
JML and Aspects: The Benefits of
Instrumenting JML Features with
AspectJ

Henrique Rebêlo
Sérgio Soares
Ricardo Lima
Paulo Borba
Márcio Cornélio

Java Modeling Language

Formal specification language for Java
behavioral specification of Java modulesp
sequential Java

Adopts design by contract based onAdopts design by contract based on
Hoare-style with assertions

pre- postconditions and invariantspre , postconditions and invariants
Main goal Improve functional
software correctness of Java programssoftware correctness of Java programs

jmlc: compilation passes
Runtime checksRuntime checks

Front-end

MultiJava
Compiler

Code
Generation

Problem

JML limitation
The JML compiler does not work properly
when applied to other Java platforms
Example: Java ME platform

Data structures (e.g. HashSet)
Java reflection mechanism

OOur approach: previous work

Verify JavaME/SE programs with JML
AOP/AspectJ

We use the AspectJ to
- translate JML features into aspects
- generate bytecodes compliant with Java ME/SE
- verify if bytecode respects the JML

features during runtimefeatures during runtime

A t i t d iAspect-oriented programming…

is
QuantificationQuantification

+
Obli iObliviousness

(Filman, Elrad, Clarke, and Aksit 2005)

Aspect-oriented languages are
quite popular...

due to the promise ofp

modularizingmodularizing
tti crosscutting concerns

Sajmlc: implementation Strategy
Runtime checksRuntime checks

Front-end

AspectJ
Compiler

Rebêlo
and

Colleagues’
approach

Aspect Code
Generation

Sgenerated code: jmlc VS ajmlc

jmlc
Java source file System (.class)

MultiJava

ajmlc
Woven System (.class)

W

Java source file

y ()
e
a
v
eAspectJ source file e
r

D AOP h JML f ?

Research questions

Does AOP represent the JML features?
What is the order and relationship
between the generated aspects?
How to check Java ME apps using pp g
ajmlc (with aspects)?
When is it beneficial to aspectize JMLWhen is it beneficial to aspectize JML
features?
…

CContributions

Answering the mentioned research
questionsq
Supporting new assertion semantics
Generating instrumented bytecodeGenerating instrumented bytecode
when necessary
St d d iStudy — code size
Guidelines for ajmlc
…

The analogy between JML and

AspectJ An AOP e tension for Ja a

Aspects
AspectJ — An AOP extension for Java

dynamic crosscutting (e.g., before advice)
static crosscutting — ITD (e.g., new fields)
quantification
property-based crosscuting — wildcarding (*)

ti (* T *())execution (* T.*(..))

Identifies executions to any method with any Identifies executions to any method, with any
return and parameters type, defined on type T.

The invariants analogy
class T {

aspect T { class T {
int i = 10;
//@ invariant i == 10;

before(T object) :
exec(!static * T.*(..)) &&
within(T+) &&
this(object){

void m() {...}
void n() {...}
void o() {...}

}

= this(object){
if(!(object.i==10)){

throw new Error(“”);
}

}} }
after(T object) :

exec(!static * T.*(..)) &&
within(T+) && (→) JML feature as an aspect ()
this(object){

if(!(object.i==10)){
throw new Error(“”);

}

(→) JML feature as an aspect

(←) An aspect feature as JML spec
}

}
}

Both JML spec and aspect quantify
the same points on type T

Behavioral subtyping analogy
class T {

T int i = 10;

//@ post i >= 10;
void m() { }

T

m()

void m() {...}
}

aspect T {aspect T {
after(T object) :

exec(void T.m() &&
within(T+) &&
thi (bj t){

m() m()

this(object){
if(!(object.i>=10)){

throw new Error(“”);
}

m() m() m() m()

}
}

}
Both JML spec and aspect quantify the
same points on type T and its subtypes

O
Not limited to

Other analogies
Not limited to:

constraint specifications
refinement
model-programs
…

Oth tifi ti i t i JML th t b Other quantification points in JML that can be
implemented using AspectJ

Ordering of advice executions
into an aspect

object T

a method is
called

dispatch

Aspect T

called
and returns
or throws

a method executes
and returns or throws

Before advices to check invariantsBefore advices to check invariants

Before advice to check preconditions

After or around advices to check postconditionsAfter or around advices to check postconditions

After advices to check invariants

Expression evaluation with
new assertion semantics

We restructured the ajmlc compiler to deal
with the new assertion semantics proposed

by Chalin’s work. With this semantics, a
JML clause can be entirely executable

 n t

We add two try catch blocks

or not

We add two try-catch blocks
one for non-executable exceptions
another to handle all other exceptions

Example

public class T {
private int x,y;private int x,y;

//@ requires b && (x < y);
bli id (b l b) {public void m(boolean b) {
...

}
}

Add before-execution with new
assertion semantics capability

before (T object boolean b)before (T object, boolean b) :
execution(void T.m(boolean)) && ...{
boolean rac$b = true;

try{try{
...
if (!rac$b) {...}
}}

} catch (JMLNonExecutableException rac$nonExec){
rac$b = true;

} catch (Throwable rac$cause){
if(...) {...}
else {throw new JMLEvaluationError(“”);}

}
}

ajmlc and Java ME applications

To verify Java ME applications, our compiler
only generates aspects that avoid AspectJ only generates aspects that avoid AspectJ

constructs that are not supported by
Java ME

Avoids AspectJ constructs such as…p
cflow pointcut
cflow below pointcutcflow below pointcut
thisJoinPoint, …

ajmlc optimizations

Compiling empty classes
ajmlc generates no code
jmlc

generates 11.0 KB (source code instrumentation)
generates 5.93 KB (bytecode instrumentation)

public class T {
}}

SJmlc VS ajmlc

SStudy

3 J SE li ti3 Java SE applications
annotated with JML
extracted from JML literature

We have compiled these programsp p g
using ajmlc with two different weavers

ajc
abc

using jmlc (classical JML compiler)

CConsidered metric

Code size
instrumented source code size
instrumented bytecode size
Jar size (bytecode size + JML lib)

Results
Source code

instrumentation

Jar size

Bytecode
instrumentation

GGuidelines

1. If the application is not to be fully compiled with
the JML compiler — ajmlc can be used with

ith j b th i i b tt teither ajc or abc weaver, otherwise is better to
use only abc weaver

2 If the user needs to take maximum of code2. If the user needs to take maximum of code
optimization — ajmlc always combined with
abc weaverabc weaver

These guidelines are helpful when g p
Java ME applications are considered

C

B fit t AOP t i t t JML

Conclusion

Benefits to use AOP to instrument JML
suitability
flexibility
evidence to be less complex

Answers to research questions
New assertion semantics capabilityNew assertion semantics capability
ajmlc optimizations
Study + guidelines to use ajmlcStudy + guidelines to use ajmlc

Future Work

To extend our compiler to treat other JML
features (e.g., model programs)

To support assertion checking in aTo support assertion checking in a
concurrent environment

More case studies (including performance
comparison)comparison)

JML and Aspects: The Benefits of
Instrumenting JML Features with
AspectJ

Henrique Rebêlo
Sérgio Soares
Ricardo Lima
Paulo Borba
Márcio Cornélio

GGuidelines — no silver bullets

1. If the application which you want to compile
using the JML compiler refers to JML features

t il bl i j l l thnot available in ajmlc, you can use only the
classical JML compiler (jmlc), which does not
generate code to run on Java ME platformgenerate code to run on Java ME platform

