use of the
“and” rule.

0 is_in S1 and (for all n: N, suc(n) is_in S1)
by ZeroInS1 & and rule;

It is simply the conjunct of the assertion labeled ZeroInS1 with
the assertion in the previous line.

A basic tenant of this proof checker is to approach a minimal
basis of justifications to explain the transitions from step to step
within a proof. These justifications act in concert with
references to provide the rationale for a single step. A reference
names one of the following kinds of entities:

• Lemmas, which are found in math précis or locally in
a proof unit;

• Theorems, which are found in math précis;
• Suppositions that were established earlier in the proof;
• Labels that were given earlier in the proof;
• Definitions/Corollaries, which may be found inside a

theory or defined earlier in the proof.

The available justifications are split into three groups based on
the number of references they act on. The justifications requiring
two references are as follows:

• Modus ponens
• And rule
• Contradiction
• Alternative elimination
• Common conclusion

The justifications requiring one reference are:

• Equality
• Reductio ad absurdam
• Existential generalization
• Or rule
• Conjunct elimination
• Quantifier distribution
• Definition !∃
• Universal instantiation
• Existential instantiation

Finally, the only justification requiring no references is:

• Excluded middle

4.PROOF CHECKER
Each justification has a well defined meaning that allows the
proof-checker to determine if it is valid. Consider the following
example of the semantics of modus ponens:

Γ, δ [Label] B⊢
by [Reference2,] Reference1 & modus ponens
where {A, A → B} ⊆

Extract{[Reference2,] Reference1}, Γ, δ}

Γ represents the theories (with comprising theorems) currently in
scope of the proof; δ represents the derivation of the proof so far;

 is an operator indicating that the following application of a⊢
justification is valid; A and B are simply mathematical
expressions; and the Extract function returns the set of
mathematical expressions that have been assumed so far that
correspond to the given names within either Γ or δ, or that was
assumed in the immediately preceding line of the proof. Square
brackets indicate an optional part.

So, overall this line is to be read, “A justification by modus
ponens is permitted for establishing B if the given references and
the expression of the immediately preceding line are sufficient to
establish, from Γ and δ, that (A → B) and (A). In the future, the
expression B may itself be referenced as Label.”

As another example, here is the semantics of alternative
elimination:

Γ, δ [Label] A⊢
by [Reference2,] Reference1 & alternative elimination
where {B} Extract{[Reference2,] Reference1}, Γ, δ}⊆

and {A or B, B or A} ∩
Extract{[Reference2,] Reference1}, Γ, δ} ≠ ∅

This is to be read, “A justification by alternative elimination is
permitted for establishing A if the given references and the
expression of the immediately preceding line are sufficient to
establish, from Γ and δ, ¬B, and at least one of (A or B) or (B or
A) can be established in the same way. In the future, the
expression A may itself be referenced as Label.”

The current version of the proof checker is able to verify valid
proofs (including the proof of associativity provided in Section
3), though higher-order theorems such as Is_Associative are not
yet implemented. In addition, it is able to recognize and produce
appropriate error messages for attempts to apply faulty
justifications. We provide two examples of simple proofs
containing errors in logic and the output of the proof checker
when run on each.

First consider this working example:

Corollary Identity: a : N and a + 0 = a;

Proof of Theorem Nothing:
Supposition k, m: N;

(k + m) + 0 = k + m
by Corollary Identity & equality;

Deduction if k is_in N and m is_in N then
(k + m) + 0 = k + m;

QED

63

This proof simply establishes that given the identity property of
addition on natural numbers, if two numbers, k and m, are
natural numbers, then (k + m) + 0 = (k + m).

Now consider an invalid application of the Identity Corollary:

Supposition k, m: N;

(k + m) + 0 = m + 0 by Corollary Identity & equality;

Deduction if k is_in N and m is_in N then
(k + m) + 0 = k + m;

When run through the proof-checker, this produces the following
output:

Error: Simple.mt(10):
Could not apply substitution to the justified expression.

(k + m) + 0 = m + 0 by Corollary Identity & equality;

Next, consider an invalid choice of justification to an otherwise
valid step:

Supposition k, m: N;
(k + m) + 0 = k + m by Corollary Identity & or rule;

Deduction if k is_in N and m is_in N then
(k + m) + 0 = k + m;

When run through the proof-checker, this produces the following
output:

Error: Simple.mt(10):
Could not apply the rule Or Rule to the proof expression.
 (k + m) + 0 = k + m by Corollary Identity & or rule;

5. RELATED WORK AND CONCLUSIONS
5.1 Isabelle
Isabelle is a proof assistant implemented in Standard ML and
based on the specification language Isar [13, 16]. Its focus is on
interactive proof development. It is also able to complete proofs
automatically. Unlike earlier versions that closely resembled ML
syntax, more recent versions have begun to put more of an
emphasis on human readability of proofs. Even with these
improvements, proofs contain artifacts of programming
languages. For example, consider the following (trivial) proof
that A and B → B and A where A and B are complicated
expressions (called large_A and large_B in the proof) modified
from [14]:

lemma assumes AB: "large_A large_B"∧
shows "large_B large_A" (is "?B ?A")∧ ∧
using AB

proof
assume "?A" "?B" show ?thesis ..

qed

While penetrable, it is harder to follow for those whose
background is purely mathematical. Also, Isabelle proofs include
statements to help ease automation, often interspersed with steps
of the proof itself. By separating proofs that are merely checked

from those that are totally automated, this difficult can be
avoided.

Isabelle differs from RESOLVE as a language for proofs
primarily with respect to its syntax, which maintains a
programming language flavor. Another difference is that Isabelle
provides no specific support for syntactically separating theorems
from their proofs, though tools are provided for auto-generating
documentation that serves much the same purpose. Also,
Isabelle permits the bodies of proofs to be elided using a “sorry”
command, which may allow unsound theorems to be introduced
into the system.

5.2 Coq
Both Coq and RESOLVE share an emphasis on a small but
extensible logical core and a specification language tailored for
the tool itself (in the case of Coq, this language is called Gallina)
[5]. Coq has limited automatic proving capabilities and a syntax
more reminiscent of a programming language than a
mathematical proof. As an example, consider a proof in Coq that
A and B → B and A modified from [5]:

Variables A B C : Prop.

Lemma and_commutative : (A /\ B) -> (B /\ A).
intro.
elim H.
split.
exact H1.
exact H0.

Save.

As with Isabelle, there is no explicit syntactic mechanism for
separating theorems from their proofs; though, again, tools exist
to automatically generate documentation. Also, like Isabelle,
Coq provides a “trust me” command, which allows a proof to be
elided.

5.3 PVS
PVS exists somewhere between a proof assistant and a theorem
prover [2, 10, 11]. It uses a library of definitions and theorems to
support the SMT solver Yices for the automatic verification of
arithmetic expressions and equalities. Unlike RESOLVE, PVS
has almost no emphasis on human-readable proofs. PVS's type
checking system occasionally defers to the proof-checker to
resolve ambiguous proof conditions. This contrasts with
RESOLVE, where code, specifications, and proofs must all pass
type checking before moving on to verification.

5.4 Nuprl
Like Isabelle, Nuprl is based on ML. Unlike RESOLVE, it does
not perform type-checking on proofs [7, 8]. Nuprl relies on a
built-in set of theories such as integers, function, and sets, which
can only be extended by the use of tuples, unions, and lists. This
contrasts with RESOLVE where only a minimal set of theories is
provided (namely Boolean theory and a small portion of Set
theory) from which other theories are built.

5.5 Conclusions
Software verification is a challenging problem. To address it
effectively, a formal verification system that includes a verifying
compiler needs to bring together the insights of programmers and
mathematicians with advances in prover technology for

64

mechanizing straightforward proofs, and proof checking for non-
trivial theorems. Here we have presented a framework for
addressing this challenge along with a summary of our efforts in
proof checking. We plan much more experimentation with the
ideas and tools presented here in order to make progress toward
a sound and complete verification system.

6. ACKNOWLEDGMENTS
This research is funded in part by NSF grants DUE-0633506,
DMS-0701187, DMS-0811748, and CCF-0811748. We thank
the members of the RESOLVE/Reusable Software Research
Group at Clemson and Ohio State for discussions on the topics
presented in this paper. Special thanks are due to Jeremy Avigad
at CMU, and Harvey Friedman and Bruce Weide at Ohio State.
We thank the referees whose comments have helped improve the
paper. We also thank the attendees of the RESOLVE meeting
held at Clemson in 2007 when Kim Roche presented a draft
version of these ideas.

7. APPENDIX
7.1 Stack Specification

Concept Stack_Template(type Entry; evaluates Max_Depth:
Integer);
 uses Std_Integer_Fac, String_Theory;
 requires Max_Depth > 0;

 Type Family Stack is modeled by Str(Entry);
 exemplar S;
 constraint |S| <= |Max_Depth|;
 initialization ensures S = empty_string;

 Operation Push(alters E: Entry; updates S: Stack);
 requires 1 + |S| <= Max_Depth;
 ensures S = <#E> o #S;

 Operation Pop(replaces R: Entry; updates S: Stack);
 requires |S| > 0;
 ensures #S = <R> o S;

 Operation Depth(restores S: Stack): Integer;
 ensures Depth = (|S|);

 Operation Rem_Capacity(restores S: Stack): Integer;
 ensures Rem_Capacity = (Max_Depth - |S|);

 Operation Clear(clears S: Stack);

end Stack_Template;

The concept Stack_Template is parameterized by a type, Entry,
comparable to a generic in Java, and a Max_Depth that ensures
each stack never becomes deeper than some capacity.

A type, Stack, is introduced, which is modeled on a
mathematical string of Entrys. The constraints clause
introduces a class invariant: the depth of a stack may never
exceed Max_Depth. The initialization ensures clause
guarantees that all implementations of Stack will ensure that
new Stacks begin empty.

Next comes a list of the usual operations on Stacks. Each
operation has a requires clause, which states the operation's pre-
condition; and an ensures clause, which states its post-

condition. In the ensures clause, a variable like S refers to the
outgoing value of S while #S refers to the initial, incoming value
of S. In addition to a type, each parameter in an operation has a
parameter passing mode, such as alters or updates. These
modes make certain assurances about the way in which a given
parameter will be used. For instance, the alters mode indicates
that the incoming value of the parameter is meaningful (and thus
that variable may appear in the requires clause), but that the
outgoing value of that parameter is undefined (and thus referring
to the outgoing value in the ensures clause is illegal.) Updates
indicates that both the incoming and outgoing values are defined.
The others are similar.

As an example, the Pop operation takes a Stack, S, and an Entry,
R, into which to pop the top entry. The requires clause states
that there must be at least one Entry on S, and the ensures clause
states that when we have finished, prepending R onto the final
value of S will have the same value as the initial value of S.

7.2 VCs Resulting from Obvious_F_C_Realiz
Free Variables: Max_Depth:*Z, min_int:*Z, max_int:*Z,
S:*Str(*Entry), ?S:*Str(*Entry), ?Next_Entry:*Entry, ?
S_Reversed:*Str(*Entry), Next_Entry:*Entry,
S_Reversed:*Str(*Entry)

((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0) and
(0 < max_int) and (Max_Depth > 0))) and (|S| <= |
Max_Depth|))
======================>
S = (Rev(empty_string) o S)

(((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0)
and (0 < max_int) and (Max_Depth > 0))) and (|S| <= |
Max_Depth|)) and (S = (Rev(?S_Rev) o ?S) and |?S| /= 0))
======================>
((1 + |?S_Reversed|) <= Max_Depth)

(((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0)
and (0 < max_int) and (Max_Depth > 0))) and (|S| <= |
Max_Depth|)) and (S = (Rev(?S_Reversed) o ?S) and |?S| /
= 0))
======================>
(Rev(?S_Reversed) o ?S) = (Rev((<?Next_Entry> o ?
S_Reversed)) o ?S)

(((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0)
and (0 < max_int) and (Max_Depth > 0))) and (|S| <= |
Max_Depth|)) and (S = (Rev(?S_Reversed) o ?S) and |?S| /
= 0))
======================>
(|?S| < |?S|)

((((min_int <= 0) and (0 < max_int)) and ((min_int <= 0) and
(0 < max_int) and (Max_Depth > 0))) and ((|S| <= |
Max_Depth|) and (S = (Rev(?S_Reversed) o ?S) and |?S| =
0)))
======================>
?S_Reversed = Rev((Rev(?S_Reversed) o ?S))

8. REFERENCES
[1] “ACL2 Version 3.4: The User's Manual.”

http://www.cs.utexas.edu/users/moore/acl2/v3-4/acl2-
doc.html#User%27s-Manual

[2] B. Dutertre and L. de Moura, “The Yices SMT Solver,”
August 2006, http://yices.csl.sri.com/documentation.shtml./

65

[3] M. D. Ernst. Dynamically discovering likely program
invariants. PhD thesis, University of Washington
Department of Computer Science and Engineering, Seattle,
Washington, Aug. 2000.

[4] D. E. Harms and B. W. Weide, Copying and Swapping:
Influences on the Design of Reusable Software Components,
IEEE Transactions on Software Engineering, Vol. 17, No. 5,
May 1991, pp. 424 - 435.

[5] G. Huet, G. Kahn, and C. Paulin-Mohring, “The Coq Proof
Assistant: A Tutorial.” INRIA, 2004, pp. 3-18; 45-47.

[6] H. Kirschenbaum, K. Harton, and M. Sitaraman, A Case
Study in Automated Verification, Proceedings of CAV/AFM
Workshop, Princeton, NJ, July 2008.

[7] PRL Project, “The Nuprl Book,” September 1995,
http://www.cs.cornell.edu/Info/Projects/NuPrl/book/doc.html

[8] PRL Project, “Nuprl Basics – Nuprl Primitives,” September
2003,
http://www.cs.cornell.edu/Info/People/sfa/Nuprl/NuprlPrimit
ives/.

[9] RESOLVE Compiler and Verifier.
http://www.cs.clemson.edu/~resolve/compiler-verifier.html.

[10] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-
Calvert, “PVS Language Reference: Version 2.4.” Menlo
Park, CA: SRI International, 2001.

[11] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-
Calvert, “PVS Prover Guide: Version 2.4.” Menlo Park, CA:
SRI International, 2001, pp. 1-24; 103-110.

[12] M. Sitaraman, and B. Weide, eds., Special Feature:
Component-Based Software Using RESOLVE, Software
Engineering Notes 19, 4 (October 1994), 21-22.

[13] T. Nipkow, L. C. Paulson, M. Wenzel, “Isabelle/HOL: A
Proof Assistant for Higher-Order Logic.” New York:
Springer-Verlag, 2008, Sections 1.1, 1.2, and 2.3.

[14] T. Nipkow. “A Tutorial Introduction to Structured Isar
Proofs,”
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/d
oc/isar-overview.pdf.

[15] B. Weide, M. Sitaraman, H. K. Harton, B. Adcock, P. Bucci,
D. Bronish, W. D. Heym, J. Kirschenbaum and D. Frazier.
Incremental Benchmarks for Software Verification Tools and
Techniques. Proceedings of VSTTE 2008, Toronto, CA, Oct
2008, to appear.

[16] M. Wenzel, “Isabelle/Isar: Reference Manual”, June 2008,
www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc/isa
r-ref.pdf. Section 4.4.

[17] J. M. Wing. Using Larch to specify Avalon/C++ objects.
IEEE Transactions on Software Engineering, Vol. 16, No. 9,
September 1990, pp. 1076-1088.

66

Using Isabelle to Help Verify Code That Uses Abstract Data
Types

Jason Kirschenbaum
The Ohio State University

Columbus, OH 43210, USA
kirschen@cse.ohio-

state.edu

Bruce M. Adcock
The Ohio State University

Columbus, OH 43210, USA
adcockb@cse.ohio-

state.edu

Derek Bronish
The Ohio State University

Columbus, OH 43210, USA
bronish@cse.ohio-

state.edu

Paolo Bucci
The Ohio State University

Columbus, OH 43210, USA
bucci@cse.ohio-

state.edu

Bruce W. Weide
The Ohio State University

Columbus, OH 43210, USA
weide@cse.ohio-

state.edu

ABSTRACT
Verification of programs that use abstract data types (ADTs)
is an important piece of the grand challenge of verified soft-
ware. It is our position that an interactive proof assistant,
such as Isabelle, used in a fully automated mode, can be
an effective, extensible proof engine for use in the modular
verification of software. As technical justification for this
position, we describe the modular verification of two imple-
mentations of an extension to a queue ADT. One imple-
mentation is recursive, while the other is iterative and relies
on a stack ADT. The correctness of the implementations is
proved by Isabelle automatically, using specification theo-
ries from the Resolve mathematical library imported into
Isabelle. Isabelle’s viability as a general-purpose VC prover
is also discussed.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods; D.2.4 [Software Engineering]:
Software/Program Verification—Correctness Proofs

General Terms
Languages, tools

Keywords
Verification, Isabelle, formal methods, reuse

1. INTRODUCTION
The grand challenge for computer scientists to produce a
verifying compiler, recently reissued by Hoare [18], has been

!

!

Assertive
Code

Specs
Math Defs,

Results

Automated
Prover

Math Proofs

Proof Checker

“No”: bug info

“Yes”:

certificate

VC Generator

Programmer

Mathematician

Figure 1: Envisioned framework for verified software

a goal of the community since as early as 1967 [14]. A veri-
fying compiler parses and compiles code, generates verifica-
tion conditions (VCs) whose validity implies the correctness
of the code, and proves or refutes those VCs via automated
reasoning methods. Thus any object code generated by the
compiler is certified correct relative to a specification of the
intended behavior the code implements. Figure 1 diagrams
how such a process might work. Programmers write as-
sertive code in an attempt to meet the given specifications.
A VC generator then processes the code and the specifi-
cations, supplemented with relevant mathematical theories
and definitions. An automated theorem prover is fed the re-
sulting VCs, along with the theories, definitions and previ-
ously established mathematical results. The theorem prover
may rely on specialized decision procedures and/or general-
purpose reasoning methods. In the case that the VC is
proven, a proof checker can be invoked to confirm the proof
to rule out possible errors in the prover, which is both com-
plex and generally treated as a black box.

In this paper, we are concerned with the automatic proof
of VCs, focusing on the region delineated by the dotted line
in Fig. 1. More specifically, this paper focuses on an exten-
sion of an ADT, and does not investigate the verification
of ADT implementations themselves. The extension con-
tains the mathematical specification of a new operation for
the ADT, along with one of many possible implementations.
In accordance with the usual object-oriented design princi-

67

ples, the implementation does not use knowledge about the
internal data representation of the ADT. Therefore, the op-
eration can be verified by examining only the specifications
of any operations called in the code, and the specification
that the code purports to implement. Any verifying com-
piler should only have to perform the proof of the correct-
ness of this code once. This is the basic tenet of modular
verification [24].

It is our position that the proof assistant Isabelle [21] can
function as an effective, extensible tool to perform the auto-
mated verification of software, in a manner similar to SMT
solvers [11, 10]. Moreover, we can factor out the mathemat-
ical theories needed from the proof engine used for the VC
proofs.

In order to justify our position, we present two examples of
automated verification for extensions of abstract data types.
These examples are from a recently proposed set of bench-
marks for automated verification [29]. The mathematical
theory involved is that of strings. Next, the advantages of
our approach are discussed. Specifically, we illustrate how
the disciplined use of a small set of rich mathematical mod-
els used in model-based specifications permits the expression
of required loop invariants, even where two different ADTs
are involved (in this case, stacks and queues). Finally, we
turn our attention to the issues that naturally arise as we
continue to expand the power of the mathematical theories
to specify additional ADTs and extensions using the same
approach.

We use the interactive proof assistant Isabelle [21] to prove
the VCs. The choice to use an interactive proof assistant
rather than a specialized decision procedure for the relevant
mathematical theories was motivated by concerns about how
the approach scales upwards. The primary drawback to cus-
tomized decision procedures is that a new one needs to be
formulated and proven correct for every new mathematical
entity that the code can realize. Of course, interactive proof
assistants have their downsides as well, for example the ques-
tion of whether their failure to establish a result is due to an
actual deficiency in the code to be verified, or a limitation in
the prover itself. While, in the long term, a hybrid approach
may be used in practice, we are interested in the research
questions involved in comparing these two approaches.

Our choice of Isabelle, rather than another interactive proof
assistant such as PVS [23] or COQ [1], is motivated by sev-
eral factors. First, one of the members of our team is an
expert in Isabelle, which eases the learning curve to use Is-
abelle (similarly any interactive proof assistant). The sec-
ond is the popularity of Isabelle/HOL in the area of software
verification [2, 28, 5, 7]. Finally, Isabelle/HOL’s ability to
add new lemmas to the automated proof tactics was also a
consideration.

The language of the specifications and implementations is a
dialect of Resolve [12, 22, 4]. This language provides support
for the separation of component specification and implemen-
tations, with constructs admitted to the language only when
they allow proof rules that support modular verification.
The language provides a value semantics mental model of
ADTs. There are no references; aliasing cannot occur [27].

The specifications are model-based, and are manifested as
requires and ensures clauses on each of the operations,
thus creating “operation contracts.” Built-in to Resolve are
several fundamental mathematical theories that are power-
ful enough to specify most ADTs. When necessary, addi-
tional theories can be defined [12]. The number of theories
used is, however, intended and expected to remain small,
and Resolve includes the core theories of strings, integers,
real numbers, sets, multisets, trees, binary trees, tuples, and
booleans.

The specifications shown here are similar to those found
in other specification languages. The queue ADT exam-
ple presented here could be specified in a similar manner in
JML [20]. However, the presence of aliasing and other fea-
tures in Java significantly complicates the specifications; for
example, the specification of a Stack in JML [20] is far more
complex than the Resolve specification of Stack (presented
in the next section).

Section 2 describes the contracts and implementations of
the examples studied, along with the relevant mathemat-
ical theory. Section 3 discusses the most interesting VCs
necessary for the correctness of the implementations. Sec-
tion 4 summarizes our experiences with proving correctness
of VCs involving string models. Section 5 discusses related
work. Finally, Section 6 concludes with possible future di-
rections.

2. SPECIFICATION AND IMPLEMENTATION
OF THE QUEUE REVERSE PROCEDURE

2.1 Resolve String Theory
The contract specifications of the ADT for queue and its re-
verse extension are in terms of mathematical strings (Fig. 2).
These mathematical strings are used as a mathematical model
of the behavior of the queue ADT similar to what can be
done using sequences in JML [6]. We emphasize that spec-
ifications and code are two different entities; specifications
are statements in mathematics that may have multiple valid
realizations in code, and are not themselves executable. 1

Informally, strings over a given type obj are intended to have
a model that is exactly the elements of obj ∗, where ∗ is the
Kleene star. However, a theory such as the one in Fig. 2 is
self-contained and might have other models; that is, a theory
is defined not by exhibiting a particular model, but rather
by its axioms. Of course, it is important to know that such a
model exists and that we are not describing an inconsistent
theory. We briefly describe the process of ensuring that this
theory is consistent in Section 2.4.

A few functions are defined for strings: concatenation, length,
and reverse. In Fig. 2, we state some simple lemmas without
proofs. The proofs of these lemmas follow easily from the
axioms and definitions. Once proved, these lemmas can be
used in proofs of VCs, exactly like the axioms and defini-
tions.

1We write Resolve mathematical theories in a mathematical
notation, as shown here. Isabelle proof scripts are shown in
the ASCII equivalent. This choice explicitly delineates the
proofs from the underlying mathematical theories.

68

String Type Signature

string
def
≡ string(obj)

Λ : string
ext : string × obj −→ string

String Axioms

1. ext(s, x) 6= Λ

2. ext(s1, x1) = ext(s2, x2) ⇒ s1 = s2 ∧ x1 = x2

3. ∀S ∈ P(string) : (Λ ∈ S ∧ ∀x, s : (s ∈ S ⇒ ext(s, x) ∈ S)) ⇒
S = string

Function Definitions

1. 〈 〉 : obj −→ string
def
≡ 〈x〉 = ext(Λ, x)

2. | | : string −→ N
def
≡ |Λ| = 0 ∧ |ext(s, x)| = |s|+ 1

3. ∗ : string× string −→ string
def
≡ (s∗Λ = s)∧ (s1 ∗ ext(s2, x) =

ext(s1 ∗ s2, x))

4. reverse : string −→ string
def
≡ reverse(Λ) = Λ ∧

reverse(ext(s, x)) = 〈x〉 ∗ reverse(s)

Useful Lemmas

1. lemma EmptyNotSingle: Λ 6= 〈x〉

2. lemma IdofEmpty : Λ ∗ α = α

3. lemma LenofSingle : |〈x〉| = 1

4. lemma LenofCat : |α ∗ β| = |α|+ |β|

5. lemma AssocCat : α ∗ (β ∗ γ) = (α ∗ β) ∗ γ

6. lemma ReverseofReverse : reverse(reverse(α)) = α

7. lemma ReverseofCat : reverse(α ∗ β) = reverse(β) ∗ reverse(α)

8. lemma LenofReverse: |reverse(α)| = |α|

Figure 2: String Theory

2.2 Specifications
The queue reverse extension uses a queue ADT, which is
specified in the QueueTemplate component. Figure 3 shows
the contract with preconditions and postconditions on each
operation written via requires and ensures, respectively.
The mathematical model of a queue is a string of items,
and its initial value is Λ which is represented in ASCII as
empty_string. This component is parametrized by the type
of items in the queues. The usual queue operations are
all specified in terms of this string model. The parameter
modes used include updates, clears, replaces, and re-

stores. The updates mode indicates that the parameter
may be modified by the procedure in accordance with the
ensures clause. The clears mode means the parameter has
an initial value for its type upon return. The replaces mode
indicates that the corresponding argument may be modified
but that the incoming value of the parameter has no effect on
the behavior of the operation. Finally, the restores mode
means that the incoming and outgoing values of the param-
eter are equal. Note that the semantics of the clears and
restores parameter modes each induces a proof obligation
that must be discharged in order for an implementation to
be verified. In ensures clauses, the # indicates the old value
of a variable. In the Queue type declaration, the scope of
exemplar q is just the initialization ensures clause; it
introduces a name for an arbitrary object of the new type.

contract QueueTemplate (type Item)

math subtype QUEUE_MODEL is string of Item

type Queue is modeled by QUEUE_MODEL
exemplar q
initialization ensures

q = empty_string

procedure Enqueue (updates q: Queue ,
clears x: Item)

ensures
q = #q * <#x>

procedure Dequeue (updates q: Queue ,
replaces x: Item)

requires
q /= empty_string

ensures
#q = <x> * q

function IsEmpty (restores q: Queue): control
ensures

IsEmpty = (q = empty_string)

end QueueTemplate

Figure 3: Queue ADT Specification

Finally, the parameter passing for each of the operations is
performed via swapping [16]. In the absence of repeated
arguments which are ruled out by the syntax of Resolve in
this dialect, this method of parameter passing is equivalent
in behavior to pass by reference.

contract QueueReverse enhances QueueTemplate

procedure Reverse (updates q: Queue)
ensures

q = reverse (#q)

end QueueReverse

Figure 4: Queue Reverse Specification

2.3 Recursive and Iterative Realizations
The functionality described in QueueTemplate is extended
by QueueReverse, which specifies a new procedure opera-
tion: Reverse. This is shown in Fig. 4. The specification
uses the mathematical function reverse, from the string the-
ory of Fig. 2.

An implementation of the Reverse procedure can be done in
at least two different ways: recursively, or iteratively using a
stack. The stack ADT is specified in a way similar to queue,
again using strings as the mathematical model. The Push

and Pop operations both work on the “left” end of the string
that models a stack. The stack provides LIFO behavior,
while the queue provides FIFO behavior. The contract of
the stack ADT is needed for the proof of correctness, of
course, and is shown in Fig. 5.

The iterative Reverse implementation performs the reversal
in two steps, as shown in Fig. 6. First, all of the elements of
the queue are moved from the queue to a local stack. Then
all of the elements of the stack are popped off and placed in
the queue. In this implementation, we must verify two loops.
A loop includes both a loop invariant (the maintains clause)
and a loop progress metric (the decreases clause, which is
used to prove termination). In a loop invariant, # denotes

69

contract StackTemplate (type Item)

math subtype STACK_MODEL is string of Item

type Stack is modeled by STACK_MODEL
exemplar s
initialization ensures

s = empty_string

procedure Push (updates s: Stack , clears x: Item)
ensures

s = <#x > * #s

procedure Pop (updates s: Stack , replaces x: Item)
requires

s /= empty_string
ensures

#s = <x> * s

function IsEmpty (restores s: Stack): control
ensures

IsEmpty = (s = empty_string)

end StackTemplate

Figure 5: Stack ADT Specification

the value of the variable just before execution encounters
the loop.

realization Iterative implements QueueReverse

facility StackFacility is StackTemplate (Item)

procedure Reverse (updates q: Queue)
variable s: Stack
loop

maintains reverse (#s) * #q = reverse(s) * q
decreases |q|

while not IsEmpty (q) do
variable x: Item
Dequeue (q, x)
Push (s, x)

end loop
loop

maintains #q * #s = q * s
decreases |s|

while not IsEmpty (s) do
variable x : Item
Pop (s, x)
Enqueue (q, x)

end loop
end Reverse

end Iterative

Figure 6: Iterative Queue Reverse Implementation

The recursive implementation of the Reverse procedure is
demonstrated in Fig. 7. This implementation removes the
first element from the queue, recursively reverses the rest of
it, then enqueues the removed element. Since this procedure
is recursive, we must provide a metric that decreases in each
recursive call to Reverse in order to prove total correctness.

These implementations cover several of the standard fea-
tures of any imperative programming language: (recursive
and non-recursive) calls, loops and conditional control struc-
tures, and the use of ADTs. The examples show how our
tools and techniques for proving VCs process these common
language features.

The lemmas needed to prove the correctness of the two im-
plementations of Reverse are few, as seen in Fig. 2. We

realization Recursive implements QueueReverse

procedure Reverse (updates q: Queue)
decreases |q|
if not IsEmpty (q) then

variable x: Item
Dequeue (q, x)
Reverse (q)
Enqueue (q, x)

end if
end Reverse

end Recursive

Figure 7: Recursive Queue Reverse Implementation

do not need to include two mathematical theories, one for
stacks and one for queues; string theory is rich enough for
both. This mathematical uniformity is especially advanta-
geous for the iterative version. It would be tricky to write
both loop invariants without it.

2.4 String Theory in Isabelle
Isabelle [21] is an automated proof assistant, meaning it is
capable of checking a proof that a user directs. Automated
proof assistants can also perform many of the tedious steps
needed to produce a proof; in some cases the proof assistant
can produce the proof outright, establishing the goal without
human guidance.

More specifically, Isabelle has a simplifier that can be in-
voked to simplify assumptions and goals of a theorem. Is-
abelle also includes a classical reasoner that can perform
many of the logical inference rules automatically. The proof
structure of Isabelle is set up in a manner that mimics
natural deduction. Assumptions and a goal are presented
and simplifications can apply to both. Rules for applying
already-proved lemmas and theorems dictate how the as-
sumptions and goals are modified. One can apply forward
reasoning and modify the assumptions, apply backward rea-
soning and modify the goals, or apply both at the same
time.

For convenience, many of the proof methods instantiated
with common lemmas are performed in Isabelle via the auto
and force commands, commonly referred to as “tactics.”
These tactics use both the simplifier and the classical rea-
soner, the difference being that the force method will only
succeed or fail, while the auto method will return a simpli-
fied goal (if possible).

New axiom systems, theories, and theorems can be entered
into Isabelle using a built-in meta-level logic. All other
axiom systems are implemented on top of this meta-logic.
For example, higher order logic (HOL) [21] and ZF set the-
ory [25] are available.

Since string theory is already developed in Resolve, we need
only to import that theory into Isabelle. The proofs of the
lemmas in string theory can then be factored off from the us-
age of those lemmas for proving the various VCs. Of course,
a theory must also have a witness to the existence of a model
that satisfies its axioms. Fortunately, such a model for string
theory is readily available, namely the Isabelle List type
in the HOL theory. More information about the process

70

used to import the Resolve String theory into Isabelle can
be found on the web at http://www.cse.ohio-state.edu/

~kirschen/rsrg/Isabelle.html

We do not use the plethora of theories available in Isabelle
for the automatic proof of VCs, but rather use Isabelle’s
proof engine along with only the theories already developed
for Resolve specifications. By doing so, we are not tied down
to any particular proof assistant or theorem proving tool. As
long as the tool has an expressive enough proof language,
and allows users to add new simplification and proof rules,
then it might be used for our purposes.

3. VERIFICATION AND RESULTS
theory RecursiveQueueReverse_Reverse

imports Main String

begin
...
lemma 4:

"[|
is_initial ((x_2::’obj)) ;
is_initial ((x_5::’obj)) ;
~<(x_3::’obj)> o (q_3::’obj string) = empty_string

|]
==>

reverse(q_3) o <x_3 > = reverse((<x_3 > o q_3))"

apply (((simp only: simp_thms),clarify ?)+)?

apply (force +)?

done
...
end

Figure 8: A key VC for the verification of the recursive
implementation of Reverse

The method of generating VCs [17, 27] is known to be both
sound and relatively complete (i.e., relative to the complete-
ness of the mathematics used in the specifications). This
method of generating VCs is quite similar to a method de-
scribed by Barnett et al. [3]. At a high level, the generation
of VCs involves processing the realization’s code (accumulat-
ing facts from the ensures clauses of each procedure used)
while taking control structure (conditionals and loops) into
account. A new VC is generated for each requires clause
of a called procedure or function that is not syntactically
“true,” at each loop invariant and recursive call, and at the
end of the operation body.

Lemma #4 (state index: 6, ensures clause)

is initial(x2)

∧ is initial(x5)

∧ 〈x3〉 ∗ q3 6= Λ

⇒ reverse(q3) ∗ 〈x3〉 = reverse(〈x3〉 ∗ q3)

Figure 9: Human readable version of Fig. 8

The VCs are intended not only to be mathematically pre-
cise, but also human-readable. At a high level, between
each pair of statements in the implementation’s code a new
subscript is created for each variable, and a mathematical
formula relates the new subscripted variables to the earlier

subscripted variables. Path conditions, facts, and obliga-
tions are accumulated and organized into VCs according to
the proof rules in [17]. For example, if a variable v is not
changed by a statement s and the subscript before s is i,
then the facts known after the statement include vi+1 = vi.
Control statements and loops introduce implications. For
each of the possible control paths (e.g., entering or skipping
a loop body), we generate a separate VC. This simplifies the
task for the prover, as it explicitly does the requisite case
analysis. We have found empirically that this format reduces
the complexity of the VCs and their proofs, and increases
the chance that Isabelle can prove the VCs automatically.

..
lemma 4:

"[|
~<(x_4::’obj)> o (q_4::’obj string) = empty_string ;
reverse(empty_string) o (q_0::’obj string)

= reverse ((s_2::’obj string)) o <x_4 > o q_4 ;
(length ((<x_4 > o q_4))) > 0 ;
is_initial ((x_3::’obj)) ;
is_initial ((x_5::’obj))

|]
==>

reverse(empty_string) o q_0
= reverse((<x_4 > o s_2)) o q_4"

apply (((simp only: simp_thms),clarify ?)+)?

apply (force +)?

done
...
end

Figure 10: A key VC for the verification of the iterative
implementation of Reverse

One VC that needs to be proved for the recursive imple-
mentation of Reverse is shown in the raw Isabelle output
in Fig. 92 and in a more human readable format in Fig. 8.
This VC comes from the ensures clause of the recursive call
to Reverse in Fig. 7, the satisfaction of which is the essence
of the correctness of the implementation. The VC is part of
an Isabelle theory file that includes all of the VCs. The ap-

ply(...) lines are instructions to Isabelle on how to prove
each VC. The first section directs Isabelle to perform basic
simplifications, such as propositional simplifications. The
second line, apply (force+)? directs Isabelle to perform
the automated reasoning methods. The done line indicates
to Isabelle that the person thinks the proof is finished. These
lines are all generated automatically by the VC generator.

Lemma #4 (state index: 5, loop invariant)

〈x4〉 ∗ q4 6= Λ

∧ reverse(Λ) ∗ q0 = reverse(s2) ∗ 〈x4〉 ∗ q4

∧ |〈x4〉 ∗ q4| > 0

∧ is initial(x3)

∧ is initial(x5)

⇒ reverse(Λ) ∗ q0 = reverse(〈x4〉 ∗ s2) ∗ q4

Figure 11: Human readable version of Fig. 10

2The Isabelle versions of the VCs use the o symbol for the
∗ concatenation symbol in Resolve’s string theory.

71

Generation Proofs
Recursive Time (sec) 0.9 .26
Iterative Time (sec) 1.8 1.37

Table 1: VC Generation and Proof Running Time

In the iterative implementation of Reverse, we use a stack
to reverse the queue using two loops. Figure 10 is a VC from
the loop invariant for the first loop expressed in the Isabelle
format; figure 11 expresses the VC in a human readable for-
mat. The main string theory lemmas involved here are the
associativity of concatenation and the property of concate-
nation within the reverse function.

Isabelle, with the help of the introduced string theory lem-
mas from Fig. 2, proves both sets of verification conditions
automatically. The generation of the VCs and the proofs of
the VCs in Isabelle each takes very little time, as seen in
Table 1. These timings do not take into account the time
for Isabelle to read the Resolve String theory file; the use
of Isabelle’s internal tools allow for String theory to be in-
corporated into an Isabelle executable and bypass the time
required for Isabelle to process String theory.

Both implementations of the queue Reverse code, string the-
ory in Isabelle, and all VCs are on the web at http://www.

cse.ohio-state.edu/~kirschen/rsrg/Isabelle.html.

4. LESSONS LEARNED
We have shown that the VCs generated for the reverse ex-
tension to a queue ADT are automatically provable by an
interactive proof assistant without human advice. While
these initial results are positive, there are of course many
more issues to address. We now describe several of the is-
sues that have come up as we have explored these and other
examples. In this section, we use the term “prover” to mean
any tool that attempts to prove VCs without the use of spe-
cialized decision procedures.

The first potential complication is the addition of quantifiers
in requires and ensures clauses. For a proof of a univer-
sally quantified statement in the conclusion of a VC (e.g.,
A ⇒ ∀x.P (x)), a prover can simply use a fixed (but arbi-
trary) element of the universe of the quantification for x,
and prove the statement true for that element.

However, when an assumption in a VC involves universal
quantification, the natural question is “what term should
be used to instantiate the quantified variables?” With this
issue, a general proof approach (without the use of a spe-
cialized decision procedure) must either never need to in-
stantiate a quantified variable (avoiding the issue), or use a
method that instantiates the quantifier “correctly” in many
cases (possibly tuned for the types of VCs that are likely to
occur). The dual of this is the use of existential quantifica-
tion. An existential quantification in the assumptions does
not cause any problems, whereas an existential quantifica-
tion in the goal does. Consequently, it is not desirable to
have existential quantification in the goal of a VC, although
it remains to be seen how often this may arise. One speci-
fication design approach is to demand that all requires and
ensures clauses and loop invariants be quantifier-free; quan-
tifiers would be introduced only in mathematical definitions.

This raises the issue of how to include new definitions in ex-
isting theories. One approach is to prove algebraic properties
(lemmas) involving those definitions. Using those proper-
ties, the automated prover would then attempt to verify the
VCs. Another approach is to instead unfold the definition
immediately and then let the prover verify the VCs using the
expanded version of the definition (exposing any quantifiers
in the definition to the prover). While the second approach
seems easier to achieve at first glance because the requisite
algebraic properties need not be identified and proved, the
first approach may have benefits by limiting the complexity
of the VCs that the prover works with.

For example, one might want to add the definition
IsPermutation(a,b) to denote that the string a is a permu-
tation of the string b. IsPermutation may be defined via the
number of occurrences of an item in a string.
IsPermutation(a * b, b * a) is a lemma that should—
and can—be proved once and then used to prove many
VCs. Fox example, VCs generated for a selection sort al-
gorithm essentially require the prover to deduce IsPermu-

tation(q1 * (a * <x>),q) from the assumptions IsPer-

mutation(q2 * a,q) and IsPermutation(q1 * <x>,q2). A
standard proof involves using lemmas about substitutions,
the symmetry of IsPermutation, and commutativity of con-
catenation within the arguments of IsPermutation.

5. RELATED WORK
Zee et al. [30] have used a hybrid approach of applying both
specialized decision procedures and a general proof assistant
to prove that code purporting to implement certain data
structure specifications is correct. However, the use of Java
as a starting language requires that the list specifications
use reference equality or comparison. Our approach proves
properties that depend on the values of the objects instead.

Zhang et al. [31] describe a decision procedure for queues.
Instead of using a special-purpose decision procedure, we use
a general-purpose automated proof assistant. The general
string theory used for our specifications is slightly simpler
than the queue theory developed with the decision proce-
dure, and it is also used to specify the stack ADT used in
one of our examples, as well as other Resolve components.

The Why methodology [13] involves a simplified program-
ming language, annotated with logical definitions, axioms,
preconditions, post conditions and loop invariants, for which
VCs can be generated. A subset of both C (with annota-
tions) and Java (with JML specifications) can be translated
into the simplified programming language, such that the
VCs generated are claimed to represent the correctness of
the original C or Java code. The translation process from
C or Java must explicitly capture the memory model of the
original source language (C or Java); as a result of using Re-
solve, we do not need an explicit memory model, simplifying
the generated VCs.

SMT solvers such as Yices [11] and Z3 [10] are designed
to search for a possible satisfying assignment to a first-order
formula by using a SAT solving algorithm (such as DPLL [9,
8]) to find possible satisfying assignments, confirming those
assignments via first-order theory-specific satisfiability pro-
cedures. SMT solvers are known not to perform well with

72

quantifiers and the reliance on strictly first-order logic en-
sures that some predicates may not be definable [19]. We
have not yet investigate the relative efficacy of Isabelle com-
pared to any of these SMT solvers.

The Resolve approach for the specifications of a queue ADT
is similar to what might be done in JML [20]. For example,
the JML specifications for lists use mathematical sequences,
similar to our use of strings as the mathematical model for
queues and stacks. But with Java, again, the reference/value
distinction introduces considerable added complexity.

Resolve superficially resembles the Larch [15] specification
and verification discipline. Both approaches employ a
programming-by-contract paradigm. Resolve and Larch dif-
fer in that Resolve was designed to be used with exactly one
programming language and one mathematical specification
language, while Larch uses the Larch Shared Language to ex-
press mathematical theories (traits) and the Larch Interface
Languages (LIL) to express specifications for a particular
programming language such as C. Resolve does not have this
distinction; the same mathematical language is used both
for the creation of mathematical theories and the specifica-
tion of programmatic operations. Resolve was also designed
with the idea of verifiability in mind, so the programming
language with its specification language must have a com-
mon semantics that allow for proof of soundness and relative
completeness of a proof system. Larch was meant to work
with several languages whose semantics may be completely
different and, indeed, not yet formalized. Also, a key idea of
Resolve is that it reuses mathematical theory units as much
as possible, while the Larch approach instead tends to reuse
a particular trait defined in the Larch Shared Language in
each of the interface languages. However, the examples pro-
vided for Larch do not show the traits themselves reused
within one LIL. For example, a queue and a stack each have
a different trait in Larch, while both are modeled by math-
ematical strings from String theory in Resolve.

6. CONCLUSION AND FUTURE WORK
We have described automated verification of two different
implementations of an extension of an ADT. We have also
discussed lessons learned about possible challenges to achiev-
ing verified software by using and automated proof assistant
to prove VCs.

In the future, we expect to create implementations that ex-
ercise different parts of the string theory development. For
example, the use of substring or permutation definitions in
the specifications would require the addition of more string
lemmas to continue the automated reasoning process. Fi-
nally, we expect to add other theories developed for Resolve
specifications into Isabelle, such as finite sets and trees.

Acknowledgments
The authors thank Jeremy Avigad, Harvey M. Friedman,
Wayne Heym, Brandon Mintern, Bill Ogden, Murali Sitara-
man, and Anna Wolf for their assistance. This work was
supported in part by the National Science Foundation under
grant DMS-0701260. Any opinions, findings, conclusions, or
recommendations expressed here are those of the authors
and do not necessarily reflect the views of the National Sci-
ence Foundation.

7. REFERENCES
[1] The Coq Proof Assistant Reference Manual Version

v8.1.

[2] E. Alkassar and M. A. Hillebrand. Formal functional
verification of device drivers. In Shankar and
Woodcock [26], pages 225–239.

[3] M. Barnett and K. R. M. Leino. Weakest-precondition
of unstructured programs. In PASTE ’05: Proceedings
of the 6th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering,
pages 82–87, New York, NY, USA, 2005. ACM.

[4] P. Bucci, J. E. Hollingsworth, J. Krone, and B. W.
Weide. Part III: implementing components in
RESOLVE. SIGSOFT Softw. Eng. Notes, 19(4):40–51,
1994.

[5] P. Chalin, P. R. James, and G. Karabotsos. JML4:
Towards an industrial grade IVE for java and next
generation research platform for JML. In Shankar and
Woodcock [26], pages 70–83.

[6] Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards.
Model variables: cleanly supporting abstraction in
design by contract. Software: Practice and Experience,
35(6):583–599, 2005.

[7] M. Daum, J. Dörrenbächer, M. Schmidt, and B. Wolff.
A verification approach for system-level concurrent
programs. In Shankar and Woodcock [26], pages
161–176.

[8] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem-proving. Commun. ACM,
5(7):394–397, 1962.

[9] M. Davis and H. Putnam. A computing procedure for
quantification theory. J. ACM, 7(3):201–215, 1960.

[10] L. de Moura and N. Bjørner. Z3: An efficient smt
solver. In C. R. Ramakrishnan and J. Rehof, editors,
TACAS, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer, 2008.

[11] B. Dutertre and L. de Moura. The Yices SMT solver,
2006. http://yices.csl.sri.com/tool-paper.pdf.

[12] S. H. Edwards, W. D. Heym, T. J. Long,
M. Sitaraman, and B. W. Weide. Part II: specifying
components in RESOLVE. SIGSOFT Softw. Eng.
Notes, 19(4):29–39, 1994.

[13] J.-C. Filliâtre and C. Marché. The
Why/Krakatoa/Caduceus platform for deductive
program verification. In 19th International Conference
on Computer Aided Verification, volume 4590/2007 of
LNCS, pages 173–177, Berlin, Germany, July 2007.
Springer-Verlag.

[14] R. W. Floyd. Assigning meanings to programs. In J. T.
Schwartz, editor, Mathematical Aspects of Computer
Science, volume 19 of Proceedings of Symposia in
Applied Mathematics, pages 19–32, Providence, Rhode
Island, 1967. American Mathematical Society.

[15] J. V. Guttag, J. J. Horning, S. J. Garl, K. D. Jones,
A. Modet, and J. M. Wing. Larch: Languages and
tools for formal specification. In Texts and Monographs
in Computer Science. Springer-Verlag, 1993.

[16] D. Harms and B. Weide. Copying and Swapping:
Influences on the Design of Reusable Software
Components. IEEE Transactions on Software
Engineering, 17(5):424–435, May 1991.

73

[17] W. D. Heym. Computer Program Verification:
Improvements for Human Reasoning. PhD thesis,
Department of Computer and Information Science,
The Ohio State University, Columbus, OH, December
1995.

[18] T. Hoare. The verifying compiler: A grand challenge
for computing research. J. ACM, 50(1):63–69, 2003.

[19] S. Lahiri and S. Qadeer. Back to the future: revisiting
precise program verification using smt solvers. In
POPL ’08: Proceedings of the 35th annual ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 171–182, New York,
NY, USA, 2008. ACM.

[20] G. Leavens. JML language. http://www.eecs.ucf.
edu/~leavens/JML-release/javadocs.

[21] T. Nipkow, L. C. Paulson, and M. Wenzel.
Isabelle/HOL—A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002.

[22] W. F. Ogden, M. Sitaraman, B. W. Weide, and S. H.
Zweben. Part I: the RESOLVE framework and
discipline: a research synopsis. SIGSOFT Softw. Eng.
Notes, 19(4):23–28, 1994.

[23] S. Owre, J. Rushby, N. Shankar, and
D. Stringer-Calvert. PVS: an experience report. In
D. Hutter, W. Stephan, P. Traverso, and M. Ullman,
editors, Applied Formal Methods—FM-Trends 98,
volume 1641 of Lecture Notes in Computer Science,
pages 338–345, Boppard, Germany, oct 1998.
Springer-Verlag.

[24] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058, 1972.

[25] L. Paulson. Set theory for verification: from
foundations to functions. Journal of Automatic
Reasoning, 11(2):353–389, 1993.

[26] N. Shankar and J. Woodcock, editors. Verified
Software: Theories, Tools, Experiments, Second
International Conference, VSTTE 2008, Toronto,
Canada, October 6-9, 2008. Proceedings, volume 5295
of Lecture Notes in Computer Science. Springer, 2008.

[27] M. Sitaraman, S. Atkinson, G. Kulczycki, B. W.
Weide, T. J. Long, P. Bucci, W. D. Heym, S. M. Pike,
and J. E. Hollingsworth. Reasoning about
software-component behavior. In ICSR-6: Proceedings
of the 6th International Conerence on Software Reuse,
pages 266–283, London, UK, 2000. Springer-Verlag.

[28] A. Starostin and A. Tsyban. Verified process-context
switch for c-programmed kernels. In Shankar and
Woodcock [26], pages 240–254.

[29] B. W. Weide, M. Sitaraman, H. K. Harton, B. Adcock,
P. Bucci, D. Bronish, W. D. Heym, J. Kirschenbaum,
and D. Frazier. Incremental Benchmarks for Software
Verification Tools and Techniques. In Proceedings of
VSTTE 2008 (Verified Software: Theories , Tools,
and Experiments). Springer-Verlag, 2008.

[30] K. Zee, V. Kuncak, and M. Rinard. Full functional
verification of linked data structures. SIGPLAN Not.,
43(6):349–361, 2008.

[31] T. Zhang, H. B. Sipma, and Z. Manna. Decision
procedures for term algebras with integer constraints.
Inf. Comput., 204(10):1526–1574, October 2006.

74

SAVCBS 2008
CHALLENGE PROBLEM

SOLUTIONS

75

76

Formalizing Design Patterns:
A Comprehensive Contract for Composite

Jason O. Hallstrom
School of Computing
Clemson University

Clemson, SC 29634-0974
jasonoh@cs.clemson.edu

Neelam Soundarajan
Computer Science and Engineering

Ohio State University
Columbus, OH 43210-1277

neelam@cse.ohio-state.edu

ABSTRACT
Software patterns are used almost universally across design
communities as the preferred mechanism for communicating
best practice. And while the design archetypes captured by
patterns continue to exert significant influence on software
design decisions, there is no rigorous foundation for ensuring
implementation correctness or reasoning about the systems
in which patterns are applied. In this paper, we attempt
to identify the conceptual elements necessary of any pat-
tern formalism that satisfies these validation and reasoning
objectives. We then present an overview of a particular pat-
tern formalism developed as part of our prior work. The
Composite pattern is used as a demonstrative example.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions—Languages, Methodologies; D.2.2 [Software Engi-
neering]: Design Tools and Techniques—Object-oriented
design methods; D.2.4 [Software Engineering]: Software/
Program Verification—Formal methods, Programming by con-
tract, Reliability, Validation

General Terms
Design, Documentation, Languages, Reliability, Verification

Keywords
Design patterns, pattern contracts, Composite pattern

1. INTRODUCTION
Design patterns began to gain adoption as a mechanism

for disseminating best practice after the publication of the
seminal “Gang of Four” (GoF) text [6]. Myriad pattern doc-
umentation efforts followed, resulting in a wide range of pat-
tern catalogs. Representative efforts include the “POSA” se-
ries [2,3,9,12], and more specialized efforts devoted to partic-
ular implementation technologies (e.g., J2EE, .NET) [1,10].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

While each of the patterns contained in these catalogs may
not be universally accepted as best practice, one point seems
beyond debate: After over a decade of use, patterns continue
to exert a significant influence on the design of software,
from standard desktop applications to embedded realtime
systems and sensor networks.

There is little structural variation among pattern catalogs.
Each adopts a variation of the stylized narrative format pop-
ularized by the GoF [6]. In this format, a pattern descrip-
tion consists of (i) a name, (ii) a problem (or objective), (iii)
structural requirements expressed using UML (or UML-like)
notations, (iv) code examples, and (v) supporting discussion
elements. The last component may include a discussion of
problem context, implementation pitfalls, system properties
arising from a pattern’s application, or other issues. And
while there is no doubt that this documentation format has
proven useful to practitioners, it is also inherently imprecise;
patterns lack the foundation necessary to support rigorous
validation and reasoning activities. Given the tremendous
influence of patterns on software practice and the expec-
tation that this influence will continue in the years ahead,
software designers, implementers, and validators must have
precise pattern specifications — specifications that enable
them to reason rigorously about patterns and the systems
in which they are applied.

In this paper, we present three contributions. (C1) First,
we discuss the requisite features of a comprehensive specifi-
cation formalism for software patterns. We do so by iden-
tifying the types of requirements that patterns impose and
the dimensions of flexibility that must be preserved in doc-
umenting them. Flexibility is, after all, patterns’ hallmark
— a key contributor to their success and a focal point of
our discussion. (C2) Second, we present an overview of a
pattern contract formalism developed as part of our prior
work [7,13]. The formalism supports specifications that are
both precise and flexible and provides facilities for pattern
specialization. These specialization facilities enable design-
ers to capture commonly used pattern variants and to arrive
at application-specific properties based on the patterns used
in a given design. (C3) Finally, we apply the formalism to
the Composite pattern [6]1,2. Key benefits and limitations
are discussed.

Paper Organization. Section 2 describes the require-

1Due to space constraints, we assume prior knowledge of the
Composite pattern throughout the manuscript.
2The discussion is limited to sequential systems in the ab-
sence of object aliasing.

77

ments of a comprehensive pattern specification formalism.
Section 3 summarizes our prior work on design pattern con-
tracts. Section 4 presents the Composite pattern contract
and discusses an associated specialization. Section 5 high-
lights elements of closely related work. Section 6 concludes
with a discussion of limitations.

2. REQUIREMENTS ON PATTERN
FORMALIZATION

On the one hand, it is clear that design patterns im-
pose specific requirements on the classes that play their con-
stituent roles. In the case of Composite, for example, it is
clear that component, leaf, and composite objects are re-
quired to share a set of common interface elements and that
each composite is responsible for dispatching calls to its chil-
dren. On the other hand, it is also understood that patterns
are intended to serve as reusable templates; they can be
specialized as appropriate for particular scenarios. It is, for
example, understood that the operations shared among par-
ticipants in an instance of Composite will vary, as will the
set of calls dispatched to the children of a composite object.
This gets to the heart of the problem: An effective pattern
formalism must balance the tension between descriptive pre-
cision and pattern flexibility. Here we identify the types of
requirements imposed by patterns and the dimensions of
flexibility that must be preserved.

Structural Requirements. Patterns impose structural
requirements on participating objects. These include the
roles that may participate in a pattern instance, the signa-
tures that must be provided by objects playing these roles,
and the inheritance and association relations among them.
The classes that play the roles required by a given pattern
will of course vary from one application to another, as will
the method signatures they provide to satisfy their role re-
sponsibilities. The Leaf role, for instance, will be played
by different classes in different applications of the pattern,
and the signature of operation() will be implemented in an
application-specific manner. Further, each class may provide
multiple methods intended to play the part of operation().
Or more generally, multiple class methods may correspond
to a single role method.

State Requirements. Patterns impose abstract state
requirements on participating objects. Objects playing the
Composite role, for example, must maintain a set of compo-

nent objects (as children). It is understood, however, that
this set may be implemented using any suitable realization.

Behavioral Requirements – State. Patterns impose
behavioral requirements, expressed in terms of standard state-
based pre-conditions and post-conditions. The addChild(c)

method of Composite, for instance, requires that the com-

ponent passed as argument not be a member of the com-

posite’s child set and ensures that it is added to this set

upon termination. As is standard, these requirements can
be satisfied in any manner the designer chooses.

Behavioral Requirements – Call Sequence. Pat-
terns not only impose requirements on the state conditions
that must be satisfied by particular methods, but also on
how these conditions must be satisfied. These requirements
are expressed in terms of call sequence conditions that must
be respected during a method’s execution. When opera-

tion() is invoked on a composite object, for example, it
is generally required to place a similar call to its children.

Another approach would be for the composite to traverse
the tree structure (using getChild()) and invoke appropriate
methods on each object that affect the same state changes.
While the result would be identical, the implementation
would violate a key pattern requirement.

Non-Interference Requirements. Finally, patterns
impose implicit requirements on all non-role methods pro-
vided by participating classes. After all, a pattern describes
a slice through a system; participating classes will generally
provide method behaviors (and state elements) beyond those
required to satisfy their role responsibilities. It is assumed
that these behaviors will not interfere with pattern behav-
iors. A class playing the role of Composite, for example,
might include additional (non-role) methods for interacting
with the composite’s children. These methods must not
modify the child set or the intended behavior of the pattern
will be compromised.

3. AN OVERVIEW OF A PATTERN
CONTRACT FORMALISM

We now consider a pattern formalism designed to provide
descriptive precision and pattern flexibility along the identi-
fied dimensions. We provide only a brief overview, referring
the reader to [7, 13] for a more complete treatment.

In our approach, a pattern is represented by a contract
that captures the requirements associated with using the
pattern correctly and the behavioral guarantees that accrue
as a result. Specializations of the pattern are represented
by a subcontract. A subcontract refines a pattern contract
to document the manner in which the associated pattern is
tailored for use in a given system or to document a sub-
pattern corresponding to a common usage of the pattern. In
this way, contracts capture properties common to all appli-
cations of a pattern, while subcontracts capture properties
specific to particular applications and sub-patterns.

3.1 Pattern Contracts
A contract consists of four main elements: role contracts, a

pattern invariant, state abstraction concepts, and interaction
abstraction concepts3. We describe each of these elements in
the remainder of the subsection.

Role Contracts. The contract for a given pattern defines
a role contract corresponding to each of the pattern’s con-
stituent roles. These specification entities form the core of
a pattern specification. Each role contract specifies the ab-
stract state elements, method behaviors, and non-interference
conditions that must be satisfied by objects playing the as-
sociated roles4. The structure mirrors a standard interface
specification: Each role contract specifies state elements,
method signatures, and corresponding pre- and post-conditions.
An additional set of post-conditions may be included to cap-
ture non-intereference conditions. These other conditions
must be satisfied by all class methods that do not map to
one of the role methods.

To specify call sequence requirements, we associate a ghost
variable, τ (for “trace”), with each method invocation. Con-
sider the invocation of a method m(). The instance of τ
associated with this invocation records information about

3A pattern contract may additionally define pattern instan-
tiation and destruction conditions. We omit these details.
4A role contract may additionally define role enrollment and
disenrollment conditions. We omit these details.

78

the calls placed by m() during its execution. More precisely,
τ is an ordered sequence, with each entry corresponding to
a single call. The entry records (i) the target object, (ii)
the method invoked, and (iii) any argument values passed5.
Call sequence requirements are then captured as conditions
on τ , included as part of m()’s post-condition.

Pattern Invariant. A benefit of using many patterns
is the behavioral guarantees they afford. Surprisingly, this
is true even of non-behavioral patterns such as Composite,
classified as a structural pattern by the GoF. As an exam-
ple, in a standard application of the pattern, certain state
conditions can be expected to hold across the nodes within
a subtree based on the fact that calls are forwarded to child
components. These guarantees are captured by the pattern
contract in the form of a pattern invariant — a relation on
the states of participating objects that holds at well-defined
points in the system’s execution6.

Abstraction Concepts. While an application of Com-
posite can be used to ensure that a particular state rela-
tion holds within a subtree, the contract cannot define the
relation since the definition will vary from one application
to another. Similarly, it would be overly-restrictive for the
contract to specify the children to which an invocation of
operation() must be forwarded since this, too, will vary. To
provide this type of flexibility without sacrificing precision,
pattern contracts declare state abstraction concepts and in-
teraction abstraction concepts. The former is a relation on
the states of participating objects, used in specifying the
pattern invariant and the pre- and post-conditions included
within the constituent role contracts. The latter is a relation
on instances of τ , used in the specification of call sequence
conditions. The key to the flexibility that these concepts
provide is that while a pattern contract declares the con-
cepts and imposes constraints on the allowable definitions,
it defers the definitions of the concepts to the subcontracts
associated with particular systems and sub-patterns.

3.2 Pattern Subcontracts
The purpose of a subcontract is to specialize a pattern

contract so that the resulting specification captures a more
specific version of the associated pattern. As such, a sub-
contract consists of specification elements used to document
structural and behavioral refinements to a parent contract.

The first of these specification elements is a role map, used
in two ways: The most common use is to document the map-
ping between a role specified in a pattern contract and an
application class that plays the role in an application of the
pattern. Or stated another way, a role map is used to spec-
ify the manner in which a class can be viewed as an instance
of its role type. Alternatively, a role map may be used to
document a mapping between two roles. In this case, the
mapping captures the relationship between a general role
and a more specialized version of that role used in a sub-
pattern. In each case, a role map consists of a set of state
maps and method maps. The former elements are used to
document the realization of the state elements required by a

5In general, a more sophisticated trace mechanism is re-
quired to handle complex call sequence scenarios. We omit
consideration of such scenarios.
6This relation always holds when control is outside of the
objects participating in a pattern instance. While a much
stronger guarantee is possible, space limitations preclude its
consideration.

System S

Subcontract PC1*-SSubcontract PC1*

Pattern P

Contract PC1

Pattern P*

Role
R1

Role
R2

Role Cont.
R1*

Role Cont.
R2

State AC
C1*

Patt. Invar.
I1*

Role Cont.
R1

Patt. Invar.
I1

SAC Def.
C1*

IAC Def.
C2*

Rolemap
O1-R1*

Rolemap
O2-R2

Role
R1*

Inter. AC
C3

State AC
C1

Inter. AC
C2

Inter. AC
C2*

O2R2O1R1*

PI1

IAC Def.
C3

O4O3

sp
ec

ia
liz

es

sp
ec

ia
liz

es
sp

ec
ia

liz
es

sp
ec

ia
liz

es

specifiesspecifiesspecifies

Figure 1: Contracts, Subcontracts, Specializations

role; they are analogous to abstraction functions. The latter
elements are similar, but used to document method real-
izations. This includes documenting the mappings between
signature elements, and argument and return values.

Finally, a subcontract specifies refinements to the abstrac-
tion concepts specified by the parent contract. These refine-
ments may consist of concept definitions corresponding to a
given application, or constraints on the allowable definitions.
The latter are used to limit the definitions that my supplied
to satisfy the requirements associated with a sub-pattern.

The relationships between patterns, sub-patterns, con-
tracts, subcontracts, and applications are illustrated in Fig-
ure 1. In the figure, contract PC1 specifies pattern P. The
role contract for R1 specifies implementation requirements
on the role, and the pattern invariant I1 specifies an in-
variant across participating objects. Both are expressed in
terms of the state abstraction concept C1 and the interac-
tion abstraction concept C2. The sub-pattern P* specializes
pattern P, as documented by subcontract PC1*. Note that
this subcontract refines C1, C2, I1, and R1, and additionally
adds a new role and a new interaction abstraction concept.
Finally, the instance of sub-pattern P* in system S, PI1, is
specified by subcontract PC1*-S. The subcontract provides
definitions for C1*, C2*, and C3. It additionally provides
rolemaps corresponding to objects O1 and O2, which play
the roles R1 and R2, respectively.

4. COMPOSITE CONTRACT
We now apply the formalism to a common variant of the

Composite pattern. For the sake of presentation, the con-
tract has been segmented into separate listings. We describe
each segment in turn.

The contract begins by declaring the state abstraction
concepts used throughout the remainder of the document
(Listing 1). The first, Modified(), captures the notion of
a significant change to a composite object with respect to
one of its children. At the point this concept is used, it de-
termines the set of children that must receive a forwarded
operation() call from a composite. More precisely, given
the pre-conditional and post-conditional states of the target
composite and one of its children, Modified() determines
whether a call to operation() must be forwarded to the child.

79

1 pattern contract Composite {
2

3 state abstraction concepts:
4 Modified(Compositeα, Compositeβ, Componentγ)
5 Consistent(Componentδ, Componentε)
6 constraints:
7 (↑ α =↑ β) ∧ ¬((↑ δ =Leaf) ∧ (↑ ε =Leaf))∧
8 ∀c1, c1∗ ` Composite, c2 ` Component ::
9 ((Consistent(c1, c2) ∧ ¬Modified(c1, c1∗, c2))

10 =⇒ Consistent(c1∗, c2))
11

12 interaction abstraction concepts:
13 ...omitted...
14

15 pattern invariant:
16 ∀c1, c2 ` Component :
17 (c1 ∈players) ∧ (c2 ∈players)∧
18 (� c1 =Component) ∧ (c2 ∈ c1.children)) :
19 ((c2.parent= c1)∧Consistent(c1, c2))

Listing 1: Composite Contract (part 1)

The second concept, Consistent(), is used to capture the
notion of state consistency between a composite and a child.
It is used in the post-condition of operation() to require
that the method leave the target object in a state that is
consistent with its parent. As we will see, it will also be
used in expressing the pattern invariant.

The constraints clause restricts the concept definitions
that may be supplied in a subcontract to ensure that the
pattern invariant is satisfied. Three restrictions are imposed.
First, the constraints require that the first two arguments of
Modified() be of the same type (since this operation is only
applied on two states of the same object in the contract).
The “↑” notation denotes the application class (or special-
ized role) mapped to the target’s type. Second, at least one
of the arguments to Consistent must not be a leaf (since
this concept captures consistency between a parent and a
child — a relationship that cannot hold between two leafs.)
Finally, the last conjunct requires that if two states of a
composite are considered to be sufficiently similar accord-
ing to Modified(), and the first is consistent with a given
child, so too, must the second. This is necessary since the
definition of Modified() controls whether operation() calls
are forwarded — calls which are in turn responsible for en-
suring consistency between parents and children.

For the sake of presentation, we provide a simplified con-
tract, omitting interaction abstraction concepts.

Finally, the contract specifies the pattern invariant. If all
implementation requirements are satisfied, Composite en-
sures that every child component is consistent —according
to an appropriate definition— with its parent component.

Next, the contract specifies the role contract for the Com-

ponent role (Listing 2). The notational elements within
brackets indicate that exactly one class must be mapped
to this role in an application of the pattern, and this class
must be abstract.

The body of the role contract begins by requiring that
classes playing the role maintain a Component reference,
referred to as parent in the specification. As the name sug-
gests, this variable is intended to store a reference to the
component’s parent, if any, in the composite tree7.

7In general, it is more flexible to treat parent as a ghost vari-

1 role contract Component [1,abstract] {
2

3 Component parent;
4

5 void operation();
6 pre: true
7 post: (parent= #parent)∧
8 Consistent(parent, this)
9

10 others:
11 post: (parent= #parent)∧
12 (Consistent(parent,#this)
13 =⇒ (Consistent(parent, this))
14 }

Listing 2: Composite Contract (part 2)

Next, the role contract provides the specification of oper-

ation(), and an others clause used to capture the conditions
that must be satisfied by all non-role methods supplied by
classes playing the role. The specification of operation() re-
quires that the method preserve the parent reference and
leave the target object in a state that is consistent with its
parent. The non-intereference conditions are identical, but
the consistency requirement is only imposed if the target
was in a consistent state prior to the call to operation().

1 role contract Composite [+] : Component {
2

3 Set<Component> children;
4

5 void add(Component c);
6 pre: c /∈ children
7 post: (children= (#children∪{c}))∧
8 (c.parent=this)∧
9 ∀oc ` Component :

10 (oc ∈ #children) :
11 ¬Modified(this, #this, oc)∧
12 (|τ.c.operation| = 1)
13

14 void remove(Component c);
15 pre: c ∈ children
16 post: (children= (#children−{c}))∧
17 ∀oc ` Component :
18 (oc ∈ #children) :
19 ¬Modified(this, #this, oc)
20

21 ...other child management methods omited...
22

23 void operation();
24 pre: ...inherited from Component...
25 post: ...inherited from Component...∧
26 (children= #children)∧
27 ∀c ` Component :
28 (c ∈children) :
29 (Modified(this, #this, c)
30 =⇒ (|τ.c.operation| = 1))
31

32 others:
33 ...inherited from Component...∧
34 (children=children)∧
35 ∀c ` Component :
36 (c ∈ #children) :
37 ¬Modified(this, #this, c)
38 }

Listing 3: Composite Contract (part 3)

able, providing developers the ability to omit its realization.

80

1 role contract Leaf [*] : Component {
2

3 void operation();
4 ...inherited from Component...
5

6 others:
7 ...inherited from Component...
8 }

Listing 4: Composite Contract (part 4)

The bulk of the contract is devoted to specifying the Com-

posite role (Listing 3). The first line of the role contract
indicates that one or more classes must be mapped to this
role in an application of the pattern, and each must inherit
from the class mapped to the Component role.

As before, the contract begins with state requirements:
Participating classes must maintain a Set of component ob-
jects. This variable, children, stores references to each of the
composite’s children.

Next, the contract specifies the method behaviors required
of composite objects: First, participating classes must sup-
ply child management methods. The pre-condition of add(),
for example, requires that the child passed as argument not
be contained within children. The method is required to
add the child to children and assign itself as the child’s par-
ent. The next conjunct requires that the composite not be
significantly modified (according to Modified()) by the call.

More interesting is the last conjunct, which specifies a
call sequence requirement: |τ .c.operation| denotes the sub-
sequence obtained by projecting τ on object c and method
operation(). Hence, the clause requires that the composite

invoke operation() on the new child. While this requirement
is not discussed in the original pattern description, it is es-
sential to ensuring the pattern invariant; without it, there
is no guarantee that the child will be in a state consistent
with its parent. Requirements on remove() are analogous,
but omit call sequence requirements. Other management
methods have been elided.

The pre-condition on operation() is inherited from Com-

ponent; it is trivially true. The inherited post-condition is
strengthened: first, it requires that the children variable not
be altered. More interestingly, it requires that if operation()

modify the state of the component in a manner that is sig-
nificant with respect to some child, the object is responsible
for invoking operation() on that child. This ensures that if
the original call breaks the pattern invariant, the forwarding
behavior will re-assert the invariant.

The non-interference conditions specified in the others

clause strengthen the conditions specified by the Compo-

nent role contract. In particular, non-role methods of a class
mapped to Composite are required to preserve the children

variable. Further, they are not allowed to modify the state
of the composite in a significant way.

Finally, the contract specifies the role contract for Leaf

(Listing 4). The declaration indicates that zero or more
classes may map to this role and each must inherit from
the class mapped to Component. The remainder of the role
contract is inherited without change.

To arrive at the implementation requirements and behav-
ioral guarantees associated with a particular application of
Composite, a corresponding subcontract must be specified.

It is the composition of the subcontract and the contract
that guides system implementation activities and assists in
reasoning about pattern-centric behaviors. As an example,
consider a standard application of the pattern in the context
of designing a GUI library. Classes within the library might
represent windows, frames, panels, and other graphical ele-
ments, and the tree structure imposed by Composite would
mirror visual containment relationships. The subcontract
for this application would provide role maps for each of the
participating classes; the details are straightforward. More
interesting are the concept definitions.

For simplicity, we assume that only one method plays the
role of operation() — namely, a resize() method used to ad-
just the size of a visual container and all of its children. In
this scenario, the definition of Modified() would rely only
on the first two arguments: The relation would evaluate to
true if the object states passed as argument had different
width and height values, and false otherwise. Similarly,
the definition of Consistent() would evaluate to true if the
component states passed as argument had equal dimensions,
and false otherwise. By substituting these definitions into
the role contracts, application-specific requirements emerge.
And by satisfying these requirements, developers are assured
of the specialized pattern invariant: When control is outside
of the participating objects, the dimensions of the children

in any subtree total the dimensions of the parent. In this
way, the contract formalism captures precise implementa-
tion requirements while affording flexible specialization to
document applications and sub-patterns8.

5. RELATED WORK
The benefits and pitfalls of pattern formalization have

been discussed by other authors. A number of specifica-
tion formalisms have been proposed. Here we briefly survey
four representative efforts.

Eden and Hirshfeld [5] focus on specifying the structural
(i.e., static) properties of design patterns. The authors de-
scribe a higher-order logic formalism in which patterns are
specified as formulae. The basic terms of the logic consist
of classes and methods. The associated relations correspond
to standard syntactic concepts, including class membership,
method invocation, and inheritance. Each pattern is speci-
fied as a list of participants (i.e., classes and methods) and
the relations among them. While the approach handles rich
structural properties, it does not provide facilities for state
abstraction, pattern specialization, or behavioral properties.

In contrast to Eden and Hirshfeld’s structural emphasis,
Mikkonen [11] focuses on behavioral (i.e., dynamic) proper-
ties. Using his approach, patterns are expressed in an action
system notation with roots in the UNITY [4] formalism for
parallel and distributed systems. Each pattern is specified
as a set of state elements, relations on these elements, and
guarded assignments. Refinement is supported through su-
perposition; specification layers can be composed without
violating safety properties as long as each layer writes only
to the state components it defines. While this approach of-
fers a number of interesting benefits, including the ability
to concisely specify complex temporal properties, it is, in
a sense, too abstract. Structural and control-flow require-
ments are intentionally abstracted away, compromising the

8Sub-patterns are documented in an analogous matter; we
omit there consideration.

81

efficacy of the formalism as a prescriptive mechanism for
software design.

Taibi and Ngo [14] describe a hybrid approach. Their for-
malism relies on predicate logic to capture structural prop-
erties of patterns, and an action system notation to capture
behavioral properties. In effect, their work combines the key
elements proposed by Eden and Hirshfeld, and Mikkonen.

Interestingly, one of the most comprehensive notations for
specifying patterns predates the GoF’s text. Helm et al. [8]
describe a notation for specifying “behavioral compositions”
in object-oriented software, including those captured by pat-
terns. There are a number of similarities with our work: A
pattern is represented as a contract that specifies the par-
ticipating roles, their required state elements and method
behaviors, a pattern invariant, and instantiation conditions.
The notation also provides facilities for contract composi-
tion and refinement and documenting the mappings between
application classes and contract participants. While the un-
derlying concepts seem essential, the realization lacks both
precision and flexibility. Fundamental precision limitations
include an inability to document method pre-conditions and
a weakly expressive notation for documenting call sequence
conditions. It is not, for example, possible to restrict the
invocations made between calls or to relate the arguments
and return values of successive calls. Fundamental flexibil-
ity limitations include the absence of state abstraction and
the use of name-based (i.e., syntactic) mappings between
application classes and contract participants.

6. CONCLUSION
We conclude by noting that the contract formalism pre-

sented here is an abbreviated version of a more complete
specification notation. The same is true of the pattern con-
tract for Composite. In particular, the trace mechanism has
been simplified to accommodate space requirements, with
important consequences on both the precision and flexibil-
ity of the resulting contract.

Consider, for example, the specification of operation() in
Listing 3. The post-condition requires that if the method
alters the state of the composite in a significant way (i.e.,
according to the definition of Modified()), the method must
in turn invoke operation() on each affected child to re-assert
the pattern invariant. But what if, after forwarding the
appropriate calls, the method again modifies the state of
the composite? Or alternatively, what if a call from the
method re-enters the Component hierarchy above the exe-
cuting node and modifies component state? And what hap-
pens if control is always within a participating object? When
does the pattern invariant hold?

Addressing these questions hinges on the use of a more
sophisticated trace mechanism. We have recently developed
the concept of a pattern-instance trace, a behavioral projec-
tion on a single pattern instance, which we believe provides
an elegant solution. We are currently experimenting with
the notation and hope to discuss early results if invited for
presentation at the workshop.

Acknowledgments
This work is supported by the National Science Foundation
through awards CNS-0745846 and DUE-0633506.

7. REFERENCES
[1] D. Alur, D. Malks, J. Crupi, G. Booch, and

M. Fowler. Core J2EE Patterns (Core Design Series):
Best Practices and Design Strategies. Sun
Microsystems, Mountain View, CA, USA, 2003.

[2] F. Buschmann, K. Henney, and D. Schmidt.
Pattern-Oriented Software Architecture: A Pattern
Language for Distributed Computing. John Wiley &
Sons, Inc., New York, NY, USA, 2007.

[3] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley &
Sons, Inc., New York, NY, USA, 1996.

[4] K. Chandy. Parallel Program Design: A Foundation.
Addison-Wesley, Boston, MA, USA, 1988.

[5] A. Eden and Y. Hirshfeld. Principles in formal
specification of object-oriented design and
architecture. In The 2001 Conference of the Centre for
Advanced Studies on Collaborative Research, pages
(cd–rom), Indianapolis, IN, USA, November 2001.
IBM Press.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading,
MA, USA, 1995.

[7] J. Hallstrom, N. Soundarajan, and B. Tyler.
Amplifying the benefits of design patterns: From
specification through implementation. In Foundational
Approaches to Software Engineering, pages 214–229,
Berlin, Germany, March 2006. Springer-Verlag.

[8] R. Helm, I. Holland, and D. Gangopadhyay.
Contracts: Specifying behavioral compositions in
object-oriented systems. In The ACM Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 169–180, New York, NY,
USA, October 1990. ACM.

[9] M. Kircher and P. Jain. Pattern-Oriented Software
Architecture: Patterns for Resource Management.
John Wiley & Sons, New York, NY, USA, 2004.

[10] Microsoft Corporation. Enterprise Solution Patterns
Using Microsoft .NET. Microsoft Press, Redmond,
WA, USA, 2003.

[11] T. Mikkonen. Formalizing design patterns. In The
20thth International Conference on Software
Engineering, pages 115–124, Los Alamitos, CA, USA,
April 1998. IEEE Computer Society.

[12] D. Schmidt, H. Rohnert, M. Stal, and D. Schultz.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects. John Wiley &
Sons, Inc., New York, NY, USA, 2000.

[13] N. Soundarajan and J. Hallstrom. Responsibilities and
rewards: Specifying design patterns. In The 26th

International Conference on Software Engineering,
pages 666–675, Los Alamitos, CA, USA, May 2004.
IEEE Computer Society.

[14] T. Taibi and D. Ngo. Formal specification of design
patterns – a balanced approach. Journal of Object
Technology, 2(4):127–140, 2003.

82

Verifying the Composite Pattern using Separation Logic

Bart Jacobs ∗ Jan Smans † Frank Piessens
Department of Computer Science, Katholieke Universiteit Leuven, Belgium

{bart.jacobs,jan.smans,frank.piessens}@cs.kuleuven.be

Abstract
Often, a module developer wishes to expose a graph of objects
to client code, allowing client code to access the graph through
any node directly, while maintaining hidden consistency conditions
over the graph. In this note, we describe how to specify and verify
such code using separation logic, using as an example a binary tree
structure where each node keeps a count of its descendant nodes.
The idea is to describe the tree structure as the separate conjunc-
tion of the focus node’s subtree and the focus node’s context. The
description can be rewritten to use any other node as the focus node
at any time. This enables an elegant modular proof of the tree im-
plementation on the one hand, and client code on the other hand.

We describe how we verified an example program using the
VeriFast program verifier prototype.

1. Introduction
Classical ownership systems force all accesses of a composite ob-
ject structure to go through a designated root object. This makes it
difficult to verify programs where a module exposes a graph of ob-
jects to client code, and client code accesses the component objects
directly. In this paper we show an approach for verifying such pro-
grams using separation logic (Reynolds 2002). The general idea is
that before accessing a node, the separation logic assertion that de-
scribes the structure is rewritten so that the target node is at the “top
level” of the recursive description and can easily be separated out.
For information hiding, a single abstract predicate (Parkinson and
Bierman 2005) is used to represent the entire structure (Parkinson
2007).

2. Example
We illustrate the approach by showing a full functional correctness
specification, an implementation, and client code for a tree structure
module written in C. The implementation keeps a count in each
node of the node’s descendant nodes. The code is annotated so
that it is verified automatically with our VeriFast tool (Jacobs and
Piessens 2008), a program verifier based on symbolic execution
with a separation logic representation of memory.

2.1 Specification and client
The specification of the tree module is shown in Figure 1. The
module’s functions, create tree , tree add left , tree add right ,
tree get count , tree get parent , and tree dispose , are specified
in terms of the abstract predicate tree(n, c, t), where n is the focus
node, c is the focus node’s context, and t is the focus node’s subtree.
The context and the subtree are values of the inductive datatypes

∗Bart Jacobs is a Postdoctoral Fellow of the Research Foundation - Flan-
ders (FWO)
† Jan Smans is a Research Assistant of the Research Foundation - Flanders
(FWO)

context and tree , respectively. The context is the part of the tree
obtained by removing the focus node and its subtree; it is either
root , indicating that the focus node is the root node of the tree;
or left context(pc, p, r), indicating that the focus node is the left
child of a node p, whose own context is pc and whose right child’s
subtree is r; or right context(pc, p, l), analogously indicating that
the focus node is the right child of a node p, whose own context is
pc and whose left child’s subtree is l. The subtree is either nil ,
indicating that the focus node is a null pointer; or tree(n, l, r),
indicating that the focus node is n and its left and right child’s
subtrees are l and r, respectively.

The specification of function tree get count uses the pure
primitive recursive function count over tree values.

Predicate assertion arguments may be patterns, of the form ?x,
which bind x in the remainder of the symbolic execution. They are
in effect existentially quantified logical variables.

Throughout, the star operator (∗) indicates separate conjunction,
and binds like conjunction, i.e. more weakly than relational opera-
tors.

Function tree add left not only creates a new node and adds it
as the left child of the specified node; it also makes the new node the
new focus node. Similarly, tree add right and tree get parent
make the new right child node and the parent node the focus node,
respectively. As a result, the example client program in Figure 2
verifies as is.

2.2 Implementation and proof
The implementation of the tree module is shown in Figures 3 – 7.
Figure 3 shows how predicate tree is defined in terms of predicates
context and subtree . A predicate assertion subtree(n, p, t) states
that the heap contains a representation of a subtree t with root
node n and parent pointer p, with consistent count fields. An
assertion context(n, p, count , c) states that the heap contains a
representation of a context c of node n with parent p, where the
count fields are consistent under the assumption that the count of
the subtree at n is count . The assertion malloc block node(n)
indicates that pointer n points to a struct node object allocated
using malloc.

Figure 4 shows the implementations of create node and create-
tree . A close p(v); ghost statement consumes the body of predi-

cate p, with arguments v substituted for the parameters, removing
from the symbolic heap the points-to assertions and abstract predi-
cate assertions mentioned in the body, and then produces, i.e. adds
to the symbolic heap, the abstract predicate assertion p(v) itself.

Figures 5 and 6 show the implementation of functions tree add -
left and tree get count , and auxiliary functions subtree get -

count and fixup ancestors . Function subtree get count relies on
the count invariant expressed in the subtree predicate so that it can
simply return the value of the count field. Function tree add left
first creates the new node, and then calls fixup ancestors , which
recursively ascends the tree to adjust the count fields of the new
node’s ancestors. The effect of the fixup ancestors calls is framed

83

struct node;
typedef struct node ∗node;

inductive tree := nil | tree(node, tree, tree);

fixpoint int count(tree t) {
switch (t) {

case nil : return 0;
case tree(n, l, r) : return 1 + count(l) + count(r);
}
}

inductive context :=
| root
| left context(context , node, tree)
| right context(context , node, tree);

predicate tree(node node, context c, tree subtree);

node create tree();

requires emp;
ensures tree(result, root , tree(result, nil , nil));

node tree add left(node node);

requires
tree(node, ?c, ?t) ∗
switch (t) {

case nil : false;
case tree(n0 , l, r) : l = nil ;
};

ensures
switch (t) {

case nil : false;
case tree(n0 , l, r) :

tree(result, left context(c, node, r),
tree(result, nil , nil));

};

node tree add right(node node);
. . . analogous . . .

int tree get count(node node);

requires tree(node, ?c, ?t);
ensures tree(node, c, t) ∗ result = count(t);

node tree get parent(node node);

requires tree(node, ?c, ?t) ∗ c 6= root ∗ t 6= nil ;
ensures

switch (c) {
case root : false;
case left context(pns, p, r) :

result = p ∗ tree(p, pns, tree(p, t, r));
case right context(pns, p, l) :

result = p ∗ tree(p, pns, tree(p, l, t));
};

void tree dispose(node node);

requires tree(node, root ,);
ensures emp;

Figure 1. Specification of the tree module. Annotations are shown
on a gray background.

int main()

requires emp;
ensures emp;

{
// {}
node node := create tree();
// {tree(n0, root , tree(n0, nil , nil))}
node := tree add left(node);
// {tree(n1, left context(root , n0, nil), tree(n1, nil , nil))}
node := tree add right(node);

//
{tree(n2, right context(left context(root , n0, nil), n1,

nil), tree(n2, nil , nil))}
node := tree get parent(node);

//
{tree(n1, left context(root , n0, nil),

tree(n1, nil , tree(n2, nil , nil)))}
node := tree add left(node);

//
{tree(n3, left context(left context(root , n0, nil), n1,

tree(n2, nil , nil)), tree(n3, nil , nil))}
node := tree get parent(node);

//
{tree(n1, left context(root , n0, nil), tree(n1,

tree(n3, nil , nil), tree(n2, nil , nil)))}
node := tree get parent(node);

//
{tree(n0, root , tree(n0, tree(n1, tree(n3,

nil , nil), tree(n2, nil , nil)), nil))}
tree dispose(node);
// {}
return 0;
}

Figure 2. An example client program. Symbolic states are shown
in blue.

by the fact that this function requires access only to the current
node’s context, not to the entire tree. A fixup ancestors call takes
a context that is consistent with respect to some unknown count,
and returns the same context, made consistent with respect to the
given count.

Ghost statement open p(pat); is the reverse of close: it con-
sumes the abstract predicate assertion p(pat) and then produces the
predicate’s body. Contrary to the close statement, the arguments
in an open statement can be patterns; the scope of the variables
bound by these patterns extends to the end of the function body.

Function tree add left contains an assert statement; its only
purpose here is to bind variable r to the tree value that represents
the subtree below node nodeRight .

Figure 7 shows the implementation of functions tree get parent
and tree dispose , and auxiliary function subtree dispose . As
pointed out before, function tree get parent not only returns the
parent node pointer of the specified node, but also makes the parent
node the focus node of the description of the tree structure. The im-
plementation effectively moves the specified node’s parent’s fields,
and the specified node’s sibling subtree, from the context part of
the tree description into the subtree part.

2.3 Non-contiguous focus changes
The tree module specification, as shown in Figure 1, requires
client code to navigate the tree contiguously; i.e., to access a given
node, the client must navigate to this node using tree get parent ,
tree get left , and tree get right calls (the latter functions are not
shown). In this subsection, we show how the tree module’s specifi-
cation can be extended so that clients can change focus not only to
adjacent nodes but to any node in the tree.

84

struct node {
struct node ∗left ;
struct node ∗right ;
struct node ∗parent ;
int count ;
};

predicate subtree(node node, node parent , tree t) ≡
switch (t) {

case nil : node = 0;
case tree(node0 , leftNodes, rightNodes) :

node = node0 ∗ node 6= 0 ∗
node→left 7→ ?left ∗
node→right 7→ ?right ∗
node→parent 7→ parent ∗
node→count 7→ count(t) ∗
malloc block node(node) ∗
subtree(left , node, leftNodes) ∗
subtree(right , node, rightNodes);

};

predicate context(node n, node p, int count , context c) ≡
switch (c) {

case root : p = 0;
case left context(pns, p0 , r) :

p = p0 ∗ p 6= 0 ∗
p→left 7→ n ∗
p→right 7→ ?right ∗
p→parent 7→ ?gp ∗
p→count 7→ ?pcount ∗
malloc block node(p) ∗
context(p, gp, pcount , pns) ∗
subtree(right , p, r) ∗
pcount = 1 + count + count(r);

case right context(pns, p0 , l) :
. . . analogous . . .

};

predicate tree(node node, context c, tree subtree) ≡
context(node, ?parent , count(subtree), c) ∗
subtree(node, parent , subtree);

Figure 3. Struct and predicate declarations

The additional specification elements are shown in Figure 8.
The main new element is the specification of the change focus
lemma function. A lemma function, or lemma for short, is like a
regular C function, but it is declared in an annotation; it is not al-
lowed to have any side-effects; and the verifier checks that it ter-
minates. Unlike a regular function call, a lemma function call is a
ghost statement. The sole purpose and effect of calling a lemma
function is to rewrite the symbolic state into a different, but equiva-
lent, form. Lemma change focus takes a tree structure description
with focus node n0 , and a node pointer n that is contained in the
tree structure at a path p, and rewrites the tree structure description
so that the focus node is n. The new context and tree values are
specified using the fixpoint functions combine , context at , and
subtree at .

Figure 9 shows an example of a piece of client code whose
verification is enabled by lemma change focus .

Figure 10 shows the implementation, i.e. the proof, of lemma
change focus . The proof uses two auxiliary lemmas, go to root
and go to descendant . Lemma go to root operates by recursion

node create node(node p)

requires emp;

ensures subtree(result, p, tree(result, nil , nil));

{
node n := malloc(sizeof(struct node));

n→left := 0; close subtree(0, n, nil);

n→right := 0; close subtree(0, n, nil);

n→parent := p;
n→count := 1;

close subtree(n, p, tree(n, nil , nil));

return n;
}

node create tree()

requires emp;

ensures tree(result, root , tree(result, nil , nil));

{
node n := create node(0);

close context(n, 0, 1, root);

close tree(n, root , tree(n, nil , nil));

return n;
}

Figure 4. Implementation of function create tree

(i.e., induction) on the structure of the context value; similarly,
lemma go to descendant operates by recursion (induction) on the
structure of the path value.

VeriFast checks that each lemma function terminates, by dis-
allowing loops and indirect recursive calls, and by checking that
at each direct recursive call, either the callee’s footprint is a strict
subset of the caller’s footprint, or the lemma function’s body is a
switch statement on one of its parameters, and the value of this pa-
rameter for the callee is a component of the value of this parameter
for the caller. The footprint of a call is the footprint of the precondi-
tion; the footprint of an assertion is the set of memory locations that
are present in each heap that satisfies the assertion. VeriFast checks
the footprint requirement for a given recursive call by checking that
after consuming the callee’s precondition, at least one points-to as-
sertion is left in the symbolic state.

3. Conclusion
We propose a way to specify and verify modules that expose a
graph of objects, while maintaining hidden invariants over this
graph and allowing clients to access the graph at any node directly.
In this approach, the graph structure is described by a separation
logic assertion. Before accessing a node, the assertion is rewritten
to separate out this node. We illustrated the approach by showing
a specification and an implementation of a binary tree module,
annotated to enable verification using our VeriFast program verifier.

VeriFast is available at

http://www.cs.kuleuven.be/˜bartj/verifast/

References
Bart Jacobs and Frank Piessens. The VeriFast program verifier. Technical

Report 520, Department of Computer Science, Katholieke Universiteit
Leuven, August 2008.

85

int subtree get count(node node)

requires subtree(node, ?parent , ?nodes);
ensures subtree(node, parent , nodes) ∗

result = count(nodes);

{
int result := 0;

open subtree(node, parent , nodes);

if (node 6= 0) { result := node→count ; }
close subtree(node, parent , nodes);

return result ;
}

void fixup ancestors(node n, node p, int count)

requires context(n, p, , ?c);
ensures context(n, p, count , c);

{
open context(n, p, , c);

if (p 6= 0) {
node left := p→left ;
node right := p→right ;
node grandparent := p→parent ;
int leftCount := 0;
int rightCount := 0;
if (n = left) {

leftCount := count ;
rightCount := subtree get count(right);
} else {

leftCount := subtree get count(left);
rightCount := count ;
}
{

int pcount := 1 + leftCount + rightCount ;
p→count := pcount ;
fixup ancestors(p, grandparent , pcount);
}
}
close context(n, p, count , c);

}

Figure 5. Helper functions for function tree add left

Matthew Parkinson. Class invariants: the end of the road? In IWACO 2007,
2007.

Matthew Parkinson and Gavin Bierman. Separation logic and abstraction.
In POPL 2005, 2005.

J. C. Reynolds. Separation logic: a logic for shared mutable data structures.
In LICS 2002, 2002.

node tree add left(node node)

requires
tree(node, ?c, ?t) ∗
switch (t) {

case nil : false;
case tree(n0 , l, r) : l = nil ;
};

ensures
switch (t) {

case nil : false;
case tree(n0 , l, r) :

tree(result, left context(c, node, r),
tree(result, nil , nil));

};
{

open tree(node, c, t);

node n := create node(node);

open subtree(node, ?parent , t);
node nodeRight := node→right ;
assert subtree(nodeRight , node, ?r);

{
node nodeLeft := node→left ;

open subtree(nodeLeft , node, nil);

node→left := n;

close context(n, node, 0, left context(c, node, r));

fixup ancestors(n, node, 1);
}
close tree(n, left context(c, node, r), tree(n, nil , nil));

return n;
}

node tree add right(node node)
. . . analogous . . .

int tree get count(node n)

requires tree(n, ?c, ?t);
ensures tree(n, c, t) ∗ result = count(t);

{
open tree(n, c, t);

int result := subtree get count(n);

close tree(n, c, t);

return result ;
}

Figure 6. Implementation of function tree add left

86

node tree get parent(node node)

requires tree(node, ?c, ?t) ∗ c 6= root ∗ t 6= nil ;
ensures

switch (c) {
case root : false;
case left context(pns, p, r) :

result = p ∗ tree(p, pns, tree(p, t, r));
case right context(pns, p, r) :

result = p ∗ tree(p, pns, tree(p, l, t));
};

{
open tree(node, c, t);
open subtree(node, , t);

node p := node→parent ;

close subtree(node, p, t);
open context(node, p, count(t), c);
assert context(p, ?gp, ?pcount , ?pns);
switch (c) {

case root :
case left context(pns, p0 , r) :

close subtree(p, gp, tree(p, t, r));
case right context(pns, p0 , l) :

close subtree(p, gp, tree(p, l, t));
}
assert subtree(p, gp, ?pt);
close tree(p, pns, pt);

return p;
}

void subtree dispose(node node)

requires subtree(node, ,);

ensures emp;

{
open subtree(node, ,);

if (node 6= 0) {
subtree dispose(node→left);
subtree dispose(node→right);
free(node);
}
}

void tree dispose(node node)

requires tree(node, root ,);

ensures emp;

{
open tree(node, root ,);
open context(node, , , root);

subtree dispose(node);
}

Figure 7. Implementation of functions tree get parent and
tree dispose

fixpoint tree combine(context c, tree t) {
switch (c) {

case root : t;
case left context(pns, p, right) :

combine(pns, tree(p, t, right));
case right context(pns, p, left) :

combine(pns, tree(p, left , t));
}

}

inductive path := here | left(path) | right(path);

fixpoint bool contains at(tree t, path p, node n) {
switch (t) {

case nil : return false;
case tree(rootNode, l, r) : return

switch (p) {
case here : n = rootNode;
case left(p) : contains at(l, p, n);
case right(p) : contains at(r, p, n);
};

}
}

fixpoint context context at(context c, tree t, path p) {
switch (p) {

case here : return c;
case left(p) : return switch (t) {

case nil : c;
case tree(n, l, r) :

context at(left context(c, n, r), l, p);
};
case right(p) : . . . analogous . . .
}
}

fixpoint tree subtree at(tree t, path p)) {
switch (t) {

case nil : return nil ;
case tree(n, l, r) : return switch (p) {

case here : t;
case left(p) : subtree at(l, p);
case right(p) : subtree at(r, p);
};
}
}

lemma void change focus(node n0 , path p, node n);
requires tree(n0 , ?c, ?t) ∗ contains at(combine(c, t), p, n);
ensures tree(n, context at(root , combine(c, t), p),

subtree at(combine(c, t), p));

Figure 8. Specification of lemma change focus

87

int main()

requires emp;
ensures emp;

{
node root := create tree();
node l := tree add left(root);
node lr := tree add right(l);

change focus(lr , left(here), l);

node ll := tree add left(l);

change focus(ll , left(right(here)), lr);

node lrr := tree add right(lr);

change focus(lrr , here, root);

tree dispose(root);
return 0;
}

Figure 9. Client code that uses change focus for non-contiguous
navigation

lemma void go to root(node n, context c)
requires tree(n, c, ?t);
ensures tree(, root , combine(c, t));
{

switch (c) {
case root :
case left context(pcn, p, r) :

open tree(n, c, t);
open context(n, , ,);
assert context(p, ?gp, ,);
close subtree(p, gp, tree(p, t, r));
go to root(p, pcn);

case right context(· · ·) : . . . analogous . . .
}
}

lemma void go to descendant(node n0 , path p, node n)
requires tree(n0 , ?c, ?t) ∗ contains at(t, p, n);
ensures tree(n, context at(c, t, p), subtree at(t, p));
{

switch (p) {
case here :

open tree(n0 , c, t);
open subtree(n0 , ?p, t);
switch (t) {

case nil :
case tree(n00 , l, r) :

close subtree(n0 , p, t);
close tree(n0 , c, t);

}
case left(p) :

open tree(n0 , c, t);
open subtree(n0 , ?p, t);
switch (t) {

case nil :
case tree(n00 , l, r) :

node left := n0→left ;
close context(left , n0 , count(l),

left context(c, n0 , r));
close tree(left , left context(c, n0 , r), l);
go to descendant(left , p, n);

}
case right(p) : . . . analogous . . .
}
}

lemma void change focus(node n0 , path p, node n)
requires tree(n0 , ?c, ?t) ∗ contains at(combine(c, t), p, n);
ensures tree(n, context at(root , combine(c, t), p),

subtree at(combine(c, t), p));
{

go to root(c);
assert tree(?rootNode, ,);
go to descendant(rootNode, p, n);
}

Figure 10. Proof of lemma change focus and auxiliary lemmas

88

Permissions to Specify the Composite Design Pattern

Kevin Bierhoff Jonathan Aldrich
Institute for Software Research, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{kevin.bierhoff,jonathan.aldrich} @ cs.cmu.edu

ABSTRACT
The Composite design pattern is a well-known implemen-
tation of whole-part relationships with trees of Composite
objects. This paper presents a permission-based speci�ca-
tion of the Composite pattern that allows nodes in an object
hierarchy to depend on invariants over their children while
permitting clients to add new children to any node in the
hierarchy at any time. Permissions can capture the circular
dependencies between nodes and their children that arise in
this context. The paper also discusses verifying a Compos-
ite implementation and known limitations of the presented
speci�cation.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Speci�ca-
tion�Languages; D.2.2 [Software Engineering]: Design
Tools and Techniques�Modules and interfaces; D.2.4 [Soft-
ware Engineering]: Software/Program Veri�cation

General Terms
Design, languages, veri�cation.

Keywords
Typestate, invariants, implementation veri�cation.

1. INTRODUCTION
The Composite design pattern is a well-known implemen-

tation of whole-part relationships with trees of Composite
objects [7]. If nodes depend on invariants over their children
then it becomes challenging to verify that adding a child to
a node correctly noti�es the node's parents of changes [9].
In particular, these circular dependencies between nodes are
hard to capture with veri�cation approaches based on own-
ership [1] or uniqueness [5].
This paper presents a permission-based speci�cation of

the Composite design pattern that allows nodes in an ob-
ject hierarchy to depend on invariants over their children

7th International Workshop on Specification and Verification of Component-
Based Systems (SAVCBS 2008), November 9–10, 2008, Atlanta, GA, USA.
Copyright is held by the authors.

while permitting clients to add new children to any node
in the hierarchy at any time (section 3). Permissions can
capture the circular dependencies between nodes and their
children that arise in this context. Section 4 outlines how
the presented speci�cation can be used for verifying a simple
Composite implementation.
The approach is based on the authors' work on sound

reasoning about typestates in object-oriented programs [3]
(brie�y introduced in section 2). We therefore use a typestate-
based invariant in our presentation. Section 5 discusses how
this and other limitations of the presented speci�cation can
be remedied before section 6 concludes.

2. PERMISSIONS
This section gives a brief introduction to the approach

used to specify the Composite pattern in the following sec-
tion. The approach was originally developed for sound rea-
soning about typestates in object-oriented programs with
aliasing [3] and is based, in part, on previous work on type-
states for objects [5].
In our approach, developers can associate objects with a

hierarchy of typestates, similar to Statecharts [8]. For exam-
ple, we will use typestates to indicate whether a Composite
node's subtree has an even or odd number of nodes.
Methods correspond to state transitions and are speci�ed

with access permissions that describe not only the states
required and ensured by a method but also how the method
will access the references passed into the method. We dis-
tinguish exclusive (unique), exclusive modifying (full), read-
only (pure), immutable, and shared access (table 1). Fur-
thermore, permissions will specify the data group [10] they
give access to. Data groups represent orthogonal (logically
independent) parts of an object's state. Thus, we can track
permissions separately for each data group. We associate a
set of mutually exclusive typestates with each data group
and therefore will often refer to data groups as state dimen-
sions. We use sans-serif all-uppercase words for data groups
and all-lowercase words for states. Permissions can option-
ally include the state the data group is known to be in.
Permissions can only co-exist if they do not violate each

other's assumptions. Thus, the following aliasing situations
can occur for a given object: a single reference (unique),
a distinguished writer reference (full) with many readers
(pure), many writers (share) and many readers (pure), and
no writers and only readers (immutable and pure).
Permissions are linear in order to preserve this invariant.

But unlike linear type systems [11], they allow aliasing. This
is because permissions can be split when aliases are intro-

89

Access through Current permission has . . .
other permissions Read/write access Read-only access

None unique unique
Read-only full immutable
Read/write share pure

Table 1: Access permission taxonomy

duced. For example, we can split a unique permission into
a full and a pure permission to introduce a read-only alias.
Using fractions [4] we can alsomerge previously split permis-
sions when aliases disappear (e.g., when a method returns).
This allows recovering a more powerful permission.
Fractions are conceptually rational numbers between zero

and one. In previous work, fractions below one make ob-
jects immutable; in our approach, they can alternatively in-
dicate shared modifying access. Splitting a permission into
two means to replace it with two new permissions whose
fractions sum up to the fractions in the permission being re-
placed. Merging two permissions does the opposite. We will
sometimes use permissions such as immutable(x,WEIGHT, 1/2),
which represents a permission with exactly a half fraction.
Merging two of these permissions yields a full(x,WEIGHT),
which gives exclusive modifying access to the WEIGHT data
group but still permits pure(x,WEIGHT) permissions to the
same object at the same time.
To specify invariants and method pre- and post-conditions

we combine permissions (and other atomic predicates such
as a variable being true) with linear logic operators. We
will use multiplicative conjunction (⊗) when two predicates
must hold at the same time. Additive conjunction (&) al-
lows internal choice between two predicates, while disjunc-
tion (⊕) represents external choice. Linear implication (()
will be used when one predicate indicates another.

3. COMPOSITE SPECIFICATION
We now turn to our sample Composite class, shown in �g-

ure 1, which is a simple implementation of the Composite
pattern [7]. Every node in a Composite object tree will be
represented by a Composite object. The following subsec-
tions summarize goals and assumptions before we discuss
the class's invariants and method speci�cations.

3.1 Specification Goals

• Allow clients to add children to any node in a tree.

• Allow nodes to depend on their children in invariants.

• Ensure that adding children to a node does not violate
its parents' invariants.

3.2 Assumptions
In order to keep the presentation manageable we use a

simpli�ed implementation. We assume that every node in
the tree can only have up to two children. We also restrict
our discussion to an extremely simple invariant: every node
in the tree tracks whether its subtree contains an even or
odd number of nodes (including the node itself). This al-
lows our speci�cation to remain in the realm of typestate.
Furthermore, notice that Composite is the only type of ob-
ject allowed in a Composite tree. Leafs in the tree are sim-
ply Composite objects with no children. This lets us ignore

problems with inheritance for now. Finally, this speci�ca-
tion assumes single-threaded execution.
We discuss extensions to more children and more sophisti-

cated invariants in section 5. Our approach can be extended
to include inheritance [3] and multi-threaded programs [2],
but these extensions are beyond the scope of this paper.

3.3 Invariants
The focus of our Composite speci�cation is the de�nition

of internal invariants that allow verifying that all nodes in a
Composite tree remain consistent when children are added
to a node in the tree.
We de�ne 4 data groups [10] and distinguish 2 states in

each data group using the states keyword.

• TheWEIGHT data group de�nes states that re�ect the
invariant tracked by our Composite objects: whether
the number of nodes in the subtree is even or odd.

• The LEFT (RIGHT) data group each de�ne states that
indicate whether the left (right, respectively) subtree
contains an even or odd number of nodes (excluding
the current node).

• The PARENT data group distinguishes whether the
node is an orphan (no parent) or not.

Each of our 4 data groups holds one of the �elds de�ned
in the Composite class. A permission for the WEIGHT data
group, for example, therefore permits access to the odd �eld
that it contains, but not the other �elds. A full permission
gives exclusive write access to the �elds in the data group,
while an immutable permission gives read-only access with
the guarantee that the �eld will not be (silently) modi�ed.
Unfortunately, however, the �elds in the Composite class

are interdependent in certain ways. In particular, theWEIGHT
dimension depends on the objects referenced by the left and
right �elds. More precisely, it depends on whether the left
and right subtrees contain an odd or even number of nodes.
We will model these dependencies as permissions to a data
group held by another data group. Figure 2 illustrates the
permissions between a node, its parent, left child, and hy-
pothetical client, following the speci�cation in �gure 1.
Our intuition for de�ning invariants is now to use im-

mutable (or full) permissions in an invariant whenever it
depends on the object or data group referenced with the
permission. For example, the WEIGHT data group holds
immutable permissions to the LEFT and RIGHT data groups
in order to depend on those data groups' states. LEFT and
RIGHT, in turn, hold immutable permissions to their chil-
dren's WEIGHT data groups, which allows LEFT and RIGHT
to depend on the children being even or odd.
Based on this structure we can de�ne invariants separately

for each data group and their states, which are marked with
the keyword invariant and the name of the data group or
state. Invariants for data groups must always hold, while an
invariant for a state de�nes the condition under which the
object is in that state. For readability, we sometimes de�ne
multiple invariant clauses for the same data group. All
invariants de�ned for a data group must hold at the same
time.
Following our intuition, invariants for a data group or

state should only mention �elds and states that are (tran-
sitively) reachable through immutable permissions from the

90

�nal class Composite {
states PARENT = { orphan, hasParent }
states WEIGHT = { even, odd }
states LEFT = { lefteven, leftodd }
states RIGHT = { righteven, rightodd }

boolean odd ; in WEIGHT;
Composite parent ; in PARENT;
Composite left ; in LEFT;
Composite right ; in RIGHT;

invariant PARENT: immutable(this,WEIGHT, 1/2)⊗ parent 6= this;
invariant PARENT: (parent = null (immutable(this,WEIGHT, 1/2)) &

(parent 6= null ((share(parent,PARENT)⊗ (immutable(parent, LEFT, 1/2)⊗ parent.left = this) ⊕
(immutable(parent,RIGHT, 1/2)⊗ parent.right = this)));

invariant orphan: parent = null;
invariant hasParent: parent 6= null;
invariant WEIGHT: immutable(this, LEFT, 1/2)⊗ immutable(this,RIGHT, 1/2);
invariant WEIGHT: (odd = false (((this in leftodd⊗ this in righteven)⊕ (this in lefteven⊗ this in rightodd))) &

(odd = true (((this in lefteven⊗ this in righteven)⊕ (this in leftodd⊗ this in rightodd)));
invariant even: odd = false;
invariant odd: odd = true;
invariant LEFT: left 6= null (immutable(left,WEIGHT, 1/2);
invariant lefteven: left = null⊕ (left 6= null⊗ left in even);
invariant leftodd: left 6= null⊗ left in odd;
invariant RIGHT: right 6= null (immutable(right,WEIGHT, 1/2);
invariant righteven: right = null⊕ (right 6= null⊗ right in even);
invariant rightodd: right 6= null⊗ right in odd;

Composite()
ensures full(this,PARENT) in orphan⊗ pure(this,WEIGHT) in odd ⊗

immutable(this, LEFT, 1/2)⊗ immutable(this,RIGHT, 1/2);
{ odd = true; parent = null; left = null; right = null; }

void setLeft(Composite c)
requires share(this,PARENT)⊗ immutable(this, LEFT, 1/2)⊗ share(c,PARENT) in orphan ⊗ c 6= null⊗ c 6= this;
ensures share(c,PARENT) in hasParent⊗ c.parent = this;

{
c.parent = this;
left = c;
if(c.odd) {

odd = ! odd ;
Composite p = parent ;
while(p != null) {

p.odd = ! p.odd ;
p = p.parent ;

}
}

}

void setRight(Composite c)
requires share(this,PARENT)⊗ immutable(this,RIGHT, 1/2)⊗ share(c,PARENT) in orphan ⊗ c 6= null⊗ c 6= this;
ensures share(c,PARENT) in hasParent⊗ c.parent = this;

{ c.parent = this; right = c; if(c.odd) { ... } }

boolean odd()
requires pure(this,WEIGHT);
ensures pure(this,WEIGHT)⊗ ((result = true (this in odd) & (result = false (this in even));

{ return odd ; }
}

Figure 1: Simple Composite class with invariants and method speci�cations

91

Figure 2: A sample Composite object with parent,

left child, and a client that references it. Arrows are

labeled with the permissions they represent. Shaded

boxes represent data groups inside objects. Only

relevant data groups of parent and child are shown.

data group being de�ned. That ensures that the needed
state or �eld value cannot change without the knowledge of
the data group mentioning the state or �eld in its invariant.
For instance, the invariant for the lefteven state includes the
left �eld, which is part of lefteven's data group, LEFT, and
the state of theWEIGHT data group in the object referenced
through the left �eld, for which LEFT holds an immutable
permission.
We frequently use internal choice (&) between linear im-

plications (() to encode situations where an indicator pred-
icate implies additional facts. For example, the WEIGHT di-
mension uses the odd �eld as an indicator for states of other
dimensions. Internal choice captures the intuition that only
one of the indicating predicates can be true at the same
time. For example, the odd �ag cannot be true and false

at the same time.1 States inside data groups frequently just
assert the truth of an indicating predicate.
The PARENT dimension is intended to be used by clients

for adding children to nodes. Therefore, we will give out
share permissions to this dimension, which allow free modi-
�cation from multiple places. But in order to add children
and modify the odd �ag, the PARENT dimension holds a
permission to the WEIGHT dimension (which in turn refer-
ences LEFT and RIGHT). It also references the node's parent,
if any. The invariants declared for the PARENT dimension
are mostly for veri�cation purposes and will be discussed in
section 4.

3.4 Method Specifications
The speci�cations for the Composite methods follow from

the invariants we discussed above as well as which data
groups are accessed in each method. We de�ne the method
pre- and post-condition with the requires and ensures key-
words, respectively.

1In Boolean logic, internal choice would be expressed as a
regular conjunction.

The constructor creates a brand-new Composite object
without children or parent. The absence of a parent is indi-
cated with the state orphan in the PARENT dimension. The
ability to add children comes from the returned immutable
permissions for LEFT and RIGHT, which are consumed (i.e.,
required but not ensured) by the methods for setting the
left and right child. Additional immutable permissions for
LEFT and RIGHT are kept in the invariant for WEIGHT, as
discussed in the previous section. We could also de�ne a
method for removing a child, which would return the re-
spective immutable permission to the client. We chose to
keep permissions for adding children with the client in order
not to have to track them with more Composite invariants.
Finally, we return a pure permission for the WEIGHT from
the constructor, which clients can use to query the odd �ag
with the odd method. (Notice that the constructor starts
out with full permissions to all data groups, some of which
are immediately consumed to satisfy the new object's invari-
ants, resulting in the declared post-condition.)
Setting the left or right child (with setLeft and setRight,

respectively) requires the respective immutable permission
for the LEFT or RIGHT dimension in addition to a share
permission for the receiver's PARENT dimension. It also re-
quires a share permission for the child's PARENT dimension.
The child is required to be an orphan. The invariant for that
state linearly implies an immutable permission for the child's
WEIGHT dimension, which will be given to the new parent's
LEFT (or RIGHT) dimension. In return, the child will cap-
ture the given permissions for the receiver in its invariant
for hasParent, its ensured state.
Finally, the odd method can be used by clients to query

whether a node is even or odd. We use a pure permission in
the speci�cation of this method. The post-condition uses a
linear implication in a way similar to what we discussed for
invariants in the previous section: the return value indicates
the state of the receiver. The pure permission used in the
speci�cation for odd implies that the receiver's state can
change without the client noticing it. (This is in contrast to
immutable permissions, which exclude this possibility.)
One disadvantage of this speci�cation is that once a node

has children, the client only has a share permission to the
node's PARENT dimension. This is because the initial full
that is ensured by the constructor will have to be split into
share permissions in order to give some of them to the node's
children, as discussed above. Afterwards, clients will loose
track of whether a node is an orphan or not. Therefore, our
Composite probably should have a method isOrphan that
can be called to test whether a node is in the orphan state.
Alternatively, it might be possible to specify the class with
an additional dimension that children can use internally to
access their parents.

4. IMPLEMENTATION VERIFICATION
This section outlines how the speci�cation presented above

can be used to verify the implementation of the setLeft

method for setting a node's left child. Our veri�cation ap-
proach relies on a packing/unpacking methodology which we
adapted from existing work [5, 1]. Unpacking a data group
releases permissions guaranteed by invariants; packing will
consume permissions required by invariants.
Figure 3 shows the setLeft method from �gure 1 with

pack and unpack commands inserted. Our unpacking fo-
cuses [6] on the unpacked data group [3] and makes the

92

void setLeft(Composite c)
requires share(this,PARENT)⊗ immutable(this, LEFT, 1/2)⊗ share(c,PARENT) in orphan ⊗ c 6= null⊗ c 6= this;
ensures share(c,PARENT) in hasParent⊗ c.parent = this;

{
unpack(c, PARENT);
c.parent = this;
unpack(this, PARENT);
if(parent != null)
{ unpack(parent, PARENT); unpack(parent, WEIGHT); unpack(parent, LEFT); unpack(parent, RIGHT); }
unpack(this, WEIGHT); unpack(this, LEFT);
left = c;
pack(this, LEFT); unpack(c, WEIGHT);
if(c.odd) {

pack(c, WEIGHT); pack(c, PARENT);
odd = ! odd ;
pack(this, WEIGHT); if(parent != null) { pack(parent, LEFT); pack(parent, RIGHT); } pack(this, PARENT);
Composite p = parent ;
while(p != null) {

if(p.parent != null)
{ unpack(p.parent, PARENT); unpack(p.parent, WEIGHT); unpack(p.parent, LEFT); unpack(p.parent, RIGHT); }
p.odd = ! p.odd ;
pack(p, WEIGHT); if(p.parent != null) { pack(p.parent, LEFT); pack(p.parent, RIGHT); } pack(p, PARENT);
p = p.parent ;

}
} else {

pack(c, WEIGHT); pack(c, PARENT); pack(this, WEIGHT);
if(parent != null) { pack(parent, LEFT); pack(parent, RIGHT); pack(parent, WEIGHT); pack(parent, PARENT); }
pack(this, PARENT);

}
}

Figure 3: Veri�cation of the setLeft method from �gure 1

invariant of the unpacked data group available as-is even
when unpacking a share permission. This means that in or-
der to be sound, we cannot unpack a data group of an object
if it is already unpacked. Unpacking the same data group of
two references x and y is only allowed when x 6= y. This is
why we require nodes to be di�erent from their children in
the Composite speci�cation (�gure 1).2

In the setLeft method we �rst unpack the new child,
c. Since c is an orphan, we get a full permission to its
WEIGHT dimension. Assigning this as c's parent will later
require the immutable receiver permission from the method
pre-condition when packing c. If the receiver has a parent
then we need to unpack the permissions we have for the
parent3 in order to gain a full permission for the receiver's
WEIGHT dimension (if the receiver is an orphan then that
permission is part of its own PARENT invariant). At this
point it is crucial that the parent points back to the receiver
with its left or right �eld: this lets us combine the receiver's
own immutable permission to its WEIGHT dimension with
the one held by the parent.
Unpacking the full WEIGHT permission for the receiver

yields a permission for LEFT, which we also unpack in or-

2We previously only allowed one data group in one object
to be unpacked at a time [3], but we believe that the more
permissive rule described here preserves soundness.
3We unpack both the parent's LEFT and RIGHT dimension
because a child does not know if it is the left or right child.

der to assign c as the receiver's left child. Re-packing LEFT
consumes an immutable permission for c's WEIGHT dimen-
sion. That leaves another immutable permission for packing
c, which we can do right after testing c's odd �ag. We can up-
date the receiver's odd �ag�which may have to be changed
due to the new child�because we unpacked a full permission
for the receiver's WEIGHT dimension, as discussed above.
After updating the receiver's odd �ag we have to loop

through its (transitive) parents to update their �ags. No-
tice that only two objects are unpacked at a time: the object
pointed to by p and its immediate parent. We can unpack
both of them because p's invariants guarantee that it is dis-
tinct from its parent. We do not prevent cycles in the Com-
posite tree with our speci�cation, but since we only unpack
two objects at a time we can still verify partial correctness.
Updating the parents proceeds similarly to updating the

receiver (without assigning left or right). One interesting
issue is that when we unpack p.parent, we only have an
immutable(p.parent,WEIGHT, 1/2) permission available. Later
on, in the next loop iteration, its parent is unpacked (or we
discover that is has no parent), which yields a second im-
mutable permission, giving us full(p,WEIGHT). That allows
us to to update the odd �ag and re-pack.

5. FUTURE WORK
This section discusses limitations of the Composite speci�-

cation presented in section 3 and how they can be overcome.

93

Non-typestate invariants. Because our approach fo-
cuses on typestates we have chosen an invariant, even vs.
odd, that can be expressed with typestates. But we believe
that the presented speci�cation can be adapted for other
invariants speci�ed in the WEIGHT dimension. For exam-
ple, if nodes wanted to track the number of nodes in their
subtree, they could declare a �eld weight and de�ne the
invariant weight = lw() + rw() + 1, where lw and rw are
functions that return the number of nodes in the left and
right subtree, respectively. Similar to subtrees remaining
even or odd, these numbers are guaranteed to remain valid
because WEIGHT is relying on them using immutable per-
missions. Notice that an invariant based on the number of
nodes would shorten our speci�cation substantially because
we would not need to de�ne the meaning of �even� and �odd�
explicitly. Verifying such properties may require a theorem
prover to reason about integers, which we believe could be
added to our approach.
Many children. An arbitrary number of children can

for example be achieved with a list or array. In order to
specify invariants over this list, we will need to describe the
invariant to the child held in each list element or array cell.
Moreover, we will need an invariant for the children that
guarantees the parent to point back to them. It appears
that one could put each list element or array cell into a
separate data group (with separate permissions), similar to
the LEFT and RIGHT groups, and we are working on a way
of supporting this in speci�cations.
Method calls while unpacked. We put the code for

adding a child into a single method that contains a loop to
iterate through the receiver's parents (see �gure 3). It would
be nicer to, for example, call a method on the new child to
set its parent, and to call a method on the parent to update
its invariant. The presented implementation was chosen be-
cause objects involved in these calls would be unpacked at
the call sites. Moreover, it is harder to guarantee that no
data group of any object is unpacked more than once when
multiple methods may unpack objects at once. We believe
that a speci�cation language similar to Spec# [1], which can
specify objects to be unpacked at method boundaries, could
remove this restriction.
Precise e�ects. As discussed, the pure permission used

for specifying the odd method (�gure 1) re�ects that state
changes in the WEIGHT dimension can happen without the
client noticing. But while our approach will �forget� whether
a node was even or odd upon any e�ectful operation, more
precise tracking of e�ects may enable forgetting this infor-
mation only if nodes are added to the node's subtree (which
is when the node's state actually changes).
Overhead reduction. The speci�cation overhead in

�gure 1 is arguably high. About half of the invariants re-
late to the particular property we are tracking, even vs. odd.
The rest represents a pattern for encoding circular depen-
dencies between objects with immutable permissions. We
believe that a developer could reuse this pattern to track
the property of interest on top of it. This suggests introduc-
ing a speci�cation construct for de�ning circular dependen-
cies, which would internally be translated into the invariants
shown, to reduce speci�cation size.

6. CONCLUSIONS
This paper presents a speci�cation of the Composite de-

sign pattern with permissions that allows nodes to depend

on their children in invariants and allows clients to add chil-
dren to any node in a Composite tree at any time. Permis-
sions can express the circular dependencies between nodes
that are needed to guarantee that adding a child to a node
correctly updates the parents' invariants. We discuss how
shortcomings of the presented speci�cation can be overcome
with a richer speci�cation language than the one used in this
paper. In particular, we believe that our permission based
approach can be extended from typestate-based to more in-
teresting invariants and to arrays or lists of objects.

Acknowledgments. We thank Nels Beckman and the anony-
mous reviewers for their helpful feedback on earlier ver-
sions of this paper. This work was supported in part by
the Army Research O�ce grant number DAAD19-02-1-0389
entitled �Perpetually Available and Secure Information Sys-
tems�, DARPA contract HR00110710019, and NSF grant
CCF-0811592.

7. REFERENCES
[1] M. Barnett, R. DeLine, M. Fähndrich, K. R. M.

Leino, and W. Schulte. Veri�cation of object-oriented
programs with invariants. Journal of Object
Technology, 3(6):27�56, June 2004.

[2] N. E. Beckman, K. Bierho�, and J. Aldrich. Verifying
correct usage of Atomic blocks and typestate. In ACM
Conference on Object-Oriented Programming,
Systems, Languages & Applications, Oct. 2008. To
appear.

[3] K. Bierho� and J. Aldrich. Modular typestate
checking of aliased objects. In ACM Conference on
Object-Oriented Programming, Systems, Languages &
Applications, pages 301�320, Oct. 2007.

[4] J. Boyland. Checking interference with fractional
permissions. In International Symposium on Static
Analysis, pages 55�72. Springer, 2003.

[5] R. DeLine and M. Fähndrich. Typestates for objects.
In European Conference on Object-Oriented
Programming, pages 465�490. Springer, 2004.

[6] M. Fähndrich and R. DeLine. Adoption and focus:
Practical linear types for imperative programming. In
ACM Conference on Programming Language Design
and Implementation, pages 13�24, June 2002.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[8] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8:231�274, 1987.

[9] G. T. Leavens, K. R. M. Leino, and P. Müller.
Speci�cation and veri�cation challenges for sequential
object-oriented programs. Formal Aspects of
Computing, submitted for publication.

[10] K. R. M. Leino. Data groups: Specifying the
modi�cation of extended state. In ACM Conference
on Object-Oriented Programming, Systems, Languages
& Applications, pages 144�153, Oct. 1998.

[11] P. Wadler. Linear types can change the world! In
Working Conference on Programming Concepts and
Methods, pages 347�359. North Holland, 1990.

94

Model Programs for Preserving Composite Invariants

Steve M. Shaner
Iowa State University

smshaner@cs.iastate.edu

Hridesh Rajan
Iowa State University

hridesh@cs.iastate.edu

Gary T. Leavens
University of Central Florida
leavens@eecs.ucf.edu

ABSTRACT
We describe a solution for the SAVCBS challenge problem: a tech-
nique for specifying and verifying invariants for objects designed
using the Composite design pattern. The solution presents a grey-
box specification technique using JML’s model program feature.
We show that model program specifications function as exemplars
for capturing helper method calls in a way that preserves modular-
ity and encapsulation.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification —
Class invariants, correctness proofs, formal methods, programming
by contract; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement — Documentation; D.2.11 [Software
Engineering]: Software Architectures — Information hiding, Lan-
guages, Patterns; D.3.3 [Programming Languages]: Language
Constructs and Features — classes and objects, inheritance; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs — Assertions, invariants, logics of
programs, pre- and post-conditions, specification techniques.

General Terms
Verification

Keywords
Greybox specification, verification, model program, composite de-
sign pattern, JML language.

1. INTRODUCTION
Invariants in formal specification languages, such as the Java Mod-
eling Language (JML) [5, 7, 8] describe relationships that hold
in each visible object state. They both document intended rela-
tionships and impose proof obligations on code for each object.
Our solution to the 2008 SAVCBS challenge problem describes a
methodology for verifying invariants of objects designed using the
Composite pattern [6, pp. 163]. We demonstrate how model pro-
gram specifications can be used to enforce a simple invariant for
Composite objects [9, Section 4.1].

Copyright 2008 by Steve M. Shaner, Hridesh Rajan, and Gary T. Leavens

A model program [16] is JML’s realization of the greybox speci-
fication technique [4]. A model program is thus a hybrid between
program code and specification, and can be thought of as an ab-
stract algorithm [1, 2, 3, 11, 12]. The algorithm is abstract in the
sense that it may suppress many implementation details, only spec-
ifying their effects using specification statements. This allows the
specifier to hide some details, while showing others to the reader. In
the refinement calculus, code satisfies an abstract algorithm speci-
fication if the code refines the specification [1, 12, 11]. However,
JML currently limits refinement of model program by requiring all
exposed code to match the implementation exactly [16].

A major benefit of JML’s model programs is that they can be used
to specify functional dependencies among objects in a straightfor-
ward way—by exposing code that maintains the dependencies. In
this paper we show how this technique works within the Compos-
ite class of the Composite design pattern. For complex object struc-
tures like those seen in the Composite design pattern, a set of helper
methods can be defined that exploit the object structure to establish
the invariant. Writing model programs that show how all meth-
ods that may affect the invariant invoke these helper methods and
then showing that these model programs individually preserve the
invariant is our recommended methodology. We demonstrate this
methodology in our solution to the challenge problem.

2. JML MODEL PROGRAMS
Model program specifications in JML, like their counterpart in
Büchi and Weck’s greybox specifications [4], are algorithmic ab-
stractions of concrete functionality. They selectively expose only
the desired parts of a method’s concrete behavior. In particular
they can specify calls of certain methods in specified states; we call
such specified method calls “mandatory” calls [16].

Model program specifications have two major benefits:

1. A suitable model program specification allows more expres-
sive invariants on the concrete behavior compared to a be-
havioral specification, and

2. Such invariants do not depend upon hidden implementa-
tion details, thus they improve information-hiding modular-
ity [15] compared to exposing all of the implementation for
the purpose of writing invariants.

Figure 1 shows an example JML specification for the class
ElementCollection. In the special JML comments, the pri-
vate field inner is declared to be public for specification pur-
poses using spec_public. The model program specification for

95

the addAll method for ElementCollection class is shown
in Figure 1 on lines 4–13. This specification has two parts: a
behavioral specification statement on lines 5–10 and a white-box
specification on lines 11 and 12. Behavioral specification state-
ments all begin with the normal_behavior keyword and this
one contains a precondition (the requires clause), a frame ax-
iom (assignable clause), and two postconditions (ensures
clauses). In postconditions the operator \old is used to refer to
the previous state. The normal_behavior keyword that starts
specification statements selects a total correctness specification that
allows no exceptions to be thrown; i.e., if execution starts in a state
that satisfies the precondition, then it must terminate normally in a
state that satisfies both the frame axiom and the postconditions.

1 class ElementCollection extends Collection {
2 private /*@ spec_public @*/
3 Collection inner;
4 /*@ public model_program {
5 @ normal_behavior
6 @ requires inner != null;
7 @ assignable this.inner;
8 @ ensures c.size() == \old(c.size());
9 @ ensures this.inner.size() ==

10 @ \old(this.inner.size());
11 @ for (Element e : c)
12 @ this.add(e);
13 @ } @*/
14 public void addAll(ElementCollection c) {
15 /*@ refining normal_behavior
16 @ requires inner != null;
17 @ assignable this.inner;
18 @ ensures c.size() == \old(c.size());
19 @ ensures this.inner.size() ==
20 @ \old(this.inner.size()); @*/
21 { /* resize array if necessary */ }
22 for (Element e : c)
23 this.add(e);
24 } }

Figure 1: An example JML model program specification.

The behavioral specification describes invariants maintained by the
parts of the concrete implementation that are not visible in the spec-
ification. This hides changeable implementation details from the
client code. The white-box specification exposes part of the con-
crete implementation to allow clients to write more expressive in-
variants. A simple example of such increased expressiveness would
be the guarantee that all invariants maintained by the method add
for class ElementCollection (not shown) will also be pre-
served by the method addAll. Thus, for example if the method
add maintains a count of all elements in the collection, such count
would be accurate event if elements are added in bulk using the
method addAll.

Such model program specifications are only valid for use in reason-
ing if the concrete implementations refines them [1, 11, 12]. For
JML model program specifications instead of adopting a general
notion of refinement, a more pragmatic approach based on struc-
tural refinement is adopted. A concrete implementation refines a
model program specification if it is structurally the same as the
specification, up to the code implementing the black-box specifi-
cation behaviors. In Figure 1 the concrete implementation declares
that the elided code on line 21 refines the black-box specification
on lines 15–20 using the refining keyword. Each refining
statement must have the same specification part and a body (be-
tween the braces and outside the special JML comments) that satis-

fies that specification. This makes verifying refinements easier. The
rest of the method implementation (lines 22 and 23) is identical to
its counterpart in the specification (lines 11 and 12). The details of
the refinement technique are described in detail by Shaner, Leavens
and Naumann [16].

In addition to the semantics described above [16], in this paper we
also require that a correct implementation of a specification state-
ment must not call any methods that are explicitly called in the
whitebox (executable) code portion of the model program. We will
see why this is needed below.

Since each refining statement contains a specification, writing
model program specifications separate from the concrete imple-
mentation is often verbose and redundant. To reduce annotation
burden and the cost of keeping model programs consistent with
respect to the concrete implementation, JML also provides an addi-
tional syntactic sugar extract for extracting such specifications.
An example of this feature is shown in Figure 2.

1 class ElementCollection extends Collection {
2 private /*@ spec_public @*/
3 Collection inner;
4 public /*@ extract @*/
5 void addAll(ElementCollection c) {
6 /*@ refining normal_behavior
7 @ requires inner != null;
8 @ assignable this.inner;
9 @ ensures c.size() == \old(c.size());

10 @ ensures this.inner.size() ==
11 @ \old(this.inner.size()); @*/
12 { /* resize array if necessary */ }
13 for (Element e : c)
14 this.add(e);
15 } }

Figure 2: Extracting Model Program Specifications.

In this version of the method addAll the extract keyword is
used on line 4. This results in an automatic generation of the model
program specification during verification. The automatic extraction
of model program specification proceeds by suppressing the bodies
of refining statements, replacing them with the specifications
they contain as specification statements. The extracted model pro-
gram specification for our example is the normal_behavior
statement found on lines 6-11 in Figure 1, followed by the for-
loop exactly as it appears in the code.

3. COMPOSITE’S SPECIFICATION
Our solution, given in Figure 3 and Figure 4, contains a combina-
tion of model programs, helper methods and pure methods.

The class Component is specified in Figure 3. As in previous
example, the two protected fields parent and total are declared
to be public for specification purposes using spec_public. The
invariant in this figure is not the one we are mainly concerned with.

The subclass Composite is specified in Figure 4. It has 2 fields:
an array components and an integer count. Lines 8–11 give the
invariant we are mainly concerned with for the challenge problem;
it states that total is one more than the sum of the values of the
total fields of each object in the components array.

The two methods in Figure 4 have model program specifica-

96

1 class Component {
2 protected /*@ spec_public nullable @*/
3 Composite parent;
4 protected /*@ spec_public @*/ int total = 1;
5 //@ protected invariant 1 <= total;
6 }

Figure 3: Specification of Component.

tions: addComponent and addToTotal. The model pro-
gram for method addComponent is given explicitly on lines
13–24 (preceeding that method’s header), while the model pro-
gram for addToTotal is implicit in the body of the method
addToTotal, as indicated by the keyword extract [16].
The automatically extracted model program specification, for the
method addToTotal is shown in Figure 5.

3.1 Specification
We now describe how the model programs of Figure 4 specify that
Composite instances preserve the invariant on lines 8–11.

Consider method addComponent. The primary responsibility of
this method is to modify the representation array components
and appropriately update the total field. The invariant adds a
subtle complexity to this update by requiring that the value of each
subcomponents’ total field is included in the value of its parent’s
total field. Thus a correct implementation of addComponent
must capture the structural relationship between the composite and
its subcomponents and use this information when updating the
total fields.

In our example, this structural relationship is captured by the def-
inition of method addToTotal. It both modifies this instance’s
total field and asks that the parent (if one exists) be modified as
well. This has the useful effect of re-establishing the invariant for
all instances for which the invariant might have been violated, pro-
vided addToTotal is called only once, and with the appropriate
argument.

For this problem, we have written a model program for
addComponent that exposes its call to addToTotal. Re-
call that, due to the restricted notion of refinement in our tech-
nique, correct implementations of addComponent must call
addToTotal after changing both parent and child, as described
by the model program. It is this notion of “structural similarity” that
makes the call to addToTotal “mandatory” [16]. In proving that
a model program for addComponent is refined by its implemen-
tation, we show structural similarity between the model program
and the implementations of addComponent in all subclasses of
Composite. Thus, if the model program preserves the invariant
for all Composite objects, then the invariant will be preserved by
all subclasses, since they must also refine the model program in the
same sense.

As noted above, we require that specifcation statements must
not call any methods that are explicitly called in model pro-
gram. For the specifications in Figure 4, this means that the bod-
ies of the refining statements inside the implementation of
addComponent are prohibited from calling addToTotal.

1 class Composite extends Component {
2 private /*@ spec_public @*/
3 Component[] components = new Component[5];
4 //@ in objectState;
5 //@ maps components[*] \into objectState;
6 private /*@ spec_public @*/ int count = 0;
7 //@ in objectState;
8 /*@ protected invariant total
9 @ == 1 + (\sum int i;

10 @ 0 <= i && i < count;
11 @ components[i].total); @*/

13 /*@ public model_program {
14 @ normal_behavior
15 @ requires c.parent == null;
16 @ assignable this.components;
17 @ ensures this.components.length
18 @ > this.count;
19 @ normal_behavior
20 @ assignable c.parent, this.objectState;
21 @ ensures c.parent == this;
22 @ ensures this.hasComponent(c);
23 @ addToTotal(c.total);
24 @ } @*/
25 public void addComponent(Component c) {
26 /*@ refining normal_behavior
27 @ requires c.parent == null;
28 @ assignable this.components;
29 @ ensures this.components.length
30 @ > this.count; @*/
31 { /* resize components, if necessary */ }
32 /*@ refining normal_behavior
33 @ assignable c.parent, this.objectState;
34 @ ensures c.parent == this;
35 @ ensures this.hasComponent(c); @*/
36 {
37 components[count] = c;
38 count++;
39 c.parent = this;
40 }
41 addToTotal(c.total);
42 }
43 private /*@ helper extract @*/
44 void addToTotal(int p) {
45 /*@ refining normal_behavior
46 @ requires 0 <= p;
47 @ assignable this.total;
48 @ ensures this.total
49 @ == \old(this.total) + p; */
50 { total += p; }
51 Component aParent = this.parent;
52 while (aParent != null) {
53 /*@ refining normal_behavior
54 @ assignable aParent.total, aParent;
55 @ ensures aParent.total
56 @ == \old(aParent.total) + p;
57 @ ensures aParent
58 @ == \old(aParent.parent); @*/
59 {
60 aParent.total += p;
61 aParent = aParent.parent;
62 } } }
63 /*@ pure @*/ boolean hasComponent(Component c) {
64 // ...
65 } }

Figure 4: JML model program specification for Composite,
based on Leavens, Leino, and Müeller’s specification [9, Figure
10].

97

1 /*@ public model_program {
2 @ normal_behavior
3 @ requires 0 <= p;
4 @ assignable this.total;
5 @ ensures this.total
6 @ == \old(this.total) + p;
7 @ Component aParent = this.parent;
8 @ while (aParent != null) {
9 @ normal_behavior

10 @ assignable aParent.total, aParent;
11 @ ensures aParent.total
12 @ == \old(aParent.total) + p;
13 @ ensures aParent = aParent.parent;
14 @ }
15 @ } @*/
16 void addToTotal(int p);

Figure 5: Extracted specification for addToTotal.

4. PROBLEMS & SOLUTIONS
The model programs of Figure 4 assist reasoning with invariants
in two scenarios of interest: handling argument exposure for Com-
posite clients, and when defining Composite subclass methods. We
break the latter problem down into two mutually exclusive sub-
problems, the overriding of existing methods and the introduction
of new ones.

4.1 Argument Exposure in Client Reasoning
Argument exposure occurs when an invariant, such as the one in
Figure 4, depends on objects that are not under control of the ob-
ject’s methods [14]. In that figure, the invariant of Composite
depends on the components in the components array. The chal-
lenge is how to maintain such an invariant when clients may change
objects on which the invariant depends without calling methods di-
rectly on the object.

Let us consider how our specification in Figure 4 and the greybox
approach (JML’s model program technique) deal with this problem.
In essence our solution is a special case of the visibility technique
for maintaining invariants [9, 13]. To see this, note that the fields
total, components, and count cannot be written by classes
that do not see the invariant in Figure 4, because these fields are
protected and private and the invariant is protected. Hence the in-
variant can be maintained in each subclass of Composite, by re-
quiring all these subclasses to maintain it each time they change
one of these three fields.

The key point of our specification is that the model program and
the code it requires follow the chain of parent links upwards, and
adjusting each total of each parent object. Since the precondition
of addComponent requires that c.parent be null, no cyclic or
aliased structure can be created using addComponent, thus there
is always at most one parent for each Component c.

To see how this is done, consider the client code in Figure 6. This
sets up the problematic case of a Composite object, root, that
contains another Composite object, child, which itself contains
the component comp. If addComponent maintains the invari-
ant, then the assertion at the end of the figure should hold, even
though line 12 modifies child without calling a method on its
parent root. The invariant should apply when reasoning about
the resulting heap structure, regardless of the order in which the
components get added to each other.

1 Composite root = new Composite();
2 Composite child = new Composite();
3 Component comp = new Component();

5 //@ assume root.total == 1;
6 //@ assume child.total == 1;
7 //@ assume comp.total == 1;
8 //@ assume root.parent == null;
9 //@ assume child.parent == null;

10 //@ assume comp.parent == null;
11 root.addComponent(child);
12 child.addComponent(comp);
13 //@ assert root.total == 3;

Figure 6: Clients reason by instantiating invariants for concrete
contexts like this one, in which a tree of three components is
built.

The model programs described in Figures 4 and 5 are used in ver-
ification by substituting the model program’s body for the call site
of the method it specifies (with actuals replacing formals and care
taken to avoid capture). In Figure 6, this means substituting in
lines 14–23 of Figure 4 for each call to addComponent, renam-
ing occurrences of the formals c and this to the appropriate in-
stances. Furthermore, each of these substitutions exposes a call to
addToTotal, so its model program body can be substituted sim-
ilarly.

The resulting code resembles Figure 7. In this figure, lines 11–
34 are the model program for addComponent substituted for the
call on line 11 of Figure 6. Similarly, lines 35–58 are for the call
on line 12 in the original. From this text and a Hoare-style proof
system, we can verify that the closing assertion holds. This proof
is straightforward after assuming the proof rules given in previous
work [16] with a standard extension to handle while loops.

4.2 Overriding Composite’s Methods
In subclasses of Composite, a developer might incorrectly try
to override its methods addComponent or addToTotal in a
way that violates the invariant or a model program specification.
However, such an override would be incorrect in our technique, be-
cause not only are invariants inherited by subtypes in JML [7], but
subtypes also inherit model program specifications. Thus methods
inheriting a model program are subject to the same structural con-
straints as the overridden method. Though subclass implementors
are free to refine the bodies of refining statements as long as
they satisfy the contract behavior, all other exposed code must ap-
pear as it does in the model program. In this fashion, as long as the
original model program preserves the invariant, subclass overrides
of those methods cannot violate the invariant.

4.3 Extending Composite with New Methods
Subtypes also pose problems when they introduce new methods
that do not override methods in their supertype(s). Such methods
must preserve the inherited invariants, as would be the case in our
example, but our technique does not yet provide direct support for
this situation.

In our example, the way in which Composite’s invariant is main-
tained depends heavily on two assumptions: (a) addComponent
is the only method that adds components to a composite, and (b)
addComponent has a precondition that requires the parent of the
added component to be null. An added method could violate these

98

1 Composite root = new Composite();
2 Composite child = new Composite();
3 Component comp = new Component();

5 //@ assume root.total == 1;
6 //@ assume child.total == 1;
7 //@ assume comp.total == 1;
8 //@ assume root.parent == null;
9 //@ assume child.parent == null;

10 //@ assume comp.parent == null;
11 normal_behavior
12 requires child.parent == null;
13 assignable root.components;
14 ensures root.components.length
15 > root.count;
16 normal_behavior
17 assignable child.parent, root.objectState;
18 ensures child.parent == root;
19 ensures root.hasComponent(child);
20 {
21 normal_behavior
22 requires 0 <= child.total;
23 assignable root.total;
24 ensures root.total
25 == \old(root.total) + child.total;
26 Component aParent = root.parent;
27 while (aParent != null) {
28 normal_behavior
29 assignable aParent.total, aParent;
30 ensures aParent.total
31 == \old(aParent.total) + c.total;
32 ensures aParent = aParent.parent;
33 }
34 }
35 normal_behavior
36 requires comp.parent == null;
37 assignable components;
38 ensures child.components.length
39 > child.count;
40 normal_behavior
41 assignable comp.parent, child.objectState;
42 ensures comp.parent == child;
43 ensures child.hasComponent(comp);
44 {
45 normal_behavior
46 requires 0 <= comp.total;
47 assignable child.total;
48 ensures child.total
49 == \old(child.total) + comp.total;
50 Component aParent = child.parent;
51 while (aParent != null) {
52 normal_behavior
53 assignable aParent.total, aParent;
54 ensures aParent.total
55 == \old(aParent.total) + comp.total;
56 ensures aParent = aParent.parent;
57 }
58 }
59 //@ assert root.total == 3;

Figure 7: The client code of Figure 6 after substituting
the bodies of the model programs for addComponent and
addToTotal and renaming field references to the appropri-
ate instances.

assumptions, allowing aliased Composite structures to be created
that our proof does not handle. Since the invariant about lack of
aliasing is not stated explicitly in our specification, it is not clear
how this part of our argument would apply to subtypes. To avoid
this problem, one would have to write a static (i.e., global) invari-

ant that described the required lack of aliasing. But this fix seems
specific to the Composite design pattern, and it is not clear how our
technique could be generalized to handle it.

5. DISCUSSION
At the class level, our example model programs describe the set
of methods that are responsible for maintaining the representation
invariant. They provide an abstract overview of where and how
the invariant is maintained. The only way subcomponent mem-
bership can change is by calling addComponent and the only
way total is updated is by a call to addToTotal. No calls to
addComponent occur within this class, but if they did, a model
program exposing that call could be written.

Model programs enable modular descriptions of the internal struc-
ture of code in ways that are useful for client reasoning. By
choosing model programs to control the static structure of sub-
class implementations, our solution relies on the mechanical
textual matching described in our previous work [16]. JML’s
refining statements clearly identify which specification state-
ments are refined where inside of an implementation, while the
normal_behavior specification statements use pure methods
to hide specific representation details.

This is not to say that the working definitions used by our solu-
tion are perfect. Adding nondeterministic loops, conditionals and
other constructs to the model program syntax would increase flex-
ibility when matching implementations against a model program
specification. Also, work on this paper highlighted a number of
visibility issues for model programs that have not previously been
investigated [10]. A basic issue is defining rules that respect visibil-
ity for model program specifications. There is also a complication
posed by extract, which may pull out specifications and code
that are legal within a method, but which may refer to private data.
If the extracted model program is to be public, then such private
data is not understandable by all clients, and so should be disal-
lowed. We finessed this problem in our example by declaring all
fields as spec_public, but this is certainly an area where more
work is needed.

6. CONCLUSION
We have described how model program specifications can be used
to specify and verify invariants in complex heap data structures cre-
ated using the Composite design pattern. Our solution is a fruitful
combination of the visibility technique for invariants with the grey-
box specification technique. The combination is fruitful because
the greybox technique allows specifiers to describe exactly how a
method must update all invariants that might be violated. In our
example, addComponent is specified to update all of the total
fields of all parents. This detail is crucial in maintaining the invari-
ant for all Composite objects.

Acknowledgments
The authors were supported in part by the NSF grant CNS-06-
27354 and CNS 08-08913.

7. REFERENCES
[1] R.-J. Back and J. von Wright. Refinement Calculus: A

Systematic Introduction. Graduate Texts in Computer
Science. Springer-Verlag, 1998.

[2] R. J. R. Back. A calculus of refinements for program
derivations. Acta Inf., 25(6):593–624, 1988.

99

[3] R. J. R. Back and J. von Wright. Refinement calculus, part i:
sequential nondeterministic programs. In REX workshop:
Proceedings on Stepwise refinement of distributed systems:
models, formalisms, correctness, pages 42–66, New York,
NY, 1990. Springer-Verlag.

[4] M. Büchi and W. Weck. The greybox approach: When
blackbox specifications hide too much. Technical Report
297, Turku Center for Computer Science, August 1999.

[5] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. International Journal on
Software Tools for Technology Transfer, 7(3):212–232, June
2005.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[7] G. T. Leavens. JML’s rich, inherited specifications for
behavioral subtypes. In Z. Liu and H. Jifeng, editors, Formal
Methods and Software Engineering: 8th International
Conference on Formal Engineering Methods (ICFEM),
volume 4260 of Lecture Notes in Computer Science, pages
2–34, New York, NY, Nov. 2006. Springer-Verlag.

[8] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: a behavioral interface specification language for
java. SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.

[9] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification
and verification challenges for sequential object-oriented
programs. Form. Asp. Comput., 19(2):159–189, 2007.

[10] G. T. Leavens and P. Müller. Information hiding and
visibility in interface specifications. In International
Conference on Software Engineering (ICSE), pages
385–395. IEEE, May 2007.

[11] C. Morgan. Programming from Specifications: Second
Edition. Prentice Hall International, Hempstead, UK, 1994.

[12] J. M. Morris. A theoretical basis for stepwise refinement and
the programming calculus. Sci. Comput. Program.,
9(3):287–306, 1987.

[13] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular
invariants for layered object structures. Sci. Comput.
Programming, 62(3):253–286, Oct. 2006.

[14] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
E. Jul, editor, ECOOP ’98 – Object-Oriented Programming,
12th European Conference, Brussels, Belgium, volume 1445
of Lecture Notes in Computer Science, pages 158–185.
Springer-Verlag, July 1998.

[15] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Commun. ACM, 15(12):1053–8, Dec.
1972.

[16] S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modular
verification of higher-order methods with mandatory calls
specified by model programs. In International Conference on
Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), Montreal, Canada, pages 351–367.
ACM, Oct. 2007.

100

	SAVCBS08-body.pdf
	Rebelo-Soares-Lima-Borba-Cornelio.pdf
	Introduction
	JML: Background
	JML assertion semantics
	The JML compiler

	ajmlc: A JML Compiler Targeting AspectJ code
	AspectJ Overview
	Ajmlc design
	Ajmlc runtime environment
	The analogy between JML and Aspects
	Expression evaluation with new assertion semantics
	Ordering of advice executions into an aspect
	Ajmlc and Java ME applications
	Ajmlc optimizations

	Study
	Related Work
	Concluding Remarks
	Acknowledgments
	References

	Karabotsos-etal.pdf
	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	2. BACKGROUND
	2.1 Isabelle
	2.2 Simpl
	2.3 JML4

	3. JML4 FSPV THEORY GENERATOR
	4. FSPV BY EXAMPLE
	4.1 Factorial
	4.2 McCarthy’s 91 Function
	4.3 Fibonacci Numbers
	4.4 Ackermann’s Function

	5. RELATED WORK
	6. CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDIX A
	

	Smith-Roche-Sitaraman-Krone-Ogden.pdf
	1. INTRODUCTION
	2. PROOFS OF VCS VS. THEOREMS
	3. PRÉCIS AND PROOF UNITS
	4.PROOF CHECKER
	5. RELATED WORK AND CONCLUSIONS
	5.1 Isabelle
	5.2 Coq
	5.3 PVS
	5.4 Nuprl
	5.5 Conclusions

	6. ACKNOWLEDGMENTS
	7. APPENDIX
	7.1 Stack Specification
	7.2 VCs Resulting from Obvious_F_C_Realiz

	8. REFERENCES

